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Preface

The history of statistics suggests two important lessons. First and foremost,
methodological research flourished in the hands of those who were not only
highly focused on problems arising from real data, but who were themselves
immersed in generating highly valuable data, like the late Sir Ronald A. Fisher.
Second, although theoretical statistics research can be nurtured in isolation, only
an applied orientation has made it possible for such efforts to reach new heights.
Throughout the history of statistics, the most innovative and path breaking
methodological advances have come out when brilliant statisticians have
confronted the practical challenges arising from real data. The computational
revolution has certainly made many of the most difficult computational algo-
rithms readily available for common use, which in turn made the data-centric
approach to methodological innovation sustainable. That the data-centric
approach enriched statistics itself is amply demonstrated by the varied applica-
tions of statistical methods in epidemiology and medical studies.

This volume presents a collection of chapters that focus on applications of
statistical methods in epidemiology and medical statistics. Some of them are time
tested and proven methods with long-track records while others bring the latest
methodologies where their promise and relevance compensate for their relatively
short-track records. This volume includes 27 chapters. In Chapter 1, Prentice
addresses methodological challenges in epidemiology and biomedical research in
general. Conceptually, the remaining 26 chapters may be divided into three cat-
egories: standard and traditional methods, relatively more advanced methods,
and recent methods. These less traditional methods generally provide models with
greater fidelity to the underlying data generation mechanisms at the expense of
more computational complexity.

The first category includes 10 chapters. Chapter 3 by Rothman et al. discusses
epidemiological study designs. Chapter 5 by Vittinghoff et al. discusses linear and
non-linear regression methods. Spitznagel discusses logistic regression methods in
Chapter 6. In Chapter 8, Gurka and Edwards review mixed models. In Chapter
11, Shannon discusses cluster analysis. Woods and Edwards discuss factor anal-
ysis in Chapter 12. A few chapters are devoted to clinical trials. Chapter 15 by
Kenward and Jones discusses design and analysis of cross-over trials, Chapter 17
by Gao et al. discusses early phase clinical trials (I and II), and Chapter 18 by
Davis and Baraniuk discusses definitive phases III and IV clinical trials. In
Chapter 22, Zeller and Yan discuss the sample size and power issues.

xiii



The second category of advanced topics includes 9 chapters. Chapter 2 by
Rubin discusses statistical inference for causal effects. Chapter 9 by Klein and
Zhang discusses survival analysis. Chapter 13 by Hayashi et al. discusses struc-
tural equations modeling. In Chapter 14, Xiong et al. discuss statistical modeling
of longitudinal data. In Chapter 16, Mazumdar and Bang discuss sequential and
group sequential designs in clinical trials. Chapter 19 by Rässler et al. discusses
incomplete data in epidemiology and medical statistics. Chapter 20 by Spitznagel
reviews meta-analysis. Chapter 21 by Moyé discusses the multiple comparisons
issue. And, in Chapter 25, Litman et al. discuss estimation of marginal regression
models with multiple source predictors.

Finally, the third category of relatively recent methods includes 7 chapters.
Chapter 4 by Looney and Hagan discusses statistical methods for assessing and
analysis of biomarkers. In Chapter 7, Hilbe and Greene discuss count response
regression models. In Chapter 10, Moeschberger et al. review statistical analysis
of competing risks. In Chapter 23, Wahba discusses statistical learning in medical
data analysis. In Chapter 24, Mayer discusses evidence-based medicine and med-
ical decision-making. Chapter 26 by Kapadia and Moyé discusses difference
equations with public health applications. And, Chapter 27 by Lecoutre discusses
the Bayesian approach to experimental data analysis.

The editors sincerely hope that this combination of topics will be found useful
by statisticians of all walks of life, notably by theoretical and applied statisticians
at pharmaceutical companies, statisticians in the FDA, EPA, and other regula-
tory agencies and, most notably, by those who are working at the forefront of
biomedical research enterprise.

C.R. Rao
J. Philip Miller

D.C. Rao
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Statistical Methods and Challenges in Epidemiology
and Biomedical Research

Ross L. Prentice

Abstract

This chapter provides an introduction to the role, and use, of statistics in

epidemiology and in biomedical research. The presentation focuses on the

assessment and understanding of health-related associations in a study cohort.

The principal context considered is estimation of the risk of health events in

relation to individual study subject characteristics, exposures, or treatments,

generically referred to as ‘covariates’. Descriptive models that focus on relative

and absolute risks in relation to preceding covariate histories will be described,

along with potential sources of bias in estimation and testing. The role, design,

and conduct of randomized controlled trials will also be described in this

prevention research context, as well as in therapeutic research. Some aspects of

the sources and initial evaluation of ideas and concepts for preventive and

therapeutic interventions will be discussed. This leads naturally to a discussion

of the role and potential of biomarkers in biomedical research, for such

purposes as exposure assessment, early disease diagnosis, or for the evaluation

of preventive or therapeutic interventions. Recently available biomarkers,

including high-dimensional genomic and proteomic markers, have potential to

add much knowledge about disease processes and to add specificity to inter-

vention development and evaluation. These data sources are attended by many

interesting statistical design and analysis challenges. A brief discussion of

ongoing analytic and explanatory analyses in the Women’s Health Initiative

concludes the presentation.

1. Introduction

The topic of this chapter is too broad to allow an in-depth coverage of its many
important aspects. The goal, rather, will be to provide an introduction to some
specific topics, many of which will be covered in later chapters, while attempting
to provide a unifying framework to motivate statistical issues that arise in

1
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biomedical research, and to motivate some of the models and methods used to
address these issues.

Much of epidemiology, and biomedical research more generally, involves
following a set of study ‘subjects’, often referred to as the study cohort. Much
valuable basic biological research involves the study of lower life forms. Such
studies are often attended by substantial homogeneity among study subjects, and
relatively short life spans. Here, instead, the presentation will focus on a cohort of
humans, in spite of the attendant greater heterogeneity and statistical challenges.
For research purposes the individuals in a cohort are of interest through their
ability to yield health-related information pertinent to a larger population. Such a
larger population may, for example, include persons residing in the geographic
areas from which cohort members are drawn, who meet certain eligibility and
exclusionary criteria. The ability to infer health-related information about the
larger population involves assumptions about the representativeness of the cohort
for the ‘target’ population. This typically requires a careful characterization of the
cohort so that the generalizability of study findings can be defined. The target
population is often somewhat conceptual, and is usually taken to be practically
infinite in size. The major long-term goal of biomedical research is to decrease the
burden of premature disease morbidity and mortality, and to extend the period
of time that members of target populations live without major health-related
restrictions.

The principal focus of epidemiologic research is understanding the determi-
nants of disease risk among healthy persons, with a particular interest in mod-
ifiable risk factors, such as dietary or physical activity patterns, or environmental
exposures. There is a long history of epidemiologic methods development, much
of which is highly statistical, whose aim is to enhance the likelihood that asso-
ciations between study subject characteristics or exposures and disease risk are
causal, thereby providing reliable concepts for disease prevention.

The availability of disease screening programs or services, and the health care-
seeking behavior of cohort members, have potential to affect the timing of disease
diagnosis. Early disease detection may allow the disease course to be interrupted
or altered in a manner that is beneficial to the individual. Disease screening
research has its own set of methodologic challenges, and is currently the target of
intensive efforts to discover and validate early detection ‘biomarkers’.

Much biomedical research is directed to the study of cohorts of person having
a defined disease diagnosis, with emphasis on the characterization of prognosis
and, especially, on the development of treatments that can eradicate the disease or
can facilitate disease management, while avoiding undue adverse effects.

The ultimate products of biomedical research are interventions, biomarkers, or
treatments that can be used to prevent, diagnose, or treat disease. Additionally,
the knowledge of the biology of various life forms and the methodologic knowl-
edge that underlies the requisite research agenda, constitutes important and dura-
ble contributions from biomedical research. These developments are necessarily
highly interdisciplinary, and involve a wide spectrum of disciplines. Participating
scientists may include, for example, molecular geneticists studying biological
processes in yeast; technologists developing ways to assess a person’s genome or
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proteome in a rapid and reliable fashion; population scientists studying disease-
occurrence patterns in large human cohorts; and expert panels and government
regulators synthesizing research developments and providing recommendations
and regulations for consumption by the general population.

Statisticians and other quantitative scientists have important roles to fulfill
throughout this research spectrum. Issues of study design, quality control, data
analysis, and reporting are important in each biomedical research sector, and
resolving methodologic challenges is crucial to progress in some areas. The bio-
medical research enterprise includes natural tensions, for example, basic versus
applied research; in-depth mechanistic research versus testing of current concepts;
and independent versus collaborative research. Statisticians can have a unifying
role across related cultural research norms, through the opportunity to bring
ideas and motivations from one component of this research community to
another in a non-threatening manner, while simultaneously applying critical
statistical thinking and methods to the research at hand.

2. Characterizing the study cohort

A general regression notation can be used to represent a set of exposures and
characteristics to be ascertained in a cohort under study. Let z(u)0 ¼ {z1(u),
z2(u),y} be a set of numerically coded variables that describe an individual’s
exposures and characteristics at ‘time’ u, where, to be specific, u can be defined as
time from selection into the cohort, and a prime (0) denotes vector transpose.
Let Z(t) ¼ {z(u), uot} denote the history of each covariate at times less than t.
The ‘baseline’ covariate history Z(0) may include information that pertains to
time periods prior to selection into the cohort.

Denote by l{t, Z(t)} the occurrence rate for a health event of interest in the
targeted population at cohort follow-up time t, among persons having a preced-
ing covariate history Z(t). A typical cohort study goal is to assess the relationship
between aspects of Z(t) and the corresponding disease rate l{t; Z(t)}. Doing so
involves recording over time the pertinent covariate histories and health event
histories for cohort members, whether the cohort is comprised of healthy indi-
viduals as in an epidemiologic cohort study or disease prevention trial, or persons
having a defined disease in a therapeutic context. The notation Z(t) is intended to
encompass evolving, time-varying covariates, but also to include more restrictive
specifications in which, for example, only baseline covariate information is
included.

A cohort available for study will typically have features that distinguish it from
the target population to which study results may be applied. For example, an
epidemiologic cohort study may enroll persons who are expected to continue
living in the same geographic area for some years, or who are expected to be able
and willing to participate in research project activities. A therapeutic cohort may
have characteristics that depend on institutional referral patterns and clinical
investigator experience and expertise. Hence, absolute health event (hereafter
‘disease’) occurrence rates may be less pertinent and transferable to the target
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population, than are relative rates that contrast disease rates among persons
receiving different treatments or having different exposures.

The hazard ratio regression model of Cox (1972) captures this relative risk
notion, without imposing further restrictions on corresponding absolute rates. It
can be written

lft;ZðtÞg ¼ l0ðtÞ exp fxðtÞ
0bg, (1)

where x(t)0 ¼ {x1(t),y, xp(t)} is a modeled regression p-vector formed from Z(t)
and product (interaction) terms with t, b0 ¼ (b1,y, bp) is a corresponding hazard
ratio, or relative risk, parameter to be estimated, and l0( � ) is an unrestricted
‘baseline’ hazard function corresponding to x(t)� 0. For example, x(t)�x1 may
be an indicator variable for active versus placebo treatment in a prevention trial,
or an indicator for test versus the standard treatment in a therapeutic trial, in
which case eb1 is the ratio of hazard rates for the test versus the control group, and
there may be special interest in testing b1 ¼ 0 (eb1 ¼ 1). Such a constant hazard
ratio model can be relaxed, for example, to x(t) ¼ {x1, x1 log t} in which case the
‘treatment’ hazard ratio function becomes eb1 tb2 ; which varies in a smooth man-
ner with ‘follow-up time’ t. Alternatively, one may define x(t) to include a quan-
titative summary of a study subject’s prior exposure to an environmental or
lifestyle factor in an epidemiologic context.

Let T be the time to occurrence of a disease under study in a cohort. Typically
some, and perhaps most, of cohort members will not have experienced the disease
at the time of data analysis. Such a cohort member yields a ‘censored disease
event time’ that is known to exceed the follow-up time for the individual. Let Y be
a process that takes value Y(t) ¼ 1 if a subject is ‘at risk’ (i.e., without prior
censoring or disease occurrence) for a disease event at follow-up time t, and
Y(t) ¼ 0 otherwise. Then a basic independent censoring assumption requires

lft;ZðtÞ; Y ðuÞ ¼ 1; uotg ¼ lft;ZðtÞg,

so that the set of individuals under active follow-up is assumed to have a disease
rate that is representative for the cohort given Z(t), at each follow-up time t. The
hazard ratio parameter b in (1) is readily estimated by maximizing the so-called
partial likelihood function (Cox, 1975)

LðbÞ ¼
Yk

i¼1

expfxiðtiÞ
0bgP

l�RðtiÞ

expfxlðtiÞ
0bg

264
375, (2)

where t1,y, tk are the distinct disease occurrence times in the cohort and R(t)
denotes the set of cohort members at risk (having Y(t) ¼ 1) at follow-up time t.
Standard likelihood procedures apply to (2) for testing and estimation on b, and
convenient semiparametric estimators of the cumulative baseline hazard function
O0ðtÞ ¼

R t

0 l0ðuÞ du are also available (e.g., Andersen and Gill, 1982) thereby also
providing absolute disease rate estimators.
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The score test @ logLðbÞ=@b for b ¼ 0 is referred to as the logrank test in the
special case in which x(t)� x is comprised of indicator variables for p of p+1
groups, for which disease rates are to be compared. A simple, but practically
useful refinement of (1) replaces the baseline hazard rate l0(t) by l0s(t) thereby
allowing the baseline rates to differ arbitrarily among strata s ¼ 1, 2,y that may
be time-dependent. This refinement allows a more flexible modeling of disease
rates on stratification factors, formed from {Z(t), t}, than would conveniently be
possible through hazard ratio regression modeling. The partial likelihood func-
tion under a stratified Cox model is simply the product of terms (2) formed from
the stratum-specific disease occurrence and covariate data. Other modifications
are needed to accommodate tied disease occurrence times, and for more complex
disease occurrence time data as may arise with specialized censoring schemes or
with recurrent or correlated disease occurrence times. The Cox regression method
has been arguably the major statistical advance relative to epidemiology and
biomedical research of the past 50 years. Detailed accounts of its characteristics
and extensions have been given various places (e.g., Andersen et al., 1993;
Kalbfleisch and Prentice, 2002).

The Cox model provides a powerful and convenient descriptive tool for as-
sessing relative associations with disease incidence. There are other descriptive
models, such as accelerated failure time models

lft;ZðtÞg ¼ l0

Z t

0

exðuÞ0bdu

� �
exðtÞ0b,

for which the regression parameter may have a more useful interpretation in some
contexts. This model tends to be rather difficult to apply, however, though
workable implementations have been developed, with efficiency properties de-
pendent on the choice of model for l0( � ) that is used to generate estimating
functions (e.g., Jin et al., 2003).

In some settings mechanistic or biologically-based disease occurrence rate
models are available (e.g., Moolgavkar and Knudson, 1981). The parameters in
such models may characterize aspects of the disease process, or provide specific
targets for treatments or interventions that allow them to valuably complement
descriptive modeling approaches. Biologically based models with this type of
potential also tend to be more challenging to apply, but the payoff may some-
times justify the effort. Of course, it is useful to be able to examine a cohort
dataset from more than a single modeling framework, to assure robustness of
principal findings, and to garner maximal information.

The statistical issues in study design, conduct, and analysis differ somewhat
between the epidemiologic, early detection, and therapeutic contexts, according
to differences in disease outcome rates and outcome ascertainment issues, and
according to covariate definition and measurement issues. However, there are
also some important commonalities; for example, issues of multiple hypothesis
testing, especially in relation to high-dimensional covariate data and study
monitoring procedures, arise in each context. We will proceed by describing some
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of the context-specific statistical issues first, and subsequently include a discussion
of shared statistical issues.

3. Observational study methods and challenges

3.1. Epidemiologic risk factor identification

3.1.1. Sampling strategies

Cohort studies provide a mainstay epidemiologic approach to the identification of
disease risk factors. A single cohort study has potential to examine the associ-
ations between multiple exposures, behaviors or characteristics and the risk of
various diseases, and has potential to examine both short- and long-term asso-
ciations. A distinguishing feature of the epidemiologic cohort study is the typical
low incidence rates for the diseases under study. Even such prominent chronic
diseases as coronary heart disease or lung cancer typically occur at a rate of 1%
or less per year among ostensibly healthy persons. It follows that epidemiologic
cohorts may need to be quite large, often in the range of tens of thousands to
more than 100,000, depending on the age distribution and on the frequencies of
‘exposures’ of interest in the cohort, to provide precise estimates on association
parameters of interest in a practical time frame. Well-characterized cohorts tend
to be followed for substantial periods of time, as their value typically increases as
more disease events accrue, and marginal costs for additional years of follow-up
tend to diminish.

The rare disease aspect of epidemiologic cohort studies opens the way to var-
ious design and analysis simplifications. For example, the partial likelihood-based
estimating function for b from (2) can be written

@ logLðbÞ=@b0 ¼
Xk

i¼1

xiðtiÞ �

P
l�RðtiÞ

xlðtiÞW ilðbÞP
l�RðtiÞ

W ilðbÞ

8>><>>:
9>>=>>;, (3)

where W ilðbÞ ¼ expfxlðtiÞ
0bg; which contrasts the modeled regression vector for

the individual developing disease at time ti (the case), to a suitably weighted
average of the regression vectors, xl(ti), for cohort members at risk at ti

(the controls). Most of the variance in this comparison derives from the ‘case’
regression vector, and the summations over the ‘risk set’ at ti can be replaced by a
summation over a few randomly selected controls from this risk set with little loss
of estimating efficiency. This ‘nested case–control’ (Liddell et al., 1977; Prentice
and Breslow, 1978) approach to estimation is attractive if the determination of
some components of x(t) is expensive. Often only one, or possibly two or three,
controls will be ‘time-matched’ to the corresponding case. Depending somewhat
on the covariate distribution and hazard ratio magnitude, the efficiency reduction
for a nested case–control versus a full-cohort analysis is typically modest if, say,
five or more controls are selected per case. With large cohorts, it is often possible
to additionally match on other factors (e.g., baseline, age, cohort enrollment date,
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gender) to further standardize the case versus control comparison. Another
within-cohort sampling strategy selects a random subcohort, or a stratified ran-
dom subcohort, for use as the comparison group for the case at each ti, instead of
the entire risk set R(ti) in (3). If some care is taken to ensure that the subcohort is
well aligned with the case group, there will be little to choose between this case–
cohort (e.g., Prentice, 1986) estimation approach and the nested case–control
approach, and there may be value in having covariate data determination on a
random subcohort. Within-cohort sampling strategies of this type are widely used
in epidemiology when the focus is on blood or urine biomarkers for which deter-
minations on the entire cohort may be prohibitively expensive, and has appli-
cation also to the analysis and extraction of information from stored records,
for example, nutrient consumption estimates from food records, or occupational
exposure estimates from employer records.

In a large cohort with only a small fraction experiencing disease one can, with
little concern about bias, select a distinct comparison group to replace R(ti) in (3)
for the case occurring at ti, for each i ¼ 1, 2,y . The estimating equation (3) is
then formally that for a conditional logistic regression of case versus control
status at ti on the corresponding regression vectors x(t). In fact, since most asso-
ciation information for baseline risk factors derives from whether or not disease
occurs during cohort follow-up, rather than from the timing of case occurrence, it
is often convenient to pool the case and the control data and analyze using
unconditional logistic regression, perhaps including follow-up duration and other
matching characteristics as control variable in the regression model. The estimates
and interpretation of odds ratios from such a logistic regression analysis will
typically differ little from that for hazard ratios defined above. Breslow and Day
(1987) provide a detailed account of the design and analysis of these types of
case–control studies.

Note that the case–control analyses just described do not require a cohort
roster to be available. Rather, one needs to be able to ascertain representative
cases and controls from the underlying cohort, and ascertain their covariate his-
tories in a reliable fashion. In fact, the classic case–control study in the context of
a population-based disease register proceeds by randomly sampling cases occur-
ring during a defined accrual period along with suitably matched controls, and
subsequently ascertains their covariate histories. The challenges with this study
design include avoiding selection bias as may arise if the cases and controls
enrolled are not representative of cases and controls in the cohort, and especially,
avoiding ‘recall bias’, as persons who have recently experienced a disease may
recall exposures and other characteristics differently than do continuing healthy
persons. The classic case–control study may be the only practical study design for
rare diseases, but in recent years, as several large cohort studies have matured, this
design has been somewhat overtaken by cohort studies having a defined roster of
members and prospective assessment of covariate histories and health events.

3.1.2. Confounding

The identification of associations that are causal for the study disease represents a
major challenge for cohort studies and other observational study (OS) designs.
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The association of a disease incidence rate at time t with a covariate history Z1(t)
may well depend on the histories Z2(t) of other factors. One can then model the
hazard rate l{t; Z(t)}, where Z(t) ¼ {Z1(t), Z2(t)} and examine the association
between l and Z1(t) in this model, that has now ‘controlled’ for factors Z2(t) that
may otherwise ‘confound’ the association. Unfortunately, there is no objective
means of knowing when the efforts to control confounding are sufficient, so that
one can only argue toward causation in an OS context. An argument of causation
requires a substantial knowledge of the disease processes and disease determi-
nants. The choices of confounding factors to control through regression modeling
or through stratification can be far from straightforward. For example, factors
that are time-dependent may offer greater confounding control (e.g., Robins,
1987), but if such ‘factors are on a causal pathway’ between Z, and disease risk,
they may ‘overcontrol’. Some factors may both confound and mediate, and spe-
cialized modeling techniques have been proposed to address this complex issue
(e.g., Hernan et al., 2001). Randomized controlled trials provide the ability to
substantially address this confounding issue. However, randomized prevention
trials having disease outcomes tend to be very expensive and logistically difficult,
so that for many important prevention topics one must rely strongly on obser-
vational associations. OS findings that are consistent across multiple populations
may provide some reassurance concerning confounding, but it may be unclear
whether the same sources of confounding could be operative across populations
or whether other biases, such as may arise if common measurement instruments
are used across studies, are present.

3.1.3. Covariate measurement error

The issue of measurement error in covariate data is one of the most important
and least developed statistical topics in observational epidemiology. Suppose that
some elements of Z(t), and hence of the modeled regression vector x(t) in (2) are
not precisely measured. How might tests and estimation on b be affected? Some of
the statistical literature on covariate measurement error assumes that x(t) is pre-
cisely measured in a subset of the cohort, a so-called validation subsample, while
some estimate, say w(t) of x(t) is available on the remainder of the cohort. The
hazard rate at time t induced from (1) in the non-validation part of the cohort is
then

l0ðtÞEfexpfxðtÞ
0bgjwðtÞ; Y ðtÞ ¼ 1g. (4)

The expectation in (4) can be estimated using the validation sample data on
{x(t), w(t)} and consistent non-parametric estimates of b are available (Pepe and
Fleming, 1991; Carroll and Wand, 1991) with the measurement error simply
reducing estimating efficiency.

Frequently in epidemiologic contexts, however, the ‘true’ covariate history is
unascertainable for any study subjects, and only one or more estimates thereof
will be available. Important examples arise in nutritional and physical activity
epidemiology where Z(t) may include the history of consumption of certain
nutrients over preceding years, or aspects of lifetime physical activity patterns.
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A classical measurement model, ubiquitous in the statistical measurement error
literature, assumes that available measurements w1(t), w2(t),y of x(t) are the sum
of x(t) plus error that is independent across replicates for an individual, and that
is independent of x(t) and of other study subject characteristics. A variety of
hazard ratio estimators are available from this type of reliability data including
regression calibration (Carroll et al., 1995), risk set regression calibration (Xie
et al., 2001), conditional score (Tsiatis and Davidian, 2001), and non-parametric
corrected score procedures (Huang and Wang, 2000; Song and Huang, 2005).
These modeling assumptions and estimation procedures may be sufficient for
objectively assessed covariates (e.g., certain exposure biomarkers), but the clas-
sical measurement model may be inadequate for many self-reported exposures.
For example, the relationship between the consumption of fat, carbohydrate,
and total energy (calories) to the risk of chronic disease has been the subject of
continuing cohort and case–control study research for some decades. Almost all
of this work has involved asking cohort members to self-report their dietary
patterns, most often in the form of the frequency and portion size of consumption
of each element of a list of foods and drinks. For certain nutrients, including
short-term total energy and protein energy, there are objective consumption
markers that plausibly adhere to a classical measurement model. Though pub-
lished data on the relationship of such markers to corresponding self-reported
consumption remains fairly sparse, it is already evident, for example for total
energy, that the measurement error properties may depend on such individual
characteristics as body mass (e.g., Heitmann and Lissner, 1995), age, and certain
behavioral characteristics, and that replicate measurements have measurement
errors that tend to be positively correlated (e.g., Kipnis et al., 2003). This work
underscores the need for more flexible and realistic models (e.g., Carroll et al.,
1998; Prentice et al., 2002) for certain exposure assessments in epidemiologic
cohort settings, and for the development of additional objective (biomarker)
measures of exposure in nutritional and physical activity epidemiology. Typically,
it will not be practical to obtain such objective measures for the entire epidemio-
logic cohort, nor can some key biomarkers be obtained from stored specimens.
Hence, the practical way forward appears to be to use the biomarker data on a
random subsample to calibrate (correct) the self-report data for the entire cohort
prior to hazard ratio estimation or odds ratio estimation (e.g., Sugar et al., 2006).
This is a fertile area for further data gathering and methods development, and one
where statisticians have a central role to fulfill.

3.1.4. Outcome data ascertainment

A cohort study needs to include a system for regularly updating disease event
information. This may involve asking study subjects to periodically self-report
any of a list of diagnoses and to report all hospitalizations. Hospital discharge
summaries may then be examined for diagnoses of interest with confirmation by
other medical and laboratory records. Sometimes outcomes are actively ascer-
tained as a part of the study protocol; for example, electrocardiographic tracings
for coronary heart disease or mammograms for breast cancer. Diagnoses that
require considerable judgment may be adjudicated by a committee of experts,
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toward standardizing the accuracy and timing of disease event diagnoses. Disease
incidence or mortality registers can sometimes provide efficient outcome
ascertainment, or can supplement other ascertainment approaches.

Unbiased ascertainment of the fact and timing of disease events relative to the
elements of Z(t) under study is needed for valid hazard ratio estimation. Valid
absolute risk estimation has the more stringent requirement of comprehensive
disease event ascertainment. For example, a recent NIH workshop assessed the
state-of-the science in the topic of multivitamin and multimineral (MVM) sup-
plements and chronic disease risk. MVM users tend to have many characteristics
(e.g., highly educated, infrequent smoking, regular exercise, low-fat and high-fruit
and vegetable dietary habits) that could confound a disease association, but
also MVM user engage more frequently in such disease-screening activities as
mammography or prostate-specific antigen testing (e.g., White et al., 2004).
Hence, for example, a benefit of MVMs for breast or prostate cancer could be
masked by earlier or more complete outcome ascertainment among users. Careful
standardization for disease screening and diagnosis practices, at the design or
analysis stages, may be an important element of cohort study conduct. Similarly,
differential lags in the reporting or adjudication of disease events can be a source
of bias, particularly toward the upper end of the distribution of follow-up time for
the cohort.

3.2. Observational studies in treatment research

Observational approaches are not used commonly for the evaluation of a treat-
ment for a disease. Instead, the evaluation of treatments aimed at managing
disease, or reducing disease recurrence or death rates, rely primarily on ran-
domized controlled trials, typically comparing a new treatment or regimen to a
current standard of care. Because of the typical higher rate of the outcome events
under study, compared to studies of disease occurrence among healthy persons,
therapeutic studies can often be carried out with adequate precision with at most
a few hundred patients. Also, the process for deciding a treatment course for a
patient is frequently complex, often involving information and assumption
related to patient prognosis. Hence, the therapeutic context is one where it may be
difficult or impossible to adequately control for selection factors, confounding
and other biases using an OS design.

Observational studies do, however, fulfill other useful roles in disease-
treatment research. These include the use of data on cohorts of persons having
a defined diagnosis to classify patients into prognostic categories within which
tailored treatments may be appropriate, and supportive care measures may need
to be standardized. For example, classification and regression trees (e.g., LeBlanc
and Tibshirani, 1996), as well as other explanatory and graphical procedures, are
used by cooperative oncology and other research groups. Also, observational
studies in patient cohorts, often under the label ‘correlationals studies’ are fre-
quently used as a part of the treatment development enterprise. For example,
observational comparisons, between persons with or without recurrent disease,
of gene expression patterns in pre-treatment tissue specimens may provide
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important insights into the ‘environment’ that allows a disease to progress, and
may suggest therapeutic targets to interrupt disease progression and improve
prognosis.

3.3. Observational studies in disease-screening research

Disease-screening research aims to identify sensitive and specific means of diag-
nosing disease prior to its clinical surfacing. In conjunction with effective means
of disease treatment, such screening programs can reduce disease-related
mortality, and can reduce morbidity that accompanies advanced stage disease.
For similar reasons to the therapeutic area, observational studies to evaluate
screening programs are most challenging, and randomized controlled trials offer
important advantages.

At present, substantial efforts are underway to discover biomarkers for the
early detection of various cancers. These research efforts can be expected to
identify a number of novel early detection markers in upcoming years. The cost
and duration of disease-screening trials encourage additional research to enhance
the reliability of observational evaluations in this setting, including the possibility
of joint analyses of observational and randomized trial data.

Observational studies play a crucial role in the identification of disease-
screening biomarkers and modalities. For example, a current concept in the early
detection of cancer is that, early in their disease course, malignant tumors may
shed minute amounts of novel proteins into the blood stream, whence the pres-
ence of, or an elevated concentration of, the protein could trigger biopsy or other
diagnostic work-up. For such a protein to yield a test of sufficient sensitivity and
specificity to be useful as a screening tool, corresponding hazard ratios need to be
considerably larger than is the case for typical epidemiologic risk factors. Hence,
stored blood specimens from rather modest numbers of cases and controls (e.g.,
100 of each) from an epidemiologic cohort may be sufficient to allow identifi-
cation of a biomarker that would satisfy demanding diagnostic test criteria.

In terms of the notation of Section 2, the principal covariate in the diagnostic
test setting is a binary variable that specifies whether or not the test is positive
(e.g., prostate-specific antigen concentration, or change in concentration, above a
certain value), so that the issue of converting a quantitative variable (e.g., PSA
concentration) to a binary variate is important in this context.

This leads to a focus on receiver-operator characteristic (ROC) curves from
case–control data, with test evaluation based in part on ‘area under’ the ROC
‘curve’ (AUC), or partial AUC if one chooses to focus on a range of acceptable
specificities. A focus on the predictiveness of a diagnostic marker, typically using
a logistic regression version of (3), is also important in this context and requires a
linkage of the case–control data to absolute risks in the target population. This
too is an active and important statistical research area. See Pepe (2003) and Baker
et al. (2006) for accounts of the key concepts and approaches in evaluating
diagnostic tests. Issues requiring further development include study design and
analysis methods with high-dimensional markers, and methods for the effective
combination of several screening tests (e.g., McIntosh and Pepe, 2002).
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3.4. Family-based cohort studies in genetic epidemiology

There is a long history of using follow-up studies among family members to study
genetic aspects of disease risk. For example, one could compare the dependence
patterns among times to disease occurrence in a follow-up study of monozygotic
and dizygotic twins having shared environments to assess whether there is a
genetic component to disease risk. The so-called frailty models that allow family
members to share a random multiplicative hazard rate factor are often used for
this type of analysis (e.g., Hougaard, 2000). Such models have also been adapted
to case–control family studies in which one compares the disease-occurrence
patterns of family members of persons affected by a disease under study to
corresponding patterns for unaffected persons (e.g., Hsu et al., 1999).

Often the ascertainment schemes in family-based studies are complex, as fam-
ilies having a strong history of the study disease are selected to increase the
probability of harboring putative disease genes. Linkage analysis has been a
major approach to the mapping of genes that may be related to disease risk. Such
analyses proceed by determining the genotype of family members for a panel of
genetic markers, and assessing whether one or more such markers co-segregate
with disease among family members. This approach makes use of the fact that
segments of the chromosome are inherited intact so that markers over some
distance on a chromosome from a disease gene can be expected to associate with
disease risk. There are many possible variations in ascertainment schemes and
analysis procedures that may differ in efficiency and robustness properties (e.g.,
Ott, 1991; Thomas, 2004). Following the identification of a linkage signal, some
form of finer mapping is needed to close in on disease-related loci.

Markers that are sufficiently close on the genome tend to be correlated,
depending somewhat on a person’s evolutionary history (e.g., Felsenstein, 1992).
Hence, if a dense set of genetic markers is available across the genome, linkage
analysis may give way to linkage-disequilibrium (LD) analyses. Genome-wide
association studies with several hundred thousand single-nucleotide polymorph-
ism (SNP) markers have only recently become possible due to efficient high-
throughput SNP genotyping. High-dimensional SNP panels can be applied in
family study contexts, or can be applied to unrelated cases and controls. There are
many interesting statistical questions that attend these study designs (Risch and
Merikangas, 1996; Schork et al., 2001), including the choice of SNPs for a given
study population, and the avoidance of the so-called population stratification
wherein correlations with disease may be confounded by ethnicity or other
aspects of evolutionary history. Some further aspects of high-dimensional SNP
studies will be discussed below.

4. Randomized controlled trials

4.1. General considerations

Compared to purely observational approaches, the randomized controlled trial
(RCT) has the crucial advantage of ensuring that the intervention or treatment

R. L. Prentice12



assignment is statistically independent of all pre-randomization confounding fac-
tors, regardless of whether or not such factors can be accurately measured and
modeled, or are even recognized. The randomization assignment is also inde-
pendent of the pre-randomization disease-screening patterns of enrollees. Hence,
if outcomes of interest during trial follow-up are equally ascertained, tests to
compare outcome rates among randomized groups represent fair comparisons,
and a causal interpretation can be ascribed to observed differences. Such tests are
often referred to as ‘intention-to-treat (ITT)’ tests, since the comparisons is
among the entire randomized groups, without regard to the extent to which the
assigned intervention or treatment was adhered to by trial enrollees. Note that the
validity of comparisons in RCTs depends on the equality of outcome ascertain-
ment (e.g., disease-occurrence times) between randomization groups. This implies
an important role for an outcome ascertainment process that is blinded to
randomization group, and implies the need for a protocol that standardizes all
aspects of the outcome identification and adjudication. The RCT often provides
a clinical context, which makes such unbiased outcome data ascertainment
practical.

4.2. Prevention trials

For the reasons just noted, RCTs have some major advantages compared to
observational studies for the evaluation of preventive interventions. The major
limitations of the RCT design in this context are the typical large sample sizes,
challenging logistics, and very substantial costs. For example, a simple sample size
formula based on the approximate normality of the logarithm of the odds ratio
indicates that a trial cohort sample size must be at least

n ¼ fp2ð1� p2Þg
�1ðlog lÞ�2Q, (5)

for a trial having active and control groups, assigned with probabilities g and
1� g that have corresponding outcome event probabilities of p1 and p2 over trial
follow-up. In this expression l ¼ p1ð1� p2Þ=fp2ð1� p1Þg is the active versus con-
trol group odds ratio, and

Q ¼ fgð1� gÞg�1½W a=2 �W 1�Zfgþ l�1ð1� p2 þ lp2Þ
2
ð1� gÞg1=2�2,

is a rather slowly varying function of l and p2 at specified test size (type I error
rate) a and power Z, while Wa/2 and W1�Z are the upper a/2 and 1�Z percentiles of
the standard normal distribution. The above formula also allows calculation of
study power at a specified trial sample size. For example, that a trial of size 10,000
study subjects with randomization fraction g ¼ 0.50, control group incidence rate
of 0.30% per year, and an odds ratio of 0.67, would have power of about 61%
over an average 6-year follow-up period, and of 79% over an average 9-year
follow-up period. Although more sophisticated power and sample size formulas
are available (e.g., Self et al., 1992), the simple formula (5) illustrates the sen-
sitivity to the magnitude of the intervention effect, and secondarily to the control
group incidence rate. Primarily because of cost, it is common to design prevention
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trials with power that is just adequate under design assumptions, for the overall
ITT comparison. It follows that trial power may be less than desirable if the
intervention effect is somewhat less than designed. Often there will not be firm
preliminary information on the magnitude, or especially the time course, of
intervention effects and less than designed adherence to the assigned interventions
or treatments can reduce the trial odds ratio. Less than expected control group
outcome rates (p2) also reduces trial power, as may occur if extensive eligibility or
exclusionary criteria are applied in trial recruitment, or because volunteers for a
prevention trial, that may be time consuming and of long duration, have dis-
tinctive biobehavioral characteristics that are related to the outcome of interest.
Also, there may be substantive questions of intervention benefits and risks in
relation to important subsets of trial enrollees, but power may be marginal for
such subset intervention comparisons and for related interaction tests. In sum-
mary, sample size and power is an important topic for RCTs in the prevention
area, particularly since such full-scale trials typically have little chance of being
repeated. Additional statistical work on design procedures to ensure sufficient
robustness of study power would be desirable.

On the topic of intervention effects within subsets, the typical low hazard rates
in prevention trials implies a role for ‘case–only’ analyses (e.g., Vittinghoff and
Bauer, 2006). Let s ¼ 1, 2,y denote strata formed by baseline characteristics in
a prevention trial, and let x(t) � x take values 1 and 0 in the active and control
groups. A simple calculation under a stratified Cox model

lsðt; xÞ ¼ l0sðtÞ expðxbsÞ

gives

pðx ¼ 1js;T ¼ tÞ ¼
exp bspðs; tÞ= 1� pðs; tÞ

� �
1þ exp bspðs; tÞ= 1� pðs; tÞ

� � , (6)

where p(s,t) ¼ p(x ¼ 1|s, TZt). If outcome and censoring rates are low during
trial follow-up, then p(s,t) is very close to g, the active group randomization
fraction, and (6) is approximately

fg=ð1� gÞgebs

1þ fg=ð1� gÞgebs
.

Hence, logistic regression methods can be applied for estimation and testing on
b1, b2,y . This type of analysis evidently has efficiency very similar to a ‘full-
cohort’ analysis under this stratified Cox model, and hence may be more efficient
than case–control or case–cohort estimation for this specific purpose. The
case–only analyses may provide valuable cost saving if the baseline factors to be
examined in relation to the hazard ratio involve expensive extraction of infor-
mation from stored materials.

Ensuring adequate adherence to intervention goals can be a substantial chal-
lenge in prevention trials, as such trials are typically conducted in free living,
ostensibly healthy, persons who have many other priorities, and may have other
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major life events occur during a possible lengthy trial intervention period. Various
types of communications, incentives, and adherence initiatives may help maintain
adherence to intervention goals, for either pill taking or behavioral interventions.
If the adherence to intervention goals is less than desirable, there is a natural
desire to try to estimate the intervention effects that may have arisen had there
been full adherence to intervention goals. An interesting approach to such
estimation (Robins and Finkelstein, 2000) involves censoring the follow-up times
for study subjects when they are no longer adherent to their assigned intervention
and weighting the contributions of each individual in the risk set R(t) by the
inverse of the estimated adherence probability at time t. Following the develop-
ment of a model for time to non-adherence, perhaps using another Cox model,
these weights can be estimated, thereby allowing the continuing adherent study
subjects, in a sense, to ‘represent’ those with the same risk factors for non-
adherence in the overall trial cohort. This approach has considerable appeal, but
it is important to remember that the validity of the ‘full adherence’ comparison
among randomization groups is dependent on the development of an adequate
adherence rate model, and that one never knows whether or not residual
confounding attends any such adherence model specification.

Most chronic disease-prevention trials to date have involved pill-taking inter-
ventions, with tamoxifen for breast cancer prevention (Fisher et al., 1998), statins
for heart disease prevention (Shepherd et al., 1995), and alendronate for fracture
prevention (Cummings et al., 1998) providing examples of important advances.
Behavioral and lifestyle interventions arguably provide the desirable long-term
targets for chronic prevention and for public health recommendation. There have
been fewer such trials, with the Diabetes Prevention Program trial of a combi-
nation of a dietary pattern change and physical activity increase standing out as
providing impressive findings (Diabetes Prevention Program Research Group,
2002). An analytic challenge in this type of ‘lifestyle’ trial is the estimation of the
contributions of the various components of a multi-faceted intervention to the
overall trial result. Usually, it will not be practical to blind study participants to
a behavioral intervention assignment, so that unintended, as well as intended,
differences in behaviors between intervention groups may need to be considered
in evaluating and interpreting trial results. These are complex modeling issues
where further statistical methodology research is needed.

4.3. Therapeutic trials

As noted above, RCTs provide the central research design for the evaluation
and comparison of treatment regimens for a defined population of patients.
Compared to prevention trials, therapeutic trials are typically smaller in size and
of shorter duration though, depending on the disease being treated and the inter-
ventions being compared may require a few hundred, or even a few thousand,
patients followed for some years.

For some diseases, such as coronary disease or osteoporosis, there is an
underlying disease process that may be underway for some years or decades and
intervention concepts arising, for example, in risk factor epidemiology might
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logically apply to either primary prevention or recurrence prevention. Because of
sample size and cost issues, it may often be reasonable to study the intervention
first in a therapeutic setting, perhaps using trial results to help decide whether a
subsequent primary prevention trial is justified. The above examples of tamoxi-
fen, statins, and alendronate each followed this pattern, as is also the case for
ongoing trials of estrogen deprivation agents (aromatase inhibitors) for breast
cancer treatment and prevention.

Therapeutic interventions may particularly target diseased tissue or organs.
Surgical interventions to remove cancerous or damaged tissue, or to arrest the
progression of an infectious disease, provide a classic example. Other therapeutic
interventions for cancer may, for example, restrict the blood supply to tumor
tissue (angiogenesis inhibitors), induce cancerous cells to self-destruct (apoptosis
inducers), or interfere with signal transduction or other biological processes rel-
evant to tumor progression. Some such interventions have potential for adverse
effects during an early intensive treatment phase followed by longer-term benefit.
Statistical tools of the type already described are useful for trial evaluation. Fur-
ther developments would be useful in relation to hazard ratio models that reflect
time-dependent treatment effects, and in relation to summary measures that can
bring together such time-to-response outcomes as time to disease response to
treatment, disease-free survival time, and overall survival toward a comparative
summary of treatment benefits and risks. The development and evaluation of a
therapeutic intervention is typically a multiphase process, and important statis-
tical issues attend study design and analyses at each phase, including methods for
deciding which treatments move on for testing in subsequent phases.

4.4. Disease-screening trials

There have been rather few RCTs of interventions for the early detection of
disease, with mortality outcomes. As an exception there have been several trials of
mammography, or of mammography in conjunction with other breast-screening
modalities, for the reduction in breast cancer mortality, including the classic New
York Health Insurance Plan breast-screening trial (Shapiro, 1977), which is often
credited with establishing the value of mammography screening among older
women, the Canadian National Breast Screening Study (Miller et al., 1992a,
1992b), and several group randomized trials in Europe. The latter pose some
interesting analytic challenges as persons randomized in the same group to active
screening or control tend to have correlated mortality times that give rise to
inflation in the variance of test statistics, like the logrank test from (3), that need
to be acknowledged. Such acknowledgement can take place by allowing a robust
variance estimator (Wei et al., 1989) for the logrank test from (3), or by adopting
a permutation approach to testing with the randomized group as the unit of
analysis (Gail et al., 1996; Feng et al., 1999).

Another special feature of a screening trial with disease outcomes is the pres-
ence of a strong correlate of the primary outcome, disease-specific mortality.
Specifically one observes the occurrence of the targeted disease during the course
of the trial, and disease occurrence is a strong risk factor for the corresponding
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mortality. A statistical challenge is to use the disease incidence data in a manner
that strengthens mortality comparisons relative to analyses based on the mortality
data alone. To do so without making additional modeling assumptions requires
a nonparametric estimator of the bivariate survivor function that can improve
upon the efficiency of the Kaplan–Meier estimator, for separate application in
each randomization group. Such estimation is known to be possible asymptot-
ically (Van der Laan, 1996), but estimation procedures that can make practical
improvements to the KM estimator with a moderate number (e.g., a few hundred)
of disease events have yet to be developed. This ‘auxiliary data’ problem is one of
a range of statistical challenges related to the use of intermediate outcomes and
biomarkers.

5. Intermediate, surrogate, and auxiliary outcomes

The cost and duration of RCTs in the treatment area, and especially in the disease
prevention and screening areas, naturally raises questions about whether some
more frequently occurring or proximate outcome can suffice for the evaluation of
an intervention. Alternatively, there may be a battery of intermediate outcomes
that together convey most information concerning intervention benefits and risks.

On the contrary, it is clear that there are often readily available intermediate
outcomes that are highly relevant to intervention effects. The effects of statin
family drugs on blood lipids and lipoproteins, is undoubtedly a major aspect of
the associated heart disease risk reduction, and the effects of the bone-preserving
agent alendronate on bone mass and bone mineral density is likely an important
determinant of fracture risk reduction. But one is typically not in a position
to know whether or not such intermediate outcomes are comprehensive in respect
to pathways relevant to the targeted disease, or are comprehensive in relation to
unrecognized adverse effects. Recent controversy surrounding the use of the
Cox-2 inhibitor VIOXX for colorectal adenoma recurrence prevention and an
unexpected increase in cardiovascular disease risk illustrate the latter point
(Bresalier et al., 2005). See Lagakos (2006) for a discussion of related interpre-
tational issues. On the data analysis side, we often lack indices that bring together
data on several pertinent intermediate outcomes for a meaningful projection
of benefits versus risks for a disease outcome of interest, so that intermediate
outcome trials typically play the roles of refinement and initial testing of an
intervention, rather than of definitive testing in relation to a subsequent ‘hard’
endpoint.

In some circumstances, however, one may ask whether there is an intermediate
outcome that so completely captures the effect of an intervention of interest on
a ‘true’ outcome, that treatment decisions can be based on the intermediate out-
come alone – the so-called surrogate outcome problem. Unfortunately, such cir-
cumstances are likely to be quite rare unless one defines a surrogate that is so
proximate as to be tantamount to the true outcome. Specifically, the conditions
for a test of the null hypothesis of no relationship between an intervention and
intermediate outcome to be a valid test for the null hypothesis concerning the
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treatment and a true outcome require the surrogate to fully mediate the inter-
vention effect on the time outcome (Prentice, 1989). This assumption is very
restrictive, and one can never establish full mediation empirically. Nevertheless,
the lack of evidence against such mediation in sizeable data sets is sometimes used
to argue the practical surrogacy of certain intermediate outcomes, as in recent
analysis of prostate-specific antigen ‘velocity’ as a surrogate for prostate cancer
recurrence for the evaluation of certain types of treatments (D’Amico et al.,
2003).

A rather different ‘meta-analytic’ approach to this issue of replacing a true
outcome by a suitable intermediate outcome arises by modeling joint treatment
effect parameters for the intermediate and true outcome in trials of similar
interventions to that under study, and assuming some aspects of this joint dis-
tribution to apply to a subsequent trial in which only the intermediate (‘surro-
gate’) is observed (e.g., Burzykowski et al., 2005). It is not clear how often one
would be in a position to have sufficient prior trial data available to apply this
concept, and the issues of how one decides which treatments or interventions are
close enough to the test treatment to support this type of approach also appears
to be challenging.

The approaches described thus far in this section may not often allow a definitive
evaluation of a treatment effect on a clinical outcome, such as disease incidence or
mortality. The auxiliary data idea mentioned in Section 4.4 may have potential to
streamline a definitive intervention evaluation, without making additional strong
assumptions, if short-term and frequent outcomes exist that correlate strongly with
the clinical outcome of interest. Essentially, the short-term outcome data provide
dependent censorship information for the true clinical outcome, which may be able
to add precision to comparative analysis of the clinical outcome data. High-
dimensional short-term outcome data (e.g., changes in the proteome following
treatment initiation) may offer particular opportunities, but, as noted previously,
the requisite statistical methodology has yet to be developed.

In some circumstances, available data sources will have established an adverse
effect of an exposure on disease risk. Cigarette smoking in relation to lung cancer
or heart disease, occupational asbestos exposure and mesothelioma and lung
cancer, human papilloma virus exposure and cervical cancer, provide important
examples. RCTs in such contexts may be aimed at finding effective ways of
reducing the exposures in question, for example, through smoking cessation or
prevention educational approaches, through protective strategies in the work-
place, or through safe-sex practices. Related dissemination research projects fulfill
an important role in the overall epidemiology and biomedical research enterprise.

6. Multiple testing issues and high-dimensional biomarkers

6.1. Study monitoring and reporting

It is well recognized that Type I error rates may be inflated if trial data are
analyzed periodically with analytic results having potential to alter trial conduct
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or to trigger trial reporting. Monitoring methods that preserve the size of tests to
compare randomized group disease rates (e.g., Jennison and Turnbull, 2000) are
widely used in RCT settings. These methods tend to depend strongly on pro-
portional hazards assumptions. Settings in which the intervention may plausibly
affect multiple clinical outcomes, either beneficially or adversely, present partic-
ipation challenges in trial monitoring. For example, Freedman et al. (1996) pro-
pose a global index that is defined as the time to the earliest of a set of outcomes
that may be affected by an intervention, and propose a monitoring process that
first examines designated primary outcomes for the trial, but also examines at the
global index to determine whether early trial stopping should be considered.
Special efforts are required to estimate treatment effect parameters in the presence
of sequential monitoring (Jennison and Turnbull, 2000). Conditional power cal-
culations that make use of the data in hand in projecting study power also have
value for trial monitoring.

It is interesting that most attention to the specification of testing procedures that
acknowledge multiplicity of tests occurs in the RCT setting; where this is typically a
well-defined treatment or intervention, a specified primary outcome, a specified test
statistic for intervention group comparisons, and a trial monitoring plan. In con-
trast multiple testing issues are often not formally addressed in OS settings where
there may be multiple covariate and covariate modeling specifications, multiple
possible outcome definitions, multiple association test statistics, and where asso-
ciations may be repeatedly examined in an ad hoc fashion. See Ioannidis (2005) for
an assertion that ‘most published findings are false’, as a result of these types of
multiple testing issues, and other sources of bias. The development of testing pro-
cedures that can avoid error rate inflation as a result of this array of multiplicities
could add substantial strength to observational epidemiologic studies.

6.2. High-dimensional biomarker data

The development of high-dimensional biologic data of various types has greatly
stimulated the biomedical research enterprise in recent years. One example is the
identification of several million SNPs across the human genome (e.g., Hinds et al.,
2005) and the identification of tag SNP subsets that convey most genotype in-
formation as a result of linkage disequilibrium among neighboring SNPs. Tag
SNP sets in the 100,000 to 500,000 range, developed in part using the publicly
funded HapMap project (The International HapMap Consortium, 2003), have
recently become commercially available for use in a sufficiently high-throughput
fashion that hundreds, or even thousands, of cases and controls can be tested
in a research project. The photolithographic assessment methods used for
high-dimensional SNP studies can also be used to generate comparative
gene expression (transcript) assessments for cases versus controls, or for treated
versus untreated study subjects, for thousands of genes simultaneously, also
in a high-throughput fashion. There are also intensive technology develop-
ments underway to assess the concentrations of the several thousands of
proteins that may be expressed in specific tissues, or may be circulating in blood
serum or plasma. The genomic and transcriptomic methods rely on the chemical
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coupling of DNA or RNA in target tissue with labeled probes having a specified
sequence. This same approach is not available for studying the proteome, and
current technologies mainly rely on separation techniques followed by tandem
mass spectrometry in subfractions for comparative proteomic assessments (e.g.,
Wang et al., 2005a). Antibody arrays involving a substantial number of proteins
are also beginning to emerge as a useful proteomic platform (e.g., Wang et al.,
2005b). Technologies for interrogating the metabolome (small molecules) are also
under intensive investigation (e.g., Shurubor et al., 2005). High-dimensional data
sources also include various other types of scans and images that may be of
interest as risk factors, as early detection markers, or as outcomes (e.g., PET scans
for neurologic disease progression) in RCTs.

High-dimensional genomic, transcriptomic, or proteomic data, or combina-
tions thereof, even on a modest number of persons, may provide valuable insights
into biological processes and networks, or intervention mechanisms that can lead
to the development of novel treatments or interventions. Evaluation of the
relationship of high-dimensional data to disease rates, however, can be expected
to require large sample sizes to identify associations of moderate strength and to
control for various sources of heterogeneity and bias. In fact, these studies
may require sample sizes much larger than the corresponding low-dimensional
problems, or a multistage design, to eliminate most false positive findings. For
example, 1000 cases and 1000 controls from a study cohort may yield an asso-
ciation test of acceptable power for a 0.01 level test of association for a candidate
SNP. Testing at this significance level for 500,000 SNPs would be expected to
yield 5000 false positives under the global null hypothesis. A test at the 0.00001
(10 in a million) level would reduce this expected false positive number to 5, but
corresponding study power would be greatly reduced.

A multistage design in which only markers satisfying statistical criteria for
association with disease move on to a subsequent stage can yield important
cost savings, as less promising markers are eliminated early. In the case of SNP
association tests, pooled DNA provides the opportunity for much additional cost
saving, but there are important trade-offs to consider (Downes et al., 2004;
Prentice and Qi, 2006).

Proteomic markers in blood may have particular potential as early detection
biomarkers. Special efforts may be needed to ensure equivalent handling of serum
or plasma specimens between cases of the study disease and matched controls.
Specimens that are stored prior to diagnosis are much to be preferred in this
context, even for biomarker discovery. For cancer early detection markers, con-
trols having benign versions of the disease under study may be needed to identify
markers having acceptable specificity. Multistage designs again may be needed if
a large number of proteins are being investigated (e.g., Feng et al., 2004).

Proteomic approaches also provide an opportunity for more targeted preven-
tive intervention development, which heretofore has relied mainly on leads from
observational epidemiology, or from therapeutic trials. For example, there is
potential to examine the effects of an intervention on the plasma proteome, in
conjunction with knowledge of proteomic changes in relation to disease risk, as a
means for the development and initial testing of biobehavioral interventions.
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Much additional research is needed to identify study designs that make good
use of these types of emerging high-dimensional data. The high-dimensionality
also opens the way to some novel empirical testing procedures (Efron, 2004), that
may provide valuable robustness compared to standard tests that assume a the-
oretical null distribution. Also, false discovery rate procedures (Benjamini and
Hochberg, 1995) provide a useful alternative to controlling experiment-wise
Type I error rates in these contexts. Additional statistical research is needed on
parameter estimation, and simultaneous confidence interval specification, in the
context of multistage designs in which the biomarkers of interest satisfy a series of
selection criteria (e.g., Benjamini and Yekutieli, 2005).

7. Further discussion and the Women’s Health Initiative example

The Women’s Health Initiative (WHI) clinical trial (CT) and OS in which the
author has been engaged since its inception in 1992, provides a context for ill-
ustrating a number of the points raised above. The WHI is conducted among
postmenopausal women, in the age range 50–79 when enrolled during 1993–1998
at one of 40 clinical centers in the United States. The CT is conducted among
68,132 such women and evaluates four interventions in a randomized, controlled
fashion in a partial factorial design (WHI Study Group, 1998). Two CT com-
ponents involve postmenopausal hormone therapy, either conjugated equine est-
rogen alone (E-alone) among women who were post-hysterectomy at enrollment,
or the same estrogen plus medroxyprogesterone acetate (E+P) among women
with a uterus. The E+P trial among 16,608 women ended early in 2002 (Writing
Group for the WHI, 2002) when an elevated risk of breast cancer was observed,
and the ‘global index’ was also elevated, in part because of an unexpected increase
in the designated primary outcome, coronary heart disease, as well as increases in
stroke and venous thromboembolism. The E-alone trial among 10,739 women
also ended early in 2004 (WHI Steering Committee, 2004) largely because of a
stroke elevation, along with little potential for showing a heart disease benefit by
the planned completion date in 2005.

The WHI OS includes 93,676 women recruited from the same populations,
over the same time period, with much common covariate data collection, and
with similar outcome ascertainment procedures. Comparison of study findings
between the CT and OS provides a particular opportunity to identify sources of
bias and to improve study design and analysis procedures. In the case of hormone
therapy and cardiovascular disease joint analyses of the two cohorts using Cox
models that stratify on cohort and baseline age reveal that careful control for
confounding and for time from hormone therapy initiation provide an explana-
tion for substantially different hazard ratio functions in the two cohorts (Prentice
et al., 2005a; Prentice et al., 2006b). Corresponding unpublished breast cancer
analyses draw attention to the need to carefully control for mammography pat-
terns in outcome ascertainment, and also raise thorny issues of assessment when
the intervention has potential to affect outcome ascertainment.
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A series of case–control studies are underway using candidate biomarkers to
elucidate hormone therapy effects on cardiovascular disease, breast cancer, and
fractures. For example, the cardiovascular disease studies focus on blood-based
markers of inflammation, coagulation, lipids, and candidate gene polymorphisms.
A genome-wide association study involving 360,000 tag SNPs is also underway in
collaboration with Perlegen Sciences to identify genetic risk factors for coronary
heart disease, stroke, and breast cancer, and to elucidate hormone therapy effects
in these three diseases (e.g., Prentice and Qi, 2006).

The WHI specimen repository also serves as a resource for a wide range of
biomarker studies by the scientific community. A novel ongoing example aims to
identify colon cancer early detection markers by studying prediagnostic stored
plasma from 100 colon cancer cases and matched controls. A total of 10 labs
across the United States are applying various proteomic platforms for shared
discovery analyses, under the auspices of the NCI’s Early Detection Research
Network and WHI.

The other two CT components involve a low-fat dietary pattern for cancer
prevention (48,835 women) and calcium and vitamin D supplementation for
fracture prevention (36,282 women). Initial reports from these trials have recently
been presented (Prentice et al., 2006a, 2006b; Beresford et al., 2006; Howard
et al., 2006, for the low-fat trial; Jackson et al., 2006; Wactawski-Wende et al.,
2006, for the calcium and vitamin D trial), with much further analytic work,
and explanatory analyses underway. Biomarker studies are underway in both
the dietary modification trial cohort and the OS to examine the measurement
properties of frequencies, records, and recalls for self-reporting both dietary
consumption and physical activity patterns. These same biomarkers will be used
to calibrate the self-report data for a variety of disease association studies in
WHI cohorts. See Prentice et al. (2005b) for a detailed discussion of statistical
issues arising in the WHI, and for commentary by several knowledgeable
epidemiologists and biostatisticians.

In summary, epidemiology and biomedical research settings are replete with
important statistical issues. The population science and prevention areas have
attracted the energies of relatively few statistically trained persons, even though
the public health implications are great, and methodologic topics often stand as
barriers to progress. These and other biomedical research areas can be recom-
mended as stimulating settings for statistical scientists at any career stage.
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Statistical Inference for Causal Effects, With
Emphasis on Applications in Epidemiology and
Medical Statistics$

Donald B. Rubin

Abstract

A central problem in epidemiology and medical statistics is how to draw

inferences about the causal effects of treatments (i.e., interventions) from

randomized and nonrandomized data. For example, does the new drug really

reduce heart disease, or does exposure to that chemical in drinking water

increase cancer rates relative to drinking water without that chemical? This

chapter provides an overview of the approach to the estimation of such causal

effects based on the concept of potential outcomes. We discuss randomization-

based approaches and the Bayesian posterior predictive approach.

1. Causal inference primitives

We present here a framework for causal inference that is now commonly referred
to as ‘‘Rubin’s Causal Model’’ (RCM, Holland, 1986), for a series of articles
written in the 1970s (Rubin, 1974, 1975, 1976a, 1977, 1978, 1979a, 1980). The
framework has two essential parts and one optional part. The first part of the
RCM defines causal effects through potential outcomes, and is the theme of
Section 1. The second part of this framework for causal inference concerns the
assignment mechanism, and this is developed in Section 2. In Section 3, the
classical use of the framework in randomized experiments, due to Neyman (1923)
and Fisher (1925), is described, and then extended to nonrandomized observa-
tional studies. The third part of the RCM, which is optional, is the use of
Bayesian posterior predictive inference for causal effects, as developed in Rubin
(1975, 1978), and this perspective is presented in Section 4. The remaining
Section 5 discusses some extensions and complications. Other approaches to
causal inference, such as graphical ones (e.g., Pearl, 2000), I find conceptually less

$ This chapter is a revision and expansion of the analogous chapter in Rao and Sinharay (2006).
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satisfying, for reasons discussed, for instance, in Rubin (2004a, 2005). The
presentation here is essentially a compact version of the perspective more fully
developed in the text by Imbens and Rubin (2007a).

1.1. Units, treatments, potential outcomes

For causal inference, there are several primitives – concepts that are basic and on
which we must build. A ‘‘unit’’ is a physical object, e.g., a person, at a particular
point in time. A ‘‘treatment’’ is an action that can be applied or withheld from
that unit. We focus on the case of two treatments, although the extension to more
than two treatments is simple in principle although not necessarily so with real
data.

Associated with each unit are two ‘‘potential outcomes’’: the value of an out-
come variable Y at a point in time after the active treatment is applied and the
value of that outcome variable at the same point in time when the active treatment
is withheld. The objective is to learn about the causal effect of the application of
the active treatment relative to the control treatment (when the active treatment is
withheld) on the variable Y.

For example, the unit could be ‘‘you now’’ with your headache, the active
treatment could be taking aspirin for your headache, and the control treatment
could be not taking aspirin (as in Rubin, 1974, p. 489). The outcome Y could be
the intensity of your headache pain in two hours, with the potential outcomes
being the headache intensity if you take aspirin and if you do not take aspirin.

Notationally, let W indicate which treatment the unit, you, received: W ¼ 1 for
the active treatment, W ¼ 0 for the control treatment. Also let Y(1) be the value
of the potential outcome if the unit received the active version, and Y(0) the value
if the unit received the control version. The causal effect of the active treatment
relative to its control version is the comparison of Y(1) and Y(0) – typically the
difference, Y(1)�Y(0), or perhaps the difference in logs, log[Y(1)]�log[Y(0)], or
some other comparison, possibly the ratio.

We can observe only one or the other of Y(W) as indicated by W. The key
problem for causal inference is that, for any individual unit, we observe the value
of the potential outcome under only one of the possible treatments, namely the
treatment actually assigned, and the potential outcome under the other treatment
is missing. Thus, inference for causal effects is a missing-data problem – the
‘‘other’’ value is missing. For example, your reduction in blood pressure one week
after taking a drug measures a change in time, in particular, a change from before
taking the drug to after taking the drug, and so is not a causal effect without
additional assumptions. The comparison of your blood pressure after taking the
drug with what it would have been at the same point in time without taking the
drug is a causal effect.

1.2. Relating this definition of causal effect to common usage

The definition of a causal effect provided so far may appear a bit formal and the
discussion a bit ponderous, but the presentation is simply intended to capture
the way we use the concept in everyday life. Also this definition of causal effect as
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the comparison of potential outcomes is frequently used in contemporary culture,
for example, as revealed by movies. Let us consider some movie plots to illustrate
this point.

Most of us have probably seen parts of ‘‘It’s a Wonderful Life’’ with Jimmy
Stewart as George Bailey more times than we can remember (around Christmas
time). In this movie, at one point in George’s life, he becomes very depressed and
sincerely wishes he had never been born. At the appropriate moment, a wingless
angel named Clarence shows him exactly what the world he knows would be like
if, contrary to fact, he had not been born.

The actual world is the real observed potential outcome, but Clarence reveals
to George the other potential outcome, the counterfactual one, and George ex-
periences this other world as a real phenomenon, just as real as his actual world.
Not only are there obvious consequences, like his own children not existing, but
there are many other untoward events. For example, his younger brother, Harry,
who was, in the actual world, a World War II hero, in the counterfactual world
drowned in a skating accident at age eight, because George was never born and
thus was not there to save Harry as he did in the actual world. And there was the
pharmacist, Mr. Gower, who filled the wrong prescription and was convicted of
manslaughter because George was not there to catch the error as he did in the
actual world.

The causal effect of George not being born is the comparison of (a) the entire
stream of events in the actual world with him in it, to (b) the entire stream of
events in the counterfactual world without him in it. Fortunately for George,
he has Clarence to show him both potential outcomes, and George regrets ever
having wished he had never been born, and he returns to the actual world.

Another movie often shown around Christmas time is based on Dickens’
classic novel ‘‘A Christmas Carol’’. Here, the wealthy and miserly Ebenezer
Scrooge is fortunate enough to have a visit from a trio of ghosts on Christmas
Eve. Although the first two ghosts make Scrooge feel guilty about things he has
done in the distant and recent past, the third ghost, the most frightening of all, the
Ghost of Christmas Future, is the most effective. The ghost reveals to Ebenezer
the potential outcome that will occur if Ebenezer continues his current mean-
spirited ways. Not surprisingly, Scrooge does not want to live this potential out-
come, and because it is the future, he can reject it in favor of the other potential
outcome, by altering his behavior. Neither outcome was counterfactual at the
time of the third ghost’s visit, but one was by the end of the movie.

These and modern movies with similar themes clearly indicate that the causal
effects of actions or treatments are the comparison of potential outcomes under
alternative actions. A current list includes, among others, ‘‘Sliding Doors’’, ‘‘The
Family Man’’ and ‘‘Mr. Destiny’’. Sometimes one of the potential outcomes is
clearly counterfactual, as in ‘‘It’s a Wonderful Life’’, sometimes the revealed
potential outcomes are not yet counterfactual because they are in the future, as in
‘‘A Christmas Carol’’. Sometimes the movie is not clear about whether one of the
potential outcomes is counterfactual or not. But, invariably, the causal effect of
actions involves the comparison of potential outcomes, which are the stream of
events at the same times but after different actions.
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1.3. Relationship to the ‘‘but-for’’ concept in legal damages settings

Probably the setting outside science where causal effects are most seriously con-
sidered is in law. Suppose you committed an action that you should not have, and

as a result of that action someone else suffered damages. That is, the causal effect
of your action relative to the absence of that action is the comparison of potential
outcomes, the first the actual, the second the counterfactual. For example, let us
suppose that because you were driving and talking on a cell phone, you ran a stop
sign and hit another car. ‘‘But for’’ your negligence, the other car would not have
been involved in any accident. The causal effect of your negligence is the amount
of damage in this accident.

One of the more interesting and expensive recent examples of trying to assess
causal effects in a legal damages setting has revolved around the alleged miscon-
duct of the tobacco industry (e.g., lying about the health risks of smoking) in the
United States and other countries. Here, the world with the alleged misconduct is
the actual world, with its cigarette smoking and health-care expenditures. The
other potential outcome, the counterfactual one, is the world without the alleged
misconduct and, according to the plaintiffs, with reduced cigarette smoking, and
different amounts and kinds of health-care expenditures. One cannot simply
assume the complete absence of cigarette smoking in a counterfactual world
without the alleged misconduct of the tobacco industry, and so only a fraction of
all expenditures that may be attributable to smoking are the causal effect of the
alleged misconduct.

This point has been made repeatedly in the tobacco litigation by both plain-
tiffs’ experts and defendants’ experts (including me) in both their reports and their
testimony. For example, the well-known economist, Franklin Fisher (1999), in an
expert witness report for the plaintiffs, (p. 2, item #6) wrote:

It is necessary to generate a stream of damages taking into account that not all

smoking-related expenditures result from the alleged behavior of the defend-

ants. Thus, the smoking-related expenditures estimated by Glenn Harrison and

Wendy Max, and Henry Miller [experts for the plaintiffs] need to be adjusted by

what Jeffrey Harris [expert for the plaintiffs] has calculated to be the proportion

of total smoking-attributable expenditures caused by defendants’ improper

conduct. The monetary amount of damage resulting from the defendants’ al-

leged behavior in each past and future year is thus calculated by multiplying the

annual smoking related expenditures by the proportion caused by defendants’

improper conduct.

Also, the September 22, 1999, news conference held to announce the United
States filing of its lawsuit against the tobacco industry, Assistant Attorney
General Ogden (1999) stated:

The number that’s in the complaint is not a number that reflects a particular

demand for payment. What we’ve alleged is that each year the federal

government expends in excess of 20 billion on tobacco related medical costs.

What we would actually recover would be our portion of that annual toll that is
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the result of the illegal conduct that we allege occurred, and it simply will be a

matter or proof for the court, which will be developed through the course of

discovery, what that amount will be. So, we have not put out a specific figure

and we’ll simply have to develop that as the case goes forward.

These positions are supported by the Federal Judicial Center’s (2000, p. 284):

The first step in a damages study is the translation of the legal theory of the

harmful event into an analysis of the economic impact of that event. In most

cases, the analysis considers the difference between the plaintiff’s economic

position if the harmful event had not occurred and the plaintiff’s actual eco-

nomic position. The damages study restates the plaintiff’s position ‘‘but for’’

the harmful event; this part is often called the but-for analysis. Damages are the

difference between the but-for value an the actual value.

The ‘‘but-for’’ analysis compares the observed actual world potential outcome
with the alleged misconduct to the counterfactual world potential outcome with-
out the alleged misconduct. The difference between the monetary values in these
worlds is the basis for calculating damages. This is not necessarily an easy quan-
tity to estimate in the tobacco litigation, but it is the relevant causal estimand (i.e.,
the causal quantity to be estimated).

1.4. Learning about causal effects: Replication and the stable unit treatment value

assumption – SUTVA

How do we learn about causal effects? The answer is replication, more units. The
way we personally learn from our own experience is replication involving the
same physical object (e.g., you) with more units in time. That is, if I want to learn
about the effect of taking aspirin on headaches for me, I learn from replications in
time when I do and do not take aspirin to relieve my headache, thereby having
some observations of Y(1) and some of Y(0). When we want to generalize to
units other than ourselves, we typically use more objects; that is what is done in
epidemiology and medical experiments, for example, when studying the causal
effects of hormone replacement therapy on post-menopausal women (e.g.,
Piantadosi, 2003; Whittemore and McGuire, 2003).

Suppose instead of only one unit we have two. Now in general we have at least
four potential outcomes for each unit: the outcome for unit 1 if both unit 1 and
unit 2 received control, Y1(0,0); the outcome for unit 1 if both units received the
active treatment, Y1(1,1); the outcome for unit 1 if unit 1 received control and
unit 2 active, Y1(0,1), and the outcome for unit 1 if unit 1 received active and
unit 2 received control, Y1(1,0); and analogously for unit 2 with values Y2(0,0),
etc. In fact, there are even more potential outcomes because there have to be at
least two ‘‘doses’’ of the active treatment available to contemplate all assign-
ments, and it could make a difference which one was taken. For example, in the
aspirin case, one tablet may be very effective and the other quite ineffective.

Clearly, replication does not help unless we can restrict the explosion of
potential outcomes. As in all theoretical work with applied value, simplifying
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assumptions are crucial. The most straightforward assumption to make is the
‘‘stable unit treatment value assumption’’ (SUTVA – Rubin, 1980, 1990a) under
which the potential outcomes for the ith unit just depend on the treatment the ith
unit received. That is, there is ‘‘no interference between units’’ (Cox, 1958) and
there are ‘‘no unrepresented treatments for any unit’’. Then, all potential
outcomes for N units with two possible treatments can be represented by an array
with N rows and two columns, the ith unit having a row with two potential
outcomes, Yi(0) and Yi(1).

Obviously, SUTVA is a major assumption. But there is no assumption-free
causal inference, and nothing is wrong with this. It is the quality of the assump-
tions that matters, not their existence or even their absolute correctness.
Good researchers attempt to make such assumptions plausible by the design of
their studies. For example, SUTVA becomes more plausible when units are
isolated from each other in the schools. For example, when studying an inter-
vention such as a smoking prevention program (e.g., see Peterson et al., 2000),
define the units to be intact schools rather than individual students or classes in
the schools.

The stability assumption (SUTVA) is very commonly made, even though
it is not always appropriate. For example, consider a study of the effect of vac-
cination on a contagious disease. The greater the proportion of the population
that gets vaccinated, the less any unit’s chance of contracting the disease, even
if not vaccinated—an example of interference. Throughout this chapter, we
assume SUTVA, although there are other assumptions that could be made to
restrict the exploding number of potential outcomes with replication and no
assumptions.

In general, some of the N units may receive neither the active treatment Wi ¼ 1
nor the control treatment Wi ¼ 0. For example, some of the units may be in the
future, as when we want to generalize to a future population. Then formally Wi

must take on a third value, Wi ¼ * representing neither 1 nor 0; we often avoid
this extra notation here.

1.5. Covariates

In addition to (1) the vector indicator of the treatment for each unit in the study,
Wi ¼ {Wi}, (2) the array of potential outcomes when exposed to the treatment,
Y(1) ¼ {Yi(1)}, and (3) the array of potential outcomes when not exposed,
Y(0) ¼ {Yi(0)}, we have (4) an array of covariates X ¼ {Xi}, which are, by defi-
nition, unaffected by treatment, such as pretreatment baseline blood pressure.
All causal estimands involve comparisons of Yi(0) and Yi(1) on either all N units,
or a common subset of units; for example, the average causal effect across all
units that are female as indicated by their Xi, or the median causal effect for units
with Xi indicating male and Yi(0) indicating unacceptably high blood pressure
after exposure to the control treatment.

Thus, under SUTVA, all causal estimands can be calculated from the matrix
of ‘‘scientific values’’ with ith row: (Xi, Yi(0), Yi(0)). By definition, all relevant
information is encoded in Xi, Yi(0), Yi(1) and so the labeling of the N rows is a
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random permutation of 1,y,N. In other words, the N-row array

ðX ; Y ð0Þ; Y ð1ÞÞ ¼

X 1 Y 1ð0Þ Y 1ð1Þ

..

.

X i Y ið0Þ Y ið1Þ

..

.

X N Y Nð0Þ Y N ð1Þ

2666666664

3777777775
is row exchangeable. We call this array ‘‘the Science’’ because its values are
beyond our control; by changing treatments, we get to change which values are
actually observed, but not the values themselves. That is, the observed values of Y

are Yobs ¼ {Yobs,i}, where Yobs,i ¼ Yi(1)Wi+Yi(0)(1�Wi).
Covariates (such as age, race and sex) play a particularly important role in

observational studies for causal effects where they are often known as possible
‘‘confounders’’ or ‘‘risk factors’’ in epidemiology and medical statistics. In some
studies, the units exposed to the active treatment differ on their distribution of
covariates in important ways from the units not exposed. To see how this issue
influences our formal framework, we must define the ‘‘assignment mechanism’’,
the probabilistic mechanism that determines which units get the active version of
the treatment and which units get the control version. The assignment mechanism
is the topic of Section 2.

1.6. A brief history of the potential outcomes framework

The basic idea that causal effects are the comparisons of potential outcomes
seems so direct that it must have ancient roots, and we can find elements of this
definition of causal effects among both experimenters and philosophers. See, for
example, the philosopher John Stuart Mill, who, when discussing Hume’s views,
offers (Mill, 1973, p. 327):

If a person eats of a particular dish, and dies in consequence, that is, would not

have died if he had not eaten of it, people would be apt to say that eating of that

dish was the source of his death.

And Fisher (1918, p. 214) wrote:

If we say, ‘‘This boy has grown tall because he has been well fed,’’ we are not

merely tracing out the cause and effect in an individual instance; we are sug-

gesting that he might quite probably have been worse fed, and that in this case

he would have been shorter.

Despite the insights evident in these quotations, apparently there was no formal
notation for potential outcomes until Neyman (1923), which appears to have been
the first place where a mathematical analysis is written for a randomized exper-
iment with explicit notation for the potential outcomes. This notation became
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standard for work in randomized experiments from the randomization-based
perspective (e.g., Pitman, 1937; Welch, 1937; McCarthy, 1939; Anscombe, 1948;
Kempthorne, 1952; Cox, 1958; Hodges and Lehmann, 1970, Section 9.4;
Brillinger et al., 1978). Neyman’s formalism was a major advance because it
allowed explicit frequentist probabilistic causal inferences to be drawn from data
obtained by a randomized experiment, an approach discussed in Section 3.

Independently and nearly simultaneously, Fisher (1925) created a somewhat
different method of inference for randomized experiments, also based on the
special class of randomized assignment mechanisms; Fisher’s approach is also
discussed in Section 3. The notion of the central role of randomized experiments
seems to have been ‘‘in the air’’ in the 1920s, but Fisher was apparently the first
to recommend the actual physical randomization of treatments to units and then
use this randomization to justify theoretically an analysis of the resultant data,
a point emphasized by Neyman (1935, p. 109; also see Reid, 1982, p. 45).

Despite the almost immediate acceptance in the late 1920s of Fisher’s proposal
for randomized experiments and Neyman’s notation for potential outcomes in
randomized experiments, this same framework was not used outside randomized
experiments for a half century thereafter, apparently not until Rubin (1974), and
these insights therefore were entirely limited to randomization-based frequency
inference.

The approach used in nonrandomized settings during the half century follow-
ing the introduction of Neyman’s seminal notation for randomized experiments
was based on mathematical models relating the observed value of the outcome
variable Yobs,i to covariates and indicators for the treatment received, and then to
define causal effects as parameters in these models. This approach is illustrated by
the Lord’s Paradox example in Section 2.2. The same statistician would simul-
taneously use Neyman’s potential outcomes to define causal effects in randomized
experiments and the observed outcome setup in observational studies. This led to
substantial confusion because the role of randomization cannot even be stated
using the observed outcome notation.

The framework that we describe here that uses potential outcomes to define
causal effects in general is the first part of the RCM. This perspective conceives of
all problems of statistical inference for causal effects as missing data problems
with a mechanism for creating missing data in the potential outcomes (Rubin,
1976a). Of course, there were seeds of the RCM before 1974, including the
aforementioned Neyman (1923), but also Tinbergen (1930), Haavelmo (1944) and
Hurwicz (1962) in economics. Also see Imbens and Rubin (2007b) for further
discussion.

The potential outcomes framework seems to have been basically accepted and
adopted by most workers by the end of the twentieth century. Sometimes the
move was made explicitly, as with Pratt and Schlaifer (1984) who moved from the
‘‘observed outcome’’ to the potential outcomes framework in Pratt and Schlaifer
(1988). Sometimes it was made less explicitly as with those who were still trying to
make a version of the observed outcome notation work in the late 1980s (e.g., see
Heckman and Hotz, 1989), before fully accepting the RCM in subsequent work
(e.g., Heckman, 1989, after discussion by Holland, 1989).
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The movement to use potential outcomes to define causal inference problems
seems to be the dominant one at the start of the 21st century, especially in
epidemiology and medical statistics, as well as in the behavioral sciences. See for
example, Baker (1998), Dempster (1990), Efron and Feldman (1991), Gelman and
King (1991), Greenland and Poole (1988), Greenland et al. (1999), Holland
(1988a, 1988b), Kadane and Seidenfeld (1990), Robins (1989), Rosenbaum (1987,
2002), Smith and Sugden (1988), Sobel (1990, 1995, 1996), Sugden (1988) and
their references. A recent article exploring whether the full potential outcomes
framework can be avoided when conducting causal inference is Dawid (2000) with
discussion. Also see Cox (1992) and Rubin (2005) on this perspective and other
perspectives.

2. The assignment mechanism

Even with SUTVA, inference for causal effects requires the specification of an
assignment mechanism: a probabilistic model for how some units were selected to
receive the active treatment and how other units were selected to receive the
control treatment. We first illustrate this model in two trivial artificial examples,
and then present formal notation for this model. The formalization of the
assignment mechanism is the second part of the RCM.

2.1. Illustrating the criticality of the assignment mechanism

Consider a doctor who is considering one of two medical operations to apply to
each of her eight patients, a standard one and a new one. This doctor is a great
doctor: she chooses the treatment that is best for each patient! When they are
equally effective, she effectively tosses a fair coin. Table 1 gives the hypothetical
potential outcomes in years lived post-operation under each treatment for these
eight patients, and so also gives their individual causal effects. The column

Table 1

Perfect doctor example

Potential Outcomes Observed Data

Y(0) Y(1) W Y(0) Y(1)

13 14 1 ? 14

6 0 0 6 ?

4 1 0 4 ?

5 2 0 5 ?

6 3 0 6 ?

6 1 0 6 ?

8 10 1 ? 10

8 9 1 ? 9

True averages 7 5 Observed averages 5.4 11
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labelled ‘‘W’’ shows which treatment each patient received, Wi ¼ 0 or Wi ¼ 1 for
the ith patient, and the final columns show the observed potential outcomes.

Notice that the averages of the Yi(0) and Yi(1) potential outcomes indicate that
the typical patient will do better with the standard operation: the average causal
effect is two years of life in favor of the standard. But the doctor, who is con-
ducting ideal medical practice for the benefit of her patients, reaches the opposite
conclusion from an examination of the observed data: the patients assigned the
new operation live, on average, twice as long as the patients assigned the standard
operation, with absolutely no overlap in their distributions! Moreover, if the
doctor now applies the new treatment to all patients in a population of patients
who are just like the eight in the study, she will be disappointed: the average life
span post-operation will be closer to five years under the new operation rather
than the eleven years seen in this study.

What is wrong? The simple comparison of observed results assumes that treat-
ments were randomly assigned, rather than as they were, to provide maximal benefit
to the patients. We will have more to say about randomized experiments, but the
point here is simply that the assignment mechanism is crucial to valid inference
about causal effects, and the doctor used a ‘‘nonignorable’’ assignment mechanism
(formally defined in Section 2.4). With a posited assignment mechanism, it is
possible to draw causal inferences; without one, it is impossible. It is in this sense
that, when drawing inferences, a model for the assignment mechanism is more
fundamental than a ‘‘scientific’’ model for the potential outcomes: Without positing
an assignment mechanism, we basically cannot draw causal inferences.

More precisely, notice that the doctor, by comparing observed means, is using
the three observed values of Yi(1) to represent the five missing values of Yi(1),
effectively imputing, or filling in, the mean observed Yi(1), ȳ1; for the five Yi(1)
question marks, and analogously effectively filling in ȳ0 for the three Yi(0) ques-
tion marks. This process makes sense for point estimation if the three observed
values of Yi(1) were randomly chosen from the eight values of Yi(1), and the five
observed values of Yi(0) were randomly chose from the eight values of Yi(0).
But under the actual assignment mechanism, it does not. It would obviously make
much more sense under the actual assignment mechanism to impute the missing
potential outcome for each patient to be less than or equal to that patient’s
observed potential outcome.

2.2. Lord’s paradox

We now consider a ‘‘paradox’’ in causal inference that is easily resolved with the
simple ideas we have already presented, despite the controversy that it engendered
in some literatures. This example illustrates how important it is to keep this
perspective clearly in mind when thinking about causal effects of interventions
and when reading the remainder of this chapter. Lord (1967) proposed the
following example:

A large university is interested in investigating the effects on the students of the

diet provided in the university dining halls and any sex differences in these
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effects. Various types of data are gathered. In particular, the weight of each

student at the time of arrival in September and the following June are recorded.

The result of the study for the males is that their average weight is identical at
the end of the school year to what it was at the beginning; in fact, the whole
distribution of weights is unchanged, although some males lost weight and some
males gained weight – the gains and losses exactly balance. The same thing is true
for the females. The only difference is that the females started and ended the year
lighter on average than the males. On average, there is no weight gain or weight
loss for either males or females. From Lord’s description of the problem quoted
above, the quantity to be estimated, the estimand, is the difference between the
causal effect of the university diet on males and the causal effect of the university
diet on females. That is, the causal estimand is the difference between the causal
effects for males and females, the ‘‘differential’’ causal effect.

The paradox is generated by considering the contradictory conclusions of two
statisticians asked to comment on the data. Statistician 1 observes that there are
no differences between the September and June weight distributions for either
males or females. Thus, Statistician 1 concludes that

as far as these data are concerned, there is no evidence of any interesting

effect of diet (or of anything else) on student weight. In particular, there is no

evidence of any differential effect on the two sexes, since neither group shows

any systematic change. (p. 305).

Statistician 2 looks at the data in a more ‘‘sophisticated’’ way. Effectively, he
examines males and females with about the same initial weight in September, say
a subgroup of ‘‘overweight’’ females (meaning simply above-average-weight
females) and a subgroup of ‘‘underweight’’ males (analogously defined). He
notices that these males tended to gain weight on average and these females
tended to lose weight on average. He also notices that this result is true no matter
what group of initial weights he focuses on. (Actually, Lord’s Statistician 2 used
covariance adjustment, i.e., regression adjustment.) His conclusion, therefore, is
that after ‘‘controlling for’’ initial weight, the diet has a differential positive effect
on males relative to females because for males and females with the same initial
weight, on average the males gain more than the females.

Who’s right? Statistician 1 or Statistician 2? Notice the focus of both statis-
ticians on gain scores and recall that gain scores are not causal effects because
they do not compare potential outcomes. If both statisticians confined their
comments to describing the data, both would be correct, but for causal inference,
both are wrong because these data cannot support any causal conclusions about
the effect of the diet without making some very strong assumptions.

Back to the basics. The units are obviously the students, and the time of
application of treatment (the university diet) is clearly September and the time of
the recording of the outcome Y is clearly June; accept the stability assumption.
Now, what are the potential outcomes and what is the assignment mechanism?
Notice that Lord’s statement of the problem has reverted to the already criticized
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observed outcome notation, Yobs, rather than the potential outcome notation
being advocated here.

The potential outcomes are June weight under the university diet Yi(1) and
under the ‘‘control’’ diet Yi(0). The covariates are sex of students, male versus
female, and September weight. But the assignment mechanism has assigned
everyone to the active treatment! There is no one, male or female, who is assigned
to the control treatment. Hence, there is absolutely no purely empirical basis on
which to compare the effects, either raw or differential, of the university diet with
the control diet. By making the problem complicated with the introduction of the
covariates ‘‘male/female’’ and ‘‘initial weight’’, Lord has created partial confu-
sion. For more statistical details of the resolution of this paradox, see Holland
and Rubin (1983), and for earlier related discussion, see for example, Lindley and
Novick (1981) or Cox and McCullagh (1982). But the point here is that the
‘‘paradox’’ is immediately resolved through the explicit use of potential outcomes.
Either statistician’s answer could be correct for causal inference depending on
what we are willing to assume about the potential outcomes under the control
diet, which are entirely missing.

2.3. Unconfounded and strongly ignorable assignment mechanisms

We have seen that a model for the assignment mechanism is needed for statistical
inference for causal effects. The assignment mechanism gives the conditional
probability of each vector of assignments given the covariates and potential
outcomes:

PrðW jX ;Y ð0Þ;Y ð1ÞÞ. (1)

Here W is a N by 1 vector and, as earlier, X, Y(1) and Y(0) are all matrices with N

rows. A specific example of an assignment mechanism is a completely randomized
experiment with N units, where noN are assigned to the active treatment, and
N � n to the control treatment:

PrðW jX ;Y ð0Þ;Y ð1ÞÞ ¼ 1=CN
n if SW i ¼ n

0 otherwise:
(2)

An ‘‘unconfounded assignment mechanism’’ (Rubin, 1990b) is free of depend-
ence on either Y(0) or Y(1):

PrðW jX ;Y ð0Þ;Y ð1ÞÞ ¼ PrðW jX Þ. (3)

The assignment mechanism is ‘‘probabilistic’’ if each unit has a positive prob-
ability of receiving either treatment:

0oPrðW i ¼ 1jX ;Y ð0Þ;Y ð1ÞÞo1. (4)

If the assignment mechanism is unconfounded and probabilistic, it is called
‘‘strongly ignorable’’ (Rosenbaum and Rubin, 1983a), a stronger version of
ignorable, defined in Section 2.4.
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The assignment mechanism is fundamental to causal inference because it tells
us how we got to see what we saw. Because causal inference is basically a missing
data problem with at least half of the potential outcomes missing, when we have
no understanding of the process that creates missing data, we have no hope of
inferring anything about the missing values. That is, without a stochastic model
for how treatments are assigned to individuals, formal causal inference, at least
using probabilistic statements, is impossible. This statement does not mean that
we need to know the assignment mechanism, but rather that without positing one,
we cannot make any statistical claims about causal effects, such as unbiased
estimation or the coverage of confidence intervals or the coverage of Bayesian
posterior intervals, all defined in Sections 3 and 4.

Strongly ignorable assignment mechanisms often allow particularly straight-
forward estimation of causal effects from all perspectives, as we see shortly.
Therefore, these assignment mechanisms form the basis for inference for causal
effects in more complicated situations, such as when assignment probabilities
depend on covariates in unknown ways, or when there is noncompliance with
the assigned treatment. Strongly ignorable (i.e., probabilistic unconfounded)
assignment mechanisms, which essentially are collections of separate completely
randomized experiments at each value of Xi with a distinct probability of treat-
ment assignment, form the basis for the analysis of observational nonrandomized
studies, as we see in Section 3.

2.4. Confounded and ignorable assignment mechanisms

A confounded assignment mechanism is one that depends on the potential out-
comes:

PrðW jX ;Y ð0Þ;Y ð1ÞÞaPrðW jX Þ. (5)

A special class of possibly confounded assignment mechanisms is particularly
important to Bayesian inference: ignorable assignment mechanisms (Rubin,
1978). Ignorable assignment mechanisms are defined by their freedom from
dependence on any missing potential outcomes:

PrðW jX ;Y ð0Þ;Y ð1ÞÞ ¼ PrðW jX ;YobsÞ. (6)

Ignorable confounded assignment mechanisms arise in practice, especially in
sequential experiments. Here, the next unit’s probability of being exposed to the
active treatment depends on the observed outcomes of those previously exposed
to the active treatment versus the observed outcomes of those exposed to the
control treatment, as in ‘‘play-the-winner’’ sequential designs (e.g., see Chernoff,
1959): expose the next patient with higher probability to whichever treatment
appears to be more successful, as in the initial extracorporeal membrane
oxygenation (ECMO) experiment (e.g., Ware, 1989).

All unconfounded assignment mechanisms are ignorable, but not all ignora-
ble assignment mechanisms are unconfounded (e.g., play-the-winner designs).
Seeing why ignorable and strongly ignorable assignment mechanisms play
critical roles in causal inference is easily seen in the two trivial examples in
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Sections 2.1 and 2.2: The first, ‘‘the perfect doctor’’, involved a nonignorable
treatment assignment mechanism, and the second, ‘‘Lord’s paradox’’, involved
an unconfounded but nonprobabilistic assignment mechanism, and so was not
strongly ignorable.

3. Assignment-based modes of causal inference

Fundamentally, there are three formal statistical modes of causal inference; one is
Bayesian, discussed in Section 4, which treats the potential outcomes as random
variables, and two are based only on the assignment mechanism, which treat the
potential outcomes as fixed but unknown quantities. Rubin (1990b) describes
these three as well as a combination, which is fundamentally not as conceptually
tight, and so is not discussed here as a distinct mode. Of the two distinct forms of
assignment-based inference, one is due to Neyman (1923) and the other is due to
Fisher (1925). Both will first be described in the absence of covariates, X. The
assignment-based modes as developed by Fisher and Neyman were randomizat-
ion-based modes of inference because they both assumed randomized experi-
ments. Our presentation is a generalization of those randomization-based modes.

3.1. Fisherian randomization-based inference

Fisher’s approach is the more direct conceptually and is therefore introduced
first. It is closely related to the mathematical idea of proof by contradiction.
It basically is a ‘‘stochastic proof by contradiction’’ giving the significance level
(or p-value) – really, the plausibility – of the ‘‘null hypothesis’’, which often is that
there is absolutely no treatment effect whatsoever. Fisher’s method only works
for the set of units with Wi ¼ 1 or 0, and not for units with Wi ¼ *, so in this
subsection, we assume that all units are exposed to either the active treatment or
the control treatment.

The first element in Fisher’s mode of inference is the null hypothesis, which is
usually that Yi(1)�Yi(0) for all units: the treatment has absolutely no effect on
the potential outcomes. Under this null hypothesis, all potential outcomes are
known from the observed values of the potential outcomes, Yobs, because
Y(1)�Y(0)�Yobs. It follows that, under this null hypothesis, the value of any
statistic, S, such as the difference of the observed averages for units exposed to
treatment 1 and units exposed to treatment 0, ȳ1 � ȳ0; is known, not only for the
observed assignment, but for all possible assignments W.

Suppose we choose a statistic, S such as ȳ1 � ȳ0; and calculate its value under
each possible assignment (assuming the null hypothesis) and also calculate the
probability of each assignment under the randomized assignment mechanism.
In many classical experiments, these probabilities are either zero or a common
value for all possible assignments. For example, in a completely randomized
experiment with N ¼ 2n units, n are randomly chosen to receive treatment 1 and n

to receive treatment 0. Then any assignment W that has n 1’s and n 0’s has
probability 1=CN

n ; and all other Ws have zero probability. Knowing the value of S
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for each W and its probability, we can then calculate the probability (under the
assignment mechanism and the null hypothesis) that we would observe a value
of S as ‘‘unusual’’ as, or more unusual than, the observed value of S, Sobs.
‘‘Unusual’’ is defined a priori, typically by how discrepant Sobs is from zero. This
probability is the plausibility (p-value or significance level) of the observed value
of the statistic S under the null hypothesis: the probability of a result (represented
by the value Sobs of the statistic, S) as rare, or more rare, than the actual observed
result if the null hypothesis were true, where the probability is over the distri-
bution induced by the assignment mechanism.

This form of inference is elegant: Unless the data suggest that the null
hypothesis of absolutely no treatment effect is false (for an appropriate choice of
statistic, S), it is not easy to claim evidence for differing efficacies of the active and
control treatments.

Fisher’s approach can be extended to other ‘‘sharp’’ null hypotheses, that is, a
null hypothesis such that from knowledge of Yobs, the values of Y(1) and Y(0) are
known; e.g., an additive null, which asserts that for each unit, Yi(1)�Yi(0) is a
specified constant, e.g., 3. The collection of such null hypotheses that do not lead
to an extreme p-value can be used to create interval estimates of the causal effect
assuming additivity. Extensions to other statistics and other fully specified
assignment mechanisms, including unconfounded and even nonignorable ones,
are immediate, because all potential outcomes are known from Yobs, and thus the
probabilities of any assignment are known; Fisher, however, never discussed such
extensions. Notice that Fisher’s perspective provides no ability to generalize
beyond the units in the experiment, nor to consider ‘‘nuisance’’ null hypotheses
when there are multiple treatments, as in factorial designs (e.g., Cochran and Cox,
1957). These limitations are not present in Neyman’s approach.

3.2. Neymanian randomization-based inference

Neyman’s form of randomization-based inference can be viewed as drawing
inferences by evaluating the expectations of statistics over the distribution
induced by the assignment mechanism in order to calculate a confidence interval
for the typical causal effect. The essential idea is the same as in Neyman’s (1934)
classic article on randomization-based (now often called ‘‘designed-based’’)
inference in surveys. Typically, an unbiased estimator of the causal estimand
(the typical causal effect, e.g., the average, the median) is created. Second, an
unbiased, or upwardly biased, estimator of the variance of that unbiased
estimator is found (bias and variance both defined with respect to the random-
ization distribution). Then, an appeal is made to the central limit theorem for
the normality of the estimator over its randomization distribution, whence a
confidence interval for the causal estimand is obtained.

To be more explicit, the causal estimand is typically the average causal effect
Y ð1Þ � Y ð0Þ; where the averages are over all units in the population being studied,
and the traditional statistic for estimating this effect is the difference in observed
sample averages for the two groups, ȳ1 � ȳ0; which can be shown to be unbiased for
Y ð1Þ � Y ð0Þ in a completely randomized design. A common choice for estimating
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the variance of ȳ1 � ȳ0 over its randomization distribution, in completely randomi-
zed experiments with N ¼ n1+n0 units, is se2 ¼ s21=n1 þ s20=n0; where s21; s

2
0; n1 and

n0 are the observed sample variances and sample sizes in the two treatment groups.
Neyman (1923) showed that se2 overestimates the actual variance of ȳ1 � ȳ0; unless
additivity holds (i.e., unless all individual causal effects are constant), in which case
se2 is unbiased for the variance of ȳ1 � ȳ0: The standard 95% confidence interval
for Y ð1Þ � Y ð0Þ is ȳ1 � ȳ0 � 1:96 se; which, in large enough samples, includes
Y ð1Þ � Y ð0Þ in at least 95% of the possible random assignments.

Neyman’s form of inference is less direct than Fisher’s. It is really aimed at
evaluations of procedures: In repeated applications, how often does the interval
ȳ1 � ȳ0 � 1:96 se include Y ð1Þ � Y ð0Þ? Nevertheless, it forms the theoretical
foundation for much of what is done in important areas of application, including
in medical experiments. However, Neyman’s approach is not prescriptive in the
sense of telling us what to do to create an inferential procedure, but rather it tells
us how to evaluate a proposed procedure for drawing causal inferences. Thus, it
really is not well suited to deal with complicated problems except in the sense of
telling us how to evaluate proposed answers that are obtained by insight
or another method. Fisher’s approach also suffers from this disadvantage of lack
of prescription, in fact, more so, because there is little guidance in Fisher’s
approach for which test statistics to use or how to define ‘‘more unusual’’.

3.3. The role for covariates in randomized experiments

As stated earlier, covariates are variables whose values are not affected by the
treatment assignment, for example, variables where values are determined
before randomization into treatment groups (e.g., year of birth, baseline blood
pressure or cholesterol). In classical randomized experiments, if a covariate is
used in the assignment mechanism, as with a blocking variable in a randomized
block design, that covariate must be reflected in the analysis because it affects
the randomization distribution induced by the assignment mechanism. Also,
covariates can be used to increase efficiency of estimation, even when not used in
the assignment mechanism.

The point about efficiency gains can be seen in the context of a completely
randomized experiment in medicine with X ¼ baseline cholesterol and Y post-
treatment cholesteroll. From either the Fisherian or Neymanian perspectives, we
can use covariates to define a new statistic to estimate causal estimands. For
example, one can use the difference in average observed cholesterol reduction,
ðȳ1 � x̄1Þ � ðȳ0 � x̄0Þ – where x̄1 and x̄0 are the average observed X values for
those exposed to W ¼ 1 and W ¼ 0, respectively – rather than the difference in
average Y values, ȳ1 � ȳ0; to estimate Y ð1Þ � Y ð0Þ: Suppose X and Y are cor-
related, which is to be expected for baseline and post-treatment cholesterol. From
the Neymanian perspective, the variance of the difference in average Y�X change
should be less than the variance of the difference in average Y values, which
translates into smaller estimated variances and therefore shorter confidence
intervals. From the Fisherian perspective, this reduced variance translates into
more significant p-values when the null hypothesis is false.
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This point is easily seen in examples. Suppose as an extreme case, the new
treatment subtracts essentially 10 points from everyone’s baseline cholesterol,
whereas the old treatment does nothing. The observed Y�X changes have
essentially zero variance in each treatment group, whereas the Y values have the
same variances in each treatment group as the X values. This result means that
the Neymanian confidence interval for the treatment effect based on the average
treated minus control difference in Y�X changes is much shorter than the cor-
responding interval based on Y values. Also, the observed value of the difference
of Y�X changes is the most extreme value that can be observed under Fisher’s
null hypothesis, and so the observed result with Y�X changes is as significant as
possible, which is not true for the difference in Y values.

3.4. Propensity scores

Suppose that the assignment mechanism is unconfounded:

PrðW jX ð1Þ;Y ð0ÞÞ ¼ PrðW jX Þ;

(e.g., older males have probability .8 of being assigned the new treatment; younger
males, .6; older females, .5; and younger females, .2), and that for some WAW;
Pr(W|X)>0 and for all other WAW; Pr(W|X) ¼ 0, for example in completely
randomized experiments with N ¼ 2 n units,W includes W such that SN

1 W i ¼ n:
Because of the random indexing of units, by appealing to de Finetti’s theorem
(1963), we can write Pr(W|X) as

PrðW jX Þ /

Z YN
1

eðX ijfÞpðfÞdf; for W 2W; (7)

where the function e(Xi|f) gives the probability that a unit with value Xi of the
covariate has Wi ¼ 1 as a function of the parameter f with prior (or marginal)
probability density function p(f).

Assignment mechanisms for which the representation in Eq. (7) is true have
0oeðX ijfÞo1 (for all Xi,f) and are called ‘‘regular’’, whether or not the functions
eð� j fÞ and p(f) are known, and are strongly ignorable. The unit-level assignment
probabilities, ei ¼ e(Xi|f), are called propensity scores (Rosenbaum and Rubin,
1983a). Regular designs are the major template for the analysis of observational,
nonrandomized studies, and propensity scores are the key ingredients of regular
designs. That is, even with an observational data set, we try to structure the
problem so that we can conceptualize at least some of the data as having arisen
from an underlying regular assignment mechanism. Three situations need to be
distinguished when this assumption is accepted for some set of units: (1) The pro-
pensity scores are known, that is, the function p(f) and the parameter f are known;
(2) the functional form e(Xi|f) is known, but f is not; and (3) the functional form,
e(Xi|f), is unknown. When the assignment mechanism is not known to be un-
confounded, we typically begin by assuming that (7) holds for some set of units, if
this assumption is at all plausible.
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3.5. Known propensity scores

When the propensity scores are known, the assignment mechanism is known
except for the set W: As a result, simple generalizations of Fisherian and
Neymanian modes of inference can be applied, for example, by considering the
number of treated SWi and number of controls S(1�Wi) to be fixed by design,
thereby determining W: In particular, Horvitz–Thompson (1952) estimation (or
ratio-adjusted versions, see Cochran, 1963), where observations are weighted by
the inverse probabilities of their being observed, play an important role for both
randomization-based modes of inference because the resulting estimates are unbiased
for average treatment effects over the randomization distribution with no modeling
assumptions. As the overlap in propensity scores in the treatment and control
groups becomes more limited (i.e., as propensity scores approach zero or one), the
Neymanian variance of the estimator for the average causal effect increases, with
the result that confidence intervals become wider, and the Fisherian randomizat-
ion distribution has more of its probability mass on the observed randomization,
with the result that it becomes more difficult to get a ‘‘significant’’ p-value. If there
is no, or little, overlap of the propensity scores in the treatment groups, no sharp
causal inference is possible using the basic Fisherian or Neymanian perspectives.
This is a critical issue that researchers must appreciate, no matter what their field is.

In general, with the assignment-based modes of inference and known propen-
sity scores that take many values, it is often acceptable to create several (e.g.,
5–10) subclasses of propensity scores to approximate a randomized block
experiment (i.e., a series of completely randomized experiments with different
propensities across them). This conclusion is based on Cochran’s (1968) basic
investigation, but more subclasses should be used with larger samples. Alterna-
tively, pairs of treatment-control units can be created that are matched on the
propensity scores, thereby approximating a paired comparison experiment.

3.6. Unknown propensity scores, but regular design

When the propensity scores are unknown, but the function e(Xi|f) is known, the
obvious first step is to estimate them, i.e., estimate f, and thereby ei, typically
using maximum likelihood estimates of f. When the function e(Xi|f) is not
known, various methods can be used to estimate propensity scores (e.g., discri-
minant analysis, logistic regression, probit regression). In either case, typically,
estimated propensity scores are used as if they were known, and often this
leads to more precision than using true propensity scores (Rubin and Thomas,
1992a).

Generally, with a design that is known to be regular, the issues that arise with
estimated propensity scores are the same as with known ones, and the reduction
to a paired-comparison or randomized-block design is acceptable when there is
enough overlap in the estimated propensity scores. A common technique is the
use of matched sampling to create treated-control pairs whose values of X are
‘‘close’’. Typically, each treated unit is matched to one ‘‘close’’ control unit, and
the unused control units are discarded, thereby accepting (7) for the set of matched
units. Various definitions of ‘‘close’’ can be formulated: there are techniques for
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scalar X (Rubin, 1973); ones for multivariate X summarized by the scalar
(estimated) propensity score or best linear discriminant (Cochran and Rubin,
1973; Rosenbaum and Rubin, 1983a), or using multivariate metrics, such as
the Mahalanobis metric (Rubin, 1976b, 1976c, 1979b); or methods can be com-
bined, such as Mahalanobis metric matching within propensity score calipers
(Rosenbaum and Rubin, 1985; Rubin and Thomas, 1996).

The closely related technique of subclassification is also commonly used when
no control units are to be discarded, as discussed years ago in Cochran (1968).
Subclassification is used to reconstruct an underlying, hypothetical, randomized
block design, sometimes after discarding some units so that (7) is acceptable for
the remaining units.

Some theoretical results, for instance, concerning ‘‘Equal Percent Bias
Reducing’’ (EPBR, Rubin, 1976b, 1976c) matching methods are important, as
are extensions involving affinely invariant matching methods with ellipsoidal
distributions (Rubin and Thomas, 1992b) and further extensions involving dis-
criminant mixtures of ellipsoidal distributions (Rubin and Stuart, 2006). Much of
this previous work is collected in Rubin (2006c). Other important work involves
consideration of optimal matching and full matching (Gu and Rosenbaum, 1993;
Ming and Rosenbaum, 2000; Rosenbaum, 1989, 1991, 1995, 2002). Much work is
currently taking place on theoretical and computational aspects of matching
algorithms, much of it in social science, including economics (e.g., see page 1 of
Rubin, 2006b, for a list of some references).

3.7. Observational studies – possibly confounded

To draw statistical inferences in observational studies, a model for the assignment
mechanism is needed, and this defines the template into which we can map the
data from an observational study. That is, we need to posit a particular form for
the assignment mechanism, and the major template that we try to use is the class
of complicated randomized experiments, i.e., regular designs. Although designs
that are known to be regular but that have unknown propensity scores are not
that common in practice (because of the need to know all covariates used in the
assignment mechanism), they are the most critical template for inference for
causal effects from observational data. That is, we attempt to assemble data with
enough covariates that it becomes plausible (or initially arguable) that the
unknown assignment mechanism is unconfounded given these covariates. Then
an observational study can be analyzed using the techniques for a regular design
with unknown propensity scores. The resulting causal inferences will be valid
under the assumption of strong ignorability given the observed covariates.

That is, we begin by estimating propensity scores. If there is little or no overlap
in the distributions of the estimated propensity scores in the treatment and con-
trol groups, the data appear to arise from a nonprobabilistic assignment
mechanism, and there is no hope for drawing valid causal inferences from these
data without making strong external assumptions (i.e., questionable modeling
assumptions on the science). The message that sometimes a data set cannot
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support a decent causal inference is very important for all researchers to under-
stand and accept.

The desirability of discarding irrelevant units from the control group is also an
important point to recognize. For example, in the tobacco litigation (Rubin,
2002), nonsmokers who have characteristics not matching any smokers were
discarded. Sometimes it may even be necessary to discard some treated units as
‘‘unmatchable’’, and then their characteristics should be carefully described
because of the limitations on generalization of results. A recent example of the
discarding of some treated patients is Karkouti et al. (2006), which presents an
observational study comparing the use of ‘‘aprotinin’’ with ‘‘tranexamic acid’’
during coronary bypass surgery. Here, 10,870 patients were available for analysis:
586 treated with aprotinin, and the remaining 10,284 controls treated with
tranexamic acid. After propensity score matching on a variety of important
pre-operation background variables, 137 aprotinin patients were considered
unmatchable despite the 20:1 ratio of controls to treated.

Sometimes subclassification can be used. The example in Rubin (1997) on
treatments for breast cancer compares results from randomized experiments and
an observational study based on subclassification, and suggests that this approach
can work well in practice in certain situations. Also, see Dehijia and Wahba
(1999) and Shadish and Clark (2006) for further support for this assertion in the
context of examples from economics and education, respectively.

A key idea is that, like good experiments, good observational studies are
designed, not simply ‘‘found’’. When designing an experiment, we do not have
any outcome data, but we plan the collection, organization and analysis of the
data to improve our chances of obtaining valid, reliable and precise causal
answers. The same exercise should be done in an observational study: Even if
outcome data are available at the design stage, they should be put aside. This
theme is emphasized in Rubin (2007) and applied in Langenskold and Rubin
(2008).

Because observational studies are rarely known to be unconfounded, we are
concerned with sensitivity of answers to unobserved covariates. Because in my
view, this and other complications are better dealt with from the model-based
perspective, these are addressed after discussing Bayesian methods, although
methods for sensitivity analyses described by Rosenbaum (2002) are appropriate
from the randomization-based perspective.

4. Posterior predictive causal inference

Bayesian inference for causal effects requires a model for the underlying data,
Pr(X,Y(0),Y(1)), and this is where ‘‘science’’ enters, and is the third, and optional,
part of the RCM. A virtue of the RCM framework is that it separates science – a
model for the underlying data, from what we do to learn about science – the
assignment mechanism, Pr(W|X,Y(0),Y(1)). Notice that together, these two
models specify a joint distribution for all observables, an approach commonly
called Bayesian.

Statistical inference for causal effects 47



4.1. The posterior predictive distribution of causal effects

Bayesian inference for causal effects directly and explicitly confronts the missing
potential outcomes, Ymis ¼ {Ymis,i}, where Ymis,i ¼WiYi(0)+(1�Wi)Yi(1). The
perspective takes the specification for the assignment mechanism and the spec-
ification for the underlying data, and derives the posterior predictive distribution
of Ymis, that is, the distribution of Ymis given all observed values:

PrðYmisjX ;Yobs;W Þ. (8)

This distribution is posterior because it is conditional on all observed values
(X,Yobs,W) and predictive because it predicts (stochastically) the missing potential
outcomes. From (a) this distribution, (b) the observed values of the potential
outcomes, Yobs, (c) the observed assignments, W, and (d) the observed covariates,
X, the posterior distribution of any causal effect can, in principle, be calculated.

This conclusion is immediate if we view the posterior predictive distribution in
Eq. (8) as specifying how to take a random draw of Ymis. Once a value of Ymis is
drawn, any causal effect can be directly calculated from the drawn value of Ymis

and the observed values of X and Yobs, e.g., the median causal effect for males:
med{Yi(1)�Yi(0)|Xi indicate males}. Repeatedly drawing values of Ymis and
calculating the causal effect for each draw generates the posterior distribution of
the desired causal effect. Thus, we can view causal inference entirely as a missing
data problem, where we multiply impute (Rubin, 1987, 2004b) the missing
potential outcomes to generate a posterior distribution for the causal effects.
We now describe how to generate these imputations. A great advantage of this
general approach is that we can model the data on one scale (e.g., log (income) is
normal), impute on that scale, but transform the imputations before drawing
inferences on another scale (e.g., raw dollars).

4.2. The posterior predictive distribution of Ymis under ignorable treatment

assignment

First consider how to create the posterior predictive distribution of Ymis when
the treatment assignment mechanism is ignorable (i.e., when Eq. (6) holds). In
general:

PrðYmisjX ;Yobs;W Þ ¼
PrðX ;Y ð0Þ;Y ð1ÞÞPrðW jX ;Y ð0Þ;Y ð1ÞÞR

PrðX ;Y ð0Þ;Y ð1ÞÞPrðW jX ;Y ð0Þ;Y ð1ÞÞdYmis
.

(9)

With ignorable treatment assignment, Eq. (9) becomes:

PrðYmisjX ;Yobs;W Þ ¼
PrðX ;Y ð0Þ;Y ð1ÞÞR

PrðX ;Y ð0Þ;X ð1ÞÞdYmis

. (10)

Equation (10) reveals that, under ignorability, all that we need model is the
science Pr(X,Y(0),Y(1)).

D. B. Rubin48



4.3. de Finetti’s theorem applied to model the data

Because all information is in the underlying data, the unit labels are effectively
just random numbers, and hence the array (X,Y(0),Y(1)) is row exchangeable.
With essentially no loss of generality, therefore, by de Finetti’s (1963) theorem, we
have that the distribution of (X,Y(0),Y(1)) may be taken to be iid (independent
and identically distributed) given some parameter y, with prior distribution p(y):

PrðX ;Y ð0Þ;Y ð1ÞÞ ¼

Z YN
i¼1

f ðX i;Y ið0Þ;Y ið1ÞjyÞ

" #
pðyÞdðyÞ. (11)

Equation (11) provides the bridge between fundamental theory and the com-
mon practice of using iid models. Of course, there remains the critical point that
the functions f ð� j yÞ and p(y) are rarely, if ever known, and this limitation will
haunt this form of inference despite its great flexibility. We nevertheless proceed
with this approach with completely general f ð� j yÞ and p(y).

4.4. Assumption: Parametric irrelevance of marginal distribution of X

Without loss of generality, we can factor f(Xi,Yi(0),Yi(1)|y) into:

f ðY ið0Þ;Y ið1ÞjX i; yy�xÞf ðX ijyxÞ;

where yy � x ¼ yy � x(y) is the parameter governing the conditional distribution of
Yi(0), Yi(1) given Xi, and analogously, yx ¼ yx(y) is the parameter governing the
marginal distribution of X. The reason for doing this factorization is that we are
assuming X is fully observed, and so we wish to predict the missing potential
outcomes Ymis from X and the observed potential outcomes, Yobs, and therefore
must use f(Yi(0),Yi(1)|Xi,yy � x).

To do this, we factor f(Yi(0),Yi(1)|Xi,yy � x) into either

f ðY ið0ÞjX i;Y ið1Þ; y0�x1Þf ðY ið1ÞjX i; y1�xÞ

when Yi(0) is missing, or

f ðY ið1ÞjX i;Y ið0Þ; y1�x0Þf ðY ið0ÞjX i; y0�xÞ

when Yi(1) is missing; here the various subscripted ys are all functions of y
governing the appropriate distributions in an obvious notation.

These factorizations allow us to write Eq. (11) asZ Y
i2S1

f ðY ið0ÞjX i;Y ið1Þ; y0�x1Þ
Y
i2S1

f ðY ið1ÞjX i; y1�xÞ (12a)

�
Y
i2S0

f ðY ið1ÞjX i;Y ið0Þ; y1�x0Þ
Y
i2S0

f ðY ið0ÞjX i; y0�xÞ (12b)
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�
Y
i2Sn

f ðY ið0Þ;Y ið1ÞjX i; yy�xÞ (12c)

�
YN
i¼1

f ðX ijyxÞpðyÞdy, (12d)

where S0 ¼ {i|Wi ¼ 0}, S1 ¼ {i|Wi ¼ 1} and S* ¼ {i|Wi ¼ *}.
Notice that the first factor in Eq. (12a), times the first factor in Eq. (12b), times

Eq. (12c) is proportional to the posterior predictive distribution of Ymis given y
(i.e., given X, Yobs and y), Pr(Ymis|X,Yobs,y). Also notice that the remaining
factors in Eq. (12), that is the second factor in Eq. (12a) times the second factor in
Eq. (12b) times Eq. (12d), is proportional to the posterior distribution of y,
Pr (y|X,Yobs), which is equal to the likelihood of y, L(y|X,Yobs), times the prior
distribution of y, p(y).

Let us now assume that yyx and yx are a priori independent:

pðyÞ ¼ pðyy�xÞpðyxÞ. (13)

This assumption is not innocuous, but it is useful and is standard in many
prediction environments. For an example of a situation where it might not be
reasonable, suppose X includes many baseline measurements of cholesterol going
back many years; the relationships among previous X values may provide useful
information for predicting Y(0) (i.e., Y without intervention), from X, using, for
example, a time-series model (e.g., Box and Jenkins, 1970).

For simplicity in the presentation here, we make assumption Eq. (13),
although, as with all such assumptions, it should be carefully considered. Then
the integral over yx in Eq. (12) passes through all the products in Eqs (12a), (12b)
and (12c), and we are left with the integral over Eq. (12d); Eq. (12d) after this
integration is proportional to p(yy � x)dyy � x.

As a consequence, Eq. (12) becomesZ
PrðYmisjX ;Yobs; yy�xÞPrðyy�xjX ;Y obsÞdyy�x, (14)

where the second factor in Eq. (14) is proportional to the product of the
second factors in Eqs (12a) and (12b), and the first factor in Eq. (14) is, as
before, proportional to the product of the first factors of Eqs (12a) and (12b)
times (12c).

4.5. Assumption: No contamination of imputations across treatments

We now make an assumption that is sometimes implicitly made and sometimes
explicitly not made, which is the case discussed in Section 3. Specifically, we now
assume that entirely separate activities are to be used to impute the missing Yi(0)
and the missing Yi(1). This is accomplished with two formal assumptions:

f ðY ið0Þ;Y ið1ÞjX i; yy�xÞ ¼ f ðY ið0ÞjX i; y0�xÞf ðY ið1ÞjX i; y1�xÞ (15)
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and

pðyy�xÞ ¼ pðy0�xÞpðy1�xÞ. (16)

Thus, in Eq. (15) we assume Yi(0) and Yi(1) are conditionally independent given
Xi and yy � x, and in Eq. (16), that the parameters governing these conditional
distributions are a priori independent. Consequently, f ðY ið0Þj X i;Y ið1Þ; y0�x1Þ ¼
f ðY ið0ÞjX i; y0�xÞ; and f ðY ið1ÞjX i;Y ið0Þ; y1�0xÞ ¼ f ðY ið1ÞjX i; y1�xÞ: Thus, Eq. (12) or
(14) can be written in four distinct parts with associated activities as follows.

1. Using the control units, obtain the posterior distribution of y0 � x:

pðy0�xjX ;YobsÞ / Lðy0�xjX ;Y obsÞpðy0�xÞ

/
Y
i2S0

pðY ið0ÞjX i; y0�xÞpðy0�xÞ.

2. Using y0 � x, obtain the conditional posterior predictive distribution of the
missing Yi(0):

Y
i2S1[Sn

PrðY ið0ÞjX i; y0�xÞ.

3. Using the treated units, obtain the posterior distribution of y1 � x:

Prðy1�xjX ;Y obsÞ / Lðy1�xjX ;YobsÞpðy1�xÞ

/
Y
i2S1

PrðY ið1ÞjX i; y1�xÞpðy1�xÞ.

4. Using y1 � x, obtain the conditional posterior predictive distribution of the
missing Yi(1):Y

i2S0[Sn

PrðY ið1ÞjX i; y1�xÞ.

For simulation, perform steps 1–4 repeatedly with random draws, thereby
multiply imputing Ymis.

4.6. Simple normal example illustrating the four steps

To illustrate the idea of imputing the missing potential outcomes, suppose f ð�jyÞ is
normal with means (m0, m1), variances ðs20;s

2
1Þ and zero correlation.

The units with Wi ¼ 1 (i.e., iAS1) have Yi(1) observed and are missing Yi(0),
and so their Yi(0) values need to be imputed. To impute Yi(0) values for them,
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intuitively we need to find units with Yi(0) observed who are exchangeable with
the Wi ¼ 1 units, but these units must have Wi ¼ 0 (i.e., iAS0). Therefore, we
estimate (in a Bayesian way) the distribution of Yi(0) from the units with Wi ¼ 0,
and use this estimated distribution to impute Yi(0) for the units missing Yi(0).

Because the n0 observed values of Yi(0) are a simple random sample of the N

values of Y(0), and are normally distributed with mean m0 and variance s20; with
the standard independent non-informative prior distributions on ðm0; s

2
0Þ; we have

for the posterior distribution of s20:

s20=s20 	 inverted w2n0�1=ðn0 � 1Þ;

and for the posterior distribution of m0 given s0:

m0 	 Nðȳ0; s
2
0=n0Þ;

and for the missing Yi(0) given m0 and s0:

Y ið0Þ ’ W ia0	
iid

Nðm0; s
2
0Þ.

The missing values of Yi(1) are analogously imputed using the observed values of
Yi(1).

When there are covariates observed, these are used to help predict the missing
potential outcomes using, for example, one regression model for the observed
Yi(1) given the covariates, and another regression model for the observed Yi(0)
given the covariates.

4.7. Simple normal example with covariate – numerical example

For a specific example with a covariate, suppose we have a large population of
patients with a covariate Xi indicating baseline health, which is dichotomous, HI

versus LO, with a 50%/50% mixture in the population. Suppose that a random
sample of 100 with Xi ¼ HI is taken, and 10 are randomly assigned to the control
treatment, and 90 are randomly assigned to the active treatment. Further suppose
that a random sample of 100 with Xi ¼ LO is taken, and 90 are randomly
assigned to the control treatment and 10 are assigned to the active treatment. The
outcome Y is cholesterol level a year after randomization, with Yi,obs and Xi

observed for all 200 units; Xi is effectively observed in the population because we
know the proportions of Xi that are HI and LO in the full population.

Suppose the hypothetical observed data are as displayed in Table 2, Then the
inferences based on the normal-model are as follows in Table 3.

Table 2

Observed data in artificial example

X ȳ0 n0 s0 ȳ1 n1 s1

HI 400 10 60 300 90 60

LO 200 90 60 100 10 60
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The obvious conclusion in this artificial example is that the treatment leads to
cholesterol reduction relative to control for both those with HI and LO baseline
health by about 100 points, and thus for the population, which is a 50%/50%
mixture of these two subpopulations. In this sort of situation, the final inference is
insensitive to the assumed normality of Yi(1) given Xi and of Yi(0) given Xi; see
Pratt (1965) or Rubin (1987, 2004b, Section 2.5) for the argument. But, in general,
this is not so.

4.8. Dangers of model-based extrapolations with some regular designs

A great strength of the model-based approach is that it allows us to conduct
causal inference by predicting all of the missing potential outcomes from observed
values. The problem with this approach is the need to specify the distributions
f ð�jyÞ and p(y), which sometimes can implicitly involve extrapolations that are
extremely unreliable. This situation can be easily conveyed by a simple example
based on the one in Section 4.7.

Suppose that the half of units with LO baseline health are POOR and half are
FAIR, and further suppose that the 10 with LO assigned the active treatment all
are FAIR; the 90 with LO assigned the control treatment are 50 POOR and 40
FAIR. Now, although the comparison of treatment versus control for Xi ¼ HI is
unaffected, the comparison of treatment versus control for the X ¼ POOR group
is entirely dependent on our model specifications. That is, there are no
X ¼ POOR units in the active treatment condition, and so to impute Yi(1)
values for the Xi ¼ POOR control units, we must rely entirely on some external
information.

For example, suppose we associate POOR with Xi ¼ 0, FAIR with Xi ¼ 1, and
HI with Xi ¼ 2, and claim that Yi(1) is linearly related to Xi (given y). In the
control group, we can then impute the missing Yi(1) for units with Xi ¼ POOR

even though there are no units with Xi ¼ POOR and Yi(1) observed, based on the
assumed linear relationship between Yi(1) and Xi estimated from the 10 treatment
units with Xi ¼ 1 and the 90 with Xi ¼ 2. Moreover, as the sample sizes get bigger
and bigger, the posterior variance of the estimated average causal effect shrinks
to zero under this linear model, so we appear to be certain of our answer for the
Xi ¼ POOR causal effect, even though it is reliant on an assumption that may be
only implicitly recognized: the linear relationships between the treatment poten-
tial outcomes and the covariate, which allows the extrapolation to take place.

Because of the issues of model-based extrapolation, propensity score methods
(i.e., based on matching or subclassification) are highly relevant to the application

Table 3

Causal inferences for example in Table 2

X ¼ HI X ¼ LO Population ¼ 1
2

HI þ 1
2

LO

EðȲ 1 � Ȳ 0jX ;Yobs;W Þ �100 �100 �100

V ðȲ 1 � Ȳ 0 j X ;Yobs;W Þ
1=2 20 20 10

ffiffiffi
2
p
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of Bayesian methods to causal inference. For example, it is always a good idea to
examine the overlap in multivariate X distributions between treatment and con-
trol groups, and, by design, to create treated and control units with very similar
distributions of X. Then, formal model-based imputations that rely on inter-
polation can be made within these samples, thereby avoiding extrapolation. This
approach is illustrated in a psychological/medical study in Reinisch et al. (1995),
where matching was used to select a subset of controls, and linear model
adjustments were made in the resulting samples. Objective design is critical for all
researchers, a point emphasized in Rubin (2007).

4.9. Nonignorable treatment assignment mechanisms

With nonignorable treatment assignment, the simplifications in previous sections,
which follow from ignoring the specification for Pr(W|X,Y(0),Y(1)), do not follow
in general, and valid analysis typically becomes far more difficult and uncertain.
As a simple illustration, take the example in Section 4.7 and assume that eve-
rything is the same except that only Yobs is recorded, so that we do not know
whether Xi is HI or LO for anyone. The actual assignment mechanism is now

PrðW jY ð0Þ;Y ð1ÞÞ ¼

Z
PrðW jX ;Y ð0Þ;Y ð1ÞÞdPðX Þ

because X itself is missing, and so treatment assignment depends explicitly on
the potential outcomes, both observed and missing, which are generally both
correlated with the missing Xi.

Inference for causal effects, assuming the identical model for the science, now
depends on the implied normal mixture model for the observed Y data within
each treatment arm, because the population is a 50%/50% mixture of those with
LO and HI baseline health, and these subpopulations have different probabilities
of treatment assignment. Here the inference for causal effects is sensitive to the
propriety of the assumed normality and/or the assumption of a 50%/50%
mixture, as well as to the prior distributions on m0, m1, s0 and s1.

If we mistakenly ignore the nonignorable treatment assignment and simply
compare the sample means of all treated with all controls, for example, using the
simple model of Section 4.6, we have ȳ1 ¼ :9ð300Þ þ :1ð100Þ ¼ 280 versus ȳ0 ¼

:1ð400Þ þ :9ð200Þ ¼ 220; doing so, we reach the incorrect conclusion that the
active treatment hurts cholesterol reduction relative to control in the population.
This sort of example is known as ‘‘Simpson’s Paradox’’ (Simpson, 1951) and
can easily arise with incorrect analyses of nonignorable treatment assignment
mechanisms, and thus indicates why such assignment mechanisms are to be
avoided whenever possible. Randomized experiments are the most direct way of
avoiding nonignorable treatment assignments. Other alternatives are ignorable
designs with nonprobabilistic features so that all units with some specific
value of covariates are assigned the same treatment, like the extreme example in
Section 4.8 or ‘‘regression discontinuity’’ designs (Shadish, Cook and Campbell,
2002). In practice, the analyses of observational studies proceeds as if they were
ignorable, as discussed previously. Then, to assess the consequences of this
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assumption, sensitivity analyses can be conducted under various hypothetical
situations.

Typically sensitivity analyses utilize the idea of a fully missing covariate, U,
such that treatment assignment is ignorable given U but not given the observed
data. The relationships between U and W, and between U, Y(0), and Y(1),
all given X, are then varied. See for example Rosenbaum and Rubin (1983b) and
Cornfield et al. (1959). Extreme versions of sensitivity analyses examine bounds
(e.g., see Imbens and Manski, 2004). Bounds on point estimates examine
estimates that would be obtained over extreme distributions of the unobserved
covariate U. Although often very broad, such bounds can play an important
role in informing us about the sources of sharpness in inferences. Some relevant
references for this approach include Manski et al. (1992), Manski and Nagin
(1998) and Horowitz and Manski (2000).

Related techniques for assessing nonignorable designs include the formal role
of a second control group (Rosenbaum, 1987) and tests of unconfoundedness
(Rosenbaum, 1984). Generally I prefer to use evidence to produce better estimates
rather than to test assumptions. That is, if there is evidence in the data available
to test an assumption, then there is evidence for how to generalize the question-
able assumption, and thereby improve the estimation of causal effects.

5. Complications

There are many complications that occur in real world studies for causal effects,
many of which can be handled much more flexibly with the Bayesian approach
than with assignment-based methods. Of course, the models involved, including
the associated prior distributions, can be very demanding to formulate in a
practically reliable manner. Also, Neymanian evaluations are still important.
Here I simply list some of these complications with some admittedly idiosyn-
cratically personal references to current work from the Bayesian perspective.

5.1. Multiple treatments

When there are more than two treatments, the notation becomes more complex
but is still straightforward under SUTVA. Without SUTVA, however, both the
notation and the analysis can become very involved. The exploding number of
potential outcomes can become an especially serious issue in studies where the
units are exposed to a sequence of repeated treatments in time, each distinct
sequence corresponding to a possibly distinct treatment. Most of the field of
classical experiment design is devoted to issues that arise with more than two
treatment conditions (e.g., Kempthorne, 1952; Cochran and Cox, 1957; Cox, 1958),
although sequential designs are certainly challenging.

5.2. Unintended missing data

Missing data, due perhaps to unit dropout or machine failure, can complicated
analyses more than one would expect based on a cursory examination of the
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problem. Fortunately, Bayesian/likelihood tools for addressing missing data, such
as multiple imputation (Rubin, 1987, 2004b) or the EM algorithm (Dempster
et al., 1977) and its relatives, including data augmentation (Tanner and Wong,
1987) and the Gibbs sampler (Geman and Geman, 1984) are fully compatible
with the Bayesian approach to causal inference outlined in Section 4. Gelman
et al. (2003), Parts III and IV, provide guidance on many of these issues from the
Bayesian perspective.

5.3. Noncompliance with assigned treatment

Another complication, common when the units are people, is noncompliance. For
example, some of the subjects assigned to take the active treatment take the
control treatment instead, and some assigned to take the control manage to take
the active treatment. A nice example of this in the context of a medical experiment
is given in Sommer and Zeger (1991). Initial interest focuses on the effect of the
treatment for the subset of people who will comply with their treatment assign-
ments. Early work related to this issue can be found in economics (e.g., Tinber-
gen, 1930; Haavelmo, 1944) and elsewhere (e.g., Zelen, 1979; Bloom, 1984). Much
progress has been made on this topic in the last decade (e.g., Baker, 1998; Baker
and Lindeman, 1994; Goetghebeur and Molenberghs, 1996; Angrist et al., 1996;
Imbens and Rubin, 1997; Little and Yau, 1998; Hirano et al., 2000; Jin and
Rubin, 2007, 2008). In this case, sensitivity of inference to prior assumptions can be
severe, and the Bayesian approach is well suited, not only to revealing this
sensitivity, but also to formulating reasonable prior restrictions.

5.4. Truncation of outcomes due to death

In other cases, the unit may ‘‘die’’ before the final outcome can be measured. For
example, in an experiment with new fertilizers, a plant may die before the crops
are harvested and interest may focus on both the effect of the fertilizer on plant
survival and the effect of the fertilizer on plant yield when the plant survives.
Or with a medical intervention designed to improve quality of life, patients who
die before quality of life can be measured, effectively have their data ‘‘truncated
due to death’’. This problem is far more subtle than it may at first appear to be,
and valid approaches to it have only recently been formulated (Rubin, 2000;
Zhang and Rubin, 2003). Surprisingly, the models also have applications in
economics (Zhang, Rubin and Mealli, 2007) and the evaluation of job-training
programs. A recent article on the quality of life situation with discussion is Rubin
(2006a).

5.5. Direct and indirect causal effects

Another topic that is far more subtle than it first appears to be is the one
involving direct and indirect causal effects. For example, the separation of the
‘‘direct’’ effect of a vaccination on disease from the ‘‘indirect’’ effect of the
vaccination that is due solely to its effect on blood antibodies and the ‘‘direct’’
effect of the antibodies on disease. This language turns out to be too imprecise to
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be useful within our formal causal effect framework. This problem is ripe for
Bayesian modeling as briefly outlined in Rubin (2004a). This topic is one on
which Fisher gave flawed advice, as discussed in Rubin (2005), possibly because
he eschewed the use of Neyman’s potential outcomes.

5.6. Principal stratification

All the examples in Sections 5.3–5.5 can be viewed as special cases of ‘‘principal
stratification’’ (Frangakis and Rubin, 2002), where the principal strata are defined
by partially unobserved intermediate potential outcomes, namely in our exam-
ples: compliance behavior under both treatment assignments, survival under both
treatment assignments, and antibody level under both treatment assignments.
This appears to be an extremely fertile area for research and application of
Bayesian methods for causal inference, especially using modern simulation meth-
ods such as MCMC (Markov Chain Monte Carlo); see, for example, Gilks et al.
(1995), and more recently, Liu (2001).

5.7. Combinations of complications

In the real world, such complications typically do not appear simply one at a
time. For example, the massive randomized experiment in medicine evaluating
hormone replacement therapy for post-menopausal women suffered from missing
data in both covariates and longitudinal outcomes; also, the outcome was mul-
ticomponent as each point in time; in addition, it suffered from noncompliance,
and moreover, had censoring due to death for some outcomes (e.g., five-year
cancer-free survival). Some of these combinations of complications are discussed
in Barnard et al. (2003) in the context of a school choice example, and in Mealli
and Rubin (2003) in the context of a medical experiment.

Despite the fact that Bayesian analysis is quite difficult when confronted with
these combinations of complications, I believe that it is still a far more satisfac-
tory attack on the real scientific problems of causal inference than the vast
majority of ad hoc frequentist approaches commonly in use today.

5.8. More missing data

The problem of missing data, both in covariates and outcomes, is very common in
practice. Standard methods (e.g., as in Little and Rubin, 2002) are highly valuable
here, and special methods, for instance, for dealing with missing covariates
in propensity score analyses (D’Agostino and Rubin, 1999) are also relevant.
Outcomes that are censored, e.g., survival data, can be viewed as a special but
important case of coarsened data (Heitjan and Rubin, 1991). Moreover, dealing
with combined complications, such as missing outcomes with noncompliance
(Frangakis and Rubin, 1999), is important, as is clustering in design issues
(Frangakis et al., 2002). These topics create a superb area for research, with
immediate applications to epidemiology and medical experiments.
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Epidemiologic Study Designs

Kenneth J. Rothman, Sander Greenland and Timothy L. Lash

Abstract

In this chapter, we present an overview of the primary types of epidemiologic

study designs addressing both experimental and nonexperimental designs. For

experimental studies, we describe the role of randomization and the ethical

concerns of conducting experiments with human subjects, as well as the dis-

tinctions between clinical trials, field trials, and community intervention trials.

For nonexperimental studies, we describe the design principles for cohort and

case-control studies; the selection of subjects, including control selection in

case-control studies; and several variants of the case-control design, including

proportional-mortality, case-crossover, case-specular, and two-stage studies.

1. Introduction

Epidemiologic study designs comprise both experimental and nonexperimental
studies. The experiment is emblematic of scientific activity. But what constitutes
an experiment? In common parlance, an experiment refers to any trial or test. For
example, a professor might introduce new teaching methods as an experiment.
For many scientists, however, the term has a more specific meaning: An exper-
iment is a set of observations, conducted under controlled circumstances, in which
the scientist manipulates the conditions to ascertain what effect such manipula-
tion has on the observations. For epidemiologists, the word experiment usually
implies that the investigator manipulates the exposure assigned to participants in
the study. Experimental epidemiologic studies are therefore limited at a minimum
to topics for which the exposure condition can be manipulated and for which all
exposure assignments are expected to cause no harm.

When epidemiologic experiments are feasible and ethical, they should be de-
signed to reduce variation in the outcome attributable to extraneous factors and
to account for the remaining extraneous variation. In epidemiologic experiments,
participants receive an intervention that is assigned to them by the researcher.
There are generally two or more forms of the intervention. Intervention
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assignments are ordinarily determined by the researcher by applying a randomi-
zed allocation scheme. The purpose of random allocation is to create groups that
differ only randomly at the time of allocation with regard to the prospective
occurrence of the study outcome. Epidemiologic experiments include clinical tri-
als (with patients as subjects), field trials (with interventions assigned to individual
community members), and community intervention trials (with interventions
assigned to whole communities).

When experiments are infeasible or unethical, epidemiologists design nonex-
perimental (also known as observational) studies in an attempt to simulate what
might have been learned had an experiment been conducted. In nonexperimental
studies, the researcher is an observer rather than an agent who assigns interven-
tions. The four main types of nonexperimental epidemiologic studies are cohort
studies – in which all subjects in a source population are classified according
to their exposure status and followed over time to ascertain disease incidence;
case-control studies – in which cases arising from a source population and a
sample of the source population are classified according to their exposure history;
cross-sectional studies, including prevalence studies – in which one ascertains
exposure and disease status as of a particular time; and ecologic studies – in which
the units of observation are groups of people. We will discuss cohort and case-
control designs in some detail, including in the latter proportional-mortality, case-
crossover, case-specular, and two-stage studies. The material is adapted from
Chapters 5–7 of the third edition of Modern Epidemiology, to which we refer the
interested reader for more comprehensive discussion. For details of ecologic
studies see Greenland (2001, 2002, 2004) and Morgenstern (2008).

2. Experimental studies

A typical experiment on human subjects creates experimental groups that are
exposed to different treatments or agents. In a simple two-group experiment, one
group receives a treatment and the other does not. Ideally, the experimental
groups are identical with respect to extraneous factors that affect the outcome of
interest, so that if the treatment had no effect, identical outcomes would be
observed across the groups. This objective could be achieved if one could control
all the relevant conditions that might affect the outcome under study. In the
biologic sciences, however, the conditions affecting most outcomes are so com-
plex and extensive that they are mostly unknown and thus cannot be made
uniform. Hence there will be variation in the outcome even in the absence of a
treatment effect. In the study of the causes of cancer, for example, it is impossible
to create conditions that will invariably give rise to cancer after a fixed time
interval, even if the population is a group of cloned laboratory mice. Inevitably,
there will be what is called ‘‘biologic variation,’’ which reflects variation in the set
of conditions that produces the effect.

Thus, in biologic experimentation, one cannot create groups across which only
the study treatment varies. Instead, the experimenter may settle for creating
groups in which the net effect of extraneous factors is expected to be small. For
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example, it may be impossible to make all animals in an experiment eat exactly
the same amount of food. Variation in food consumption could pose a problem
if it affected the outcome under study. If this variation could be kept small,
however, it might contribute little to variation in the outcome across the groups.

The investigator would usually be satisfied if the net effect of extraneous
factors across the groups were substantially less than the expected effect of the
study treatment. Often not even that can be achieved, however. In that case, the
experiment must be designed so that the variation in outcome due to extraneous
factors can be accurately measured and thus accounted for in comparisons across
the treatment groups.

2.1. Randomization

In the early 20th century, R.A. Fisher and others developed a practical basis for
experimental designs that accurately accounts for extraneous variability across
experimental units (whether the units are objects, animals, people, or commu-
nities). This basis is called randomization (random allocation) of treatments or
exposures among the units: each unit is assigned treatment using a random
assignment mechanism such as a coin toss. Such a mechanism is unrelated to the
extraneous factors that affect the outcome, so any association between the treat-
ment allocation it produces and those extraneous factors will be random. The
variation in the outcome across treatment groups that is not due to treatment
effects can thus be ascribed to these random associations, and hence can be
justifiably called chance variation.

A hypothesis about the size of the treatment effect, such as the null hypothesis,
corresponds to a specific probability distribution for the potential outcomes
under that hypothesis. This probability distribution can be compared with the
observed association between treatment and outcomes. The comparison links
statistics and inference, which explains why many statistical methods, such as
analysis of variance, estimate random outcome variation within and across treat-
ment groups. A study with random treatment assignment allows one to compute
the probability of the observed association under various hypotheses about how
treatment assignment affects outcome. In particular, if assignment is random
and has no effect on the outcome except through treatment, any systematic
(nonrandom) variation in outcome with assignment must be attributable to a
treatment effect, provided that the study implements design strategies, such as
concealment of the random assignment, that prevent biases from affecting the
estimate of effect. Without randomization, systematic variation is a composite of
all uncontrolled sources of variation – including any treatment effect – but also
including confounding factors and other sources of systematic error. As a result,
in studies without randomization, the systematic variation estimated by standard
statistical methods is not readily attributable to treatment effects, nor can it be
reliably compared with the variation expected to occur by chance. Separation of
treatment effects from the mixture of uncontrolled systematic variation in non-
randomized studies (or in randomized studies with noncompliance) requires
additional hypotheses about the sources of systematic error. In nonexperimental
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studies, these hypotheses are usually no more than speculations, although they
can be incorporated into the analysis as parameter settings in a sensitivity analysis
or as prior distributions in Bayesian analysis. In this sense, causal inference in the
absence of randomization is largely speculative. The validity of such inference
depends on how well the speculations about the effect of systematic errors
correspond with their true effect.

2.2. Validity versus ethical considerations in experiments on human subjects

In an experiment, those who are exposed to an experimental treatment are
exposed only because the investigator has assigned the exposure to the subject.
Because the goals of the study, rather than the subject’s needs, determine the
exposure assignment, ethical constraints limit severely the circumstances in which
valid experiments on humans are feasible. Experiments on human subjects are
ethically permissible only when adherence to the scientific protocol does not
conflict with the subject’s best interests. Specifically, there should be reasonable
assurance that there is no known and feasible way a participating subject could be
treated better than with the treatment possibilities that the protocol provides.
From this requirement comes the constraint that any exposures or treatments
given to subjects should be limited to potential preventives of disease or disease
consequences. This limitation alone confines most etiologic research to the non-
experimental variety.

Among the more specific implications is that subjects admitted to the study
should not be thereby deprived of some preferable form of treatment or preventive
that is not included in the study. This requirement implies that best available
therapy should be included to provide a reference (comparison) for any new treat-
ment. Another implication, known as the equipoise requirement, is that the
treatment possibilities included in the trial must be equally acceptable given current
knowledge. This requirement severely restricts use of placebos: the Declaration of
Helsinki states that it is unethical to include a placebo therapy as one of the arms of
a clinical trial if an accepted remedy or preventive of the outcome already exists
(World Medical Association: http://www.wma.net/e/policy/b3.htm; Rothman and
Michels, 2002).

Even with these limitations, many epidemiologic experiments are conducted.
Most fall into the specialized area of clinical trials, which are epidemiologic
studies evaluating treatments for patients who already have acquired disease (trial
is used as a synonym for experiment). Epidemiologic experiments that aim to
evaluate primary preventives (agents intended to prevent disease onset in the first
place) among the healthy are less common than clinical trials; these studies are
either field trials or community intervention trials.

2.3. Clinical trials

A clinical trial is an experiment with patients as subjects. The goal of most clinical
trials is either to evaluate a potential cure for a disease or to find a preventive of
disease sequelae such as death, disability, or a decline in the quality of life. The
exposures in such trials are not primary preventives, since they do not prevent
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occurrence of the initial disease, but they are preventives of the sequelae of
the initial disease. For example, a modified diet after an individual suffers a
myocardial infarction may prevent a second infarction and subsequent death,
chemotherapeutic agents given to cancer patients may prevent recurrence of
cancer, and immunosuppressive drugs given to transplant patients may prevent
transplant rejection. Subjects in clinical trials of sequelae prevention must be
diagnosed as having the disease in question and should be admitted to the study
soon enough following diagnosis to permit the treatment assignment to occur in a
timely fashion.

It is desirable to assign treatments in clinical trials in a way that allows one
to account for possible differences among treatment groups with respect to
unmeasured ‘‘baseline’’ characteristics. As part of this goal, the assignment
mechanism should deter manipulation of assignments that is not part of the
protocol. It is almost universally agreed that randomization is the best way to
deal with concerns about confounding by unmeasured baseline characteristics
and by personnel manipulation of treatment assignment (Byar et al., 1976; Peto
et al., 1976; Gelman et al., 2003). The validity of the trial depends strongly on the
extent to which the random assignment protocol is the sole determinant of
the treatments received. When this condition is satisfied, confounding due to
unmeasured factors can be regarded as random, is accounted for by standard
statistical procedures, and diminishes in likely magnitude as the number ran-
domized increases (Greenland and Robins, 1986; Greenland, 1990). When the
condition is not satisfied, however, unmeasured confounders may bias the
statistics, just as in observational studies. Even when the condition is satisfied,
the generalizability of trial results may be affected by selective enrollment. Trial
participants do not often reflect the distribution of sex, age, race, and ethnicity of
the target patient population (Murthy et al., 2004; Heiat et al., 2002). When
treatment efficacy is modified by sex, age, race, ethnicity, or other factors, how-
ever, and the study population differs from the population that would be receiv-
ing the treatment with respect to these variables, then the average study effect will
differ from the average effect among those who would receive treatment. In these
circumstances, extrapolation of the study results is tenuous or unwarranted, and
one may have to restrict the inferences to specific subgroups, if the size of those
subgroups permits.

Given that treatment depends on random allocation, rather than patient and
physician treatment decision-making, patients’ enrollment into a trial requires
their informed consent. At a minimum, informed consent requires that partic-
ipants understand (a) that they are participating in a research study of a stated
duration, (b) the purpose of the research, the procedures that will be followed,
and which procedures are experimental, (c) that their participation is voluntary
and that they can withdraw at any time, and (d) the potential risks and benefits
associated with their participation.

Although randomization methods often assign subjects to treatments in
approximately equal proportions, this equality is not always optimal. True equi-
poise provides a rationale for equal assignment proportions, but often one treat-
ment is expected to be more effective based on a biologic rationale, earlier studies,
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or even preliminary data from the same study. In these circumstances, equal
assignment probabilities may be a barrier to enrollment and may even become
unethical. Adaptive randomization (Armitage, 1985) or imbalanced assignment
(Avins, 1998) allows more subjects in the trial to receive the treatment expected to
be more effective with little reduction in power.

Whenever feasible, clinical trials should attempt to employ blinding with
respect to the treatment assignment. Ideally, the individual who makes the
assignment, the patient, and the assessor of the outcome should all be ignorant
of the treatment assignment. Blinding prevents certain biases that could affect
assignment, assessment, or compliance. Most important is to keep the assessor
blind, especially if the outcome assessment is subjective, as with a clinical dia-
gnosis. (Some outcomes, such as death, will be relatively insusceptible to bias in
assessment.) Patient knowledge of treatment assignment can affect compliance
with the treatment regime and can bias perceptions of symptoms that might
affect the outcome assessment. Studies in which both the assessor and the
patient are blinded as to the treatment assignment are known as double-blind

studies. A study in which the individual who makes the assignment is unaware
which treatment is which (such as might occur if the treatments are coded pills
and the assigner does not know the code) may be described as triple-blind,
though this term is used more often to imply that the data analyst (in addition to
the patient and the assessor) does not know which group of patients in the
analysis received which treatment.

Depending on the nature of the intervention, it may not be possible or practical
to keep knowledge of the assignment from all of these parties. For example, a
treatment may have well-known side effects that allow the patients to identify the
treatment. The investigator needs to be aware of and to report these possibilities,
so that readers can assess whether all or part of any reported association might be
attributable to the lack of blinding.

If there is no accepted treatment for the condition being studied, it may be
useful to employ a placebo as the comparison treatment, when ethical constraints
allow it. Placebos are inert treatments intended to have no effect other than the
psychologic benefit of receiving a treatment, which itself can have a powerful
effect. This psychologic benefit is called a placebo response, even if it occurs
among patients receiving active treatment. By employing a placebo, an investi-
gator may be able to control for the psychologic component of receiving treat-
ment and study the nonpsychologic benefits of a new intervention. In addition,
employing a placebo facilitates blinding if there would otherwise be no compar-
ison treatment. These benefits may be incomplete, however, if noticeable side
effects of the active treatment inform the subject that he or she has been
randomized to the active treatment. This information may enhance the placebo
response – that is, the psychologic component of treatment – by encouraging the
expectation that the therapy should have a positive effect.

Placebos are not necessary when the objective of the trial is solely to compare
different treatments with one another. In such settings, however, one should be
alert to the possibility of enhanced placebo effect or compliance differences due to
differences in noticeable side effects.
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Noncompliance with assigned treatment results in a discrepancy between
treatment assigned and actual treatment received by trial participants. Standard
practice bases all comparisons on treatment assignment rather than on treatment
received. This practice is called the intent-to-treat principle, because the analysis
is based on the intended treatment, not the received treatment. Although this
principle helps preserve the validity of tests for treatment effects, in typical
applications it biases estimates of treatment effect toward the null. Hence,
alternative analytic methods have been developed (Goetghebeur and Van
Houwelingen, 1998). Compliance may sometimes be measured by directly que-
rying subjects about their compliance, by obtaining relevant data (e.g., by asking
that unused pills be returned), or by biochemical measurements. These compli-
ance measures can then be used to adjust estimates of treatment effects using
special methods (Sommer and Zeger, 1991; Angrist et al., 1996; Greenland,
2000).

Most trials are monitored while they are being conducted by a Data and
Safety Monitoring Committee or Board (DSMB). The primary objective of these
committees is to ensure the safety of the trial participants (Wilhelmsen, 2002).
The committee reviews study results, including estimates of the main treatment
effects and the occurrence of adverse events, to determine whether the trial ought
to be stopped before its scheduled completion. The rationale for early stopping
might be (a) the appearance of an effect favoring one treatment that is so strong
that it would no longer be ethical to randomize new patients to the alternative
treatment or to deny enrolled patients access to the favored treatment, (b) the
occurrence of adverse events at rates considered to be unacceptable, given the
expected benefit of the treatment or trial results, or (c) the determination that
the reasonably expected results are no longer of sufficient value to continue the
trial. The deliberations of DSMB involve weighing issues of medicine, ethics, law,
statistics, and costs to arrive at a decision about whether to continue a trial.
Given the complexity of the issues, the membership of DSMB must comprise a
diverse range of training and experiences, and thus often includes clinicians,
statisticians, and ethicists, none of whom have a material interest in the trial’s
result.

The frequentist statistical rules commonly used by DSMB to determine
whether to stop a trial were developed to ensure that the chance of Type I error
(incorrect rejection of the main null hypothesis of no treatment effect) would not
exceed a prespecified level (the alpha level) during the planned interim analyses
(Armitage et al., 1969). Despite these goals, DSMB members may misinterpret
interim results (George et al., 2004) and strict adherence to these stopping rules
may yield spurious results (Wheatley and Clayton, 2003). Stopping a trial early
because of the appearance of an effect favoring one treatment will often result in
an overestimate of the true benefit of the treatment (Pocock and Hughes, 1989).
Furthermore, trials stopped early may not allow sufficient follow-up to observe
adverse events associated with the favored treatment (Cannistra, 2004), partic-
ularly if those events are chronic sequelae. Bayesian alternatives have been
suggested to ameliorate many of these shortcomings (Berry, 1993; Carlin and
Sargent, 1996; Spielgelhalter et al., 2004).
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2.4. Field trials

Field trials differ from clinical trials in that their subjects are not defined by
presence of disease or by presentation for clinical care; instead the focus is on the
initial occurrence of disease. Patients in a clinical trial may face the complications
of their disease with high probability during a relatively short time. In contrast,
the risk of incident disease among free-living subjects is typically much lower.
Consequently, field trials usually require a much larger number of subjects than
clinical trials and are usually much more expensive. Furthermore, since the sub-
jects are not under active health care, and thus do not come to a central location
for treatment, a field trial often requires visiting subjects at work, home, school,
or establishing centers from which the study can be conducted and to which
subjects are urged to report. These design features add to the cost.

The expense of field trials limits their use to the study of preventives of either
extremely common or extremely serious diseases. Several field trials were con-
ducted to determine the efficacy of large doses of vitamin C in preventing the
common cold (Karlowski et al., 1975; Dykes and Meier, 1975). Poliomyelitis, a
rare but serious illness, was a sufficient public health concern to warrant what
may have been the largest formal human experiment ever attempted, the Salk
vaccine trial, in which the vaccine or a placebo was administered to hundreds of
thousands of school children (Francis et al., 1955). When the disease outcome
occurs rarely, it is more efficient to study subjects thought to be at higher risk.
Thus, the trial of hepatitis B vaccine was carried out in a population of New York
City male homosexuals, among whom hepatitis B infection occurs with much
greater frequency than is usual among New Yorkers (Szmuness, 1980). Similarly,
the effect of cessation of douching on the risk of pelvic inflammatory disease was
studied in women with a history of recent sexually transmitted disease, a strong
risk factor for pelvic inflammatory disease (Rothman et al., 2003).

Analogous reasoning is often applied to the design of clinical trials, which may
concentrate on patients at high risk of adverse outcomes. Because patients who
had already experienced a myocardial infarction are at high risk for a second
infarction, several clinical trials of the effect of lowering serum cholesterol levels
on the risk of myocardial infarction were undertaken on such patients (Leren,
1966; Detre and Shaw, 1974). It is much more costly to conduct a trial designed to
study the effect of lowering serum cholesterol on the first occurrence of a myo-
cardial infarction, because many more subjects must be included to provide
a reasonable number of outcome events to study. The Multiple Risk Factor
Intervention Trial (MRFIT) was a field trial of several primary preventives of
myocardial infarction, including diet. Although it admitted only high-risk indi-
viduals and endeavored to reduce risk through several simultaneous interven-
tions, the study involved 12,866 subjects and cost $115 million (more than half a
billion 2008 dollars) (Kolata, 1982).

As in clinical trials, exposures in field trials should be assigned according to a
protocol that minimizes extraneous variation across the groups, e.g., by removing
any discretion in assignment from the study’s staff. A random assignment scheme
is again an ideal choice, but the difficulties of implementing such a scheme in a

Epidemiologic study designs 71



large-scale field trial can outweigh the advantages. For example, it may be
convenient to distribute vaccinations to groups in batches that are handled iden-
tically, especially if storage and transport of the vaccine is difficult. Such prac-
ticalities may dictate use of modified randomization protocols such as cluster
randomization (explained below). Because such modifications can seriously affect
the informativeness and interpretation of experimental findings, the advantages
and disadvantages need to be carefully weighed.

2.5. Community intervention and cluster randomized trials

The community intervention trial is an extension of the field trial that involves
intervention on a community-wide basis. Conceptually, the distinction hinges on
whether or not the intervention is implemented separately for each individual.
Whereas a vaccine is ordinarily administered singly to individual people, water
fluoridation to prevent dental caries is ordinarily administered to individual water
supplies. Consequently, water fluoridation was evaluated by community inter-
vention trials in which entire communities were selected and exposure (water
treatment) was assigned on a community basis. Other examples of preventives
that might be implemented on a community-wide basis include fast-response
emergency resuscitation programs and educational programs conducted using
mass media, such as Project Burn Prevention in Massachusetts (MacKay and
Rothman, 1982).

Some interventions are implemented most conveniently with groups of subjects
smaller than entire communities. Dietary intervention may be made most con-
veniently by family or household. Environmental interventions may affect an
entire office, factory, or residential building. Protective sports equipment may
have to be assigned to an entire team or league. Intervention groups may be army
units, classrooms, vehicle occupants, or any other group whose members are
simultaneously exposed to the intervention. The scientific foundation of exper-
iments using such interventions is identical to that of community intervention
trials. What sets all these studies apart from field trials is that the interventions are
assigned to groups rather than to individuals.

Field trials in which the treatment is assigned randomly to groups of partic-
ipants are said to be cluster randomized. The larger the size of the group to be
randomized relative to the total study size, the less that is accomplished by ran-
dom assignment. If only two communities are involved in a study, one of which
will receive the intervention and the other will not, such as in the Newburgh–
Kingston water fluoridation trial (Ast et al., 1956), it cannot matter whether the
community that receives the fluoride is assigned randomly or not. Differences in
baseline (extraneous) characteristics will have the same magnitude and the same
effect whatever the method of assignment – only the direction of the differences
will be affected. It is only when the numbers of groups randomized to each
intervention are large that randomization is likely to produce similar distributions
of baseline characteristics among the intervention groups. Analysis of cluster
randomized trials should thus involve methods that take account of the clustering
(Omar and Thompson, 2000; Turner et al., 2001; Spiegelhalter, 2001), which are
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essential to properly estimate the amount of variability introduced by the
randomization (given a hypothesis about the size of the treatment effects).

3. Nonexperimental studies

The limitations imposed by ethics and costs restrict most epidemiologic research
to nonexperimental studies. While it is unethical for an investigator to expose a
person to a potential cause of disease simply to learn about etiology, people often
willingly or unwillingly expose themselves to many potentially harmful factors.
People in industrialized nations expose themselves, among other things, to tobacco,
to a range of exercise regimens from sedentary to grueling, to diets ranging from
vegan to those derived almost entirely from animal protein, and to medical inter-
ventions for diverse conditions. Each of these exposures may have intended and
unintended consequences that can be investigated by observational epidemiology.

Ideally, we would want the strength of evidence from nonexperimental re-
search to be as high as that obtainable from a well-designed experiment, had one
been possible. In an experiment, however, the investigator has the power to assign
exposures in a way that enhances the validity of the study, whereas in nonex-
perimental research the investigator cannot control the circumstances of expo-
sure. If those who happen to be exposed have a greater or lesser risk for the
disease than those who are not exposed, a simple comparison between exposed
and unexposed will be confounded by this difference and thus not reflect validly
the sole effect of the exposure. The comparison will be confounded by the
extraneous differences in risk across the exposure groups (i.e., differences that are
not attributable to the exposure under study).

Because the investigator cannot assign exposure in nonexperimental studies, he
or she must rely heavily on the primary source of discretion that remains: the
selection of subjects. There are two primary types of nonexperimental studies in
epidemiology. The first, the cohort study (also called the ‘‘follow-up study’’ or
‘‘incidence study’’), is a direct analogue of the experiment. Different exposure
groups are compared, but the investigator only selects subjects to observe, and
only classifies these subjects by exposure status rather than assigning them to
exposure groups. The second, the incident case-control study, or simply the case-

control study, employs an extra step of sampling from the source population for
cases. Whereas a cohort study would include all persons in the population giving
rise to the study cases, a case-control study selects only a sample of those persons
and chooses who to include in part based on their disease status. This extra
sampling step can make a case-control study much more efficient than a cohort
study of the same population, but it introduces a number of subtleties and
avenues for bias that are absent in typical cohort studies.

4. Cohort studies

The goal of a cohort study is to measure and usually to compare the incidence of
disease in one or more study cohorts. In epidemiology, the word cohort often
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designates a group of people who share a common experience or condition. For
example, a birth cohort shares the same year or period of birth, a cohort of
smokers has the experience of smoking in common, and a cohort of vegetarians
share their dietary habit. Often, if there are two cohorts in the study, one of them
is described as the exposed cohort – those individuals who have experienced a
putative causal event or condition – and the other is thought of as the unexposed,
or reference, cohort. If there are more than two cohorts, each may be charac-
terized by a different level or type of exposure.

4.1. Definition of cohorts and exposure groups

In principle, a cohort study could be used to estimate average risks, rates, or
occurrence times. Except in certain situations, however, average risks and occur-
rence times cannot be measured directly from the experience of a cohort.
Observation of average risks or times of specific events requires that the whole
cohort remain at risk and under observation for the entire follow-up period.
Loss of subjects during the study period prevents direct measurements of these
averages, since the outcome of lost subjects is unknown. Subjects who die from
competing risks (outcomes other than the one of interest) likewise prevent the
investigator from estimating conditional risks (risk of a specific outcome condi-
tional on not getting other outcomes) directly. Thus, the only situation in which it
is feasible to measure average risks and occurrence times directly is in a cohort
study in which there is little or no loss to follow-up and little competing risk.
While some clinical trials provide these conditions, many epidemiologic studies
do not. When losses and competing risks do occur, one may still directly estimate
the incidence rate, whereas average risk and occurrence time must be estimated
using survival (life-table) methods.

Unlike average risks, which are measured with individuals as the unit in
the denominator, incidence rates have person-time as the unit of measure. The
accumulation of time rather than individuals in the denominator of rates allows
flexibility in the analysis of cohort studies. Whereas studies that estimate risk
directly are conceptually tied to the identification of specific cohorts of individ-
uals, studies measuring incidence rates can, with certain assumptions, define the
comparison groups in terms of person-time units that do not correspond to spe-
cific cohorts of individuals. A given individual can contribute person-time to one,
two, or more exposure groups in a given study, because each unit of person-time
contributed to follow-up by a given individual possesses its own classification
with respect to exposure. Thus, an individual whose exposure experience changes
with time can, depending on details of the study hypothesis, contribute follow-up
time to several different exposure-specific rates. In such a study, the definition of
each exposure group corresponds to the definition of person-time eligibility for
each level of exposure.

As a result of this focus on person-time, it does not always make sense to refer
to the members of an exposure group within a cohort study as if the same set of
individuals were exposed at all points in time. The terms open or dynamic pop-

ulation describe a population in which the person-time experience can accrue from
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a changing roster of individuals. (Sometimes the terms open cohort or dynamic

cohort are used, but this usage conflicts with other usage in which a cohort is a
fixed roster of individuals.) For example, the incidence rates of cancer reported by
the Connecticut Cancer Registry come from the experience of an open popula-
tion. Since the population of residents of Connecticut is always changing, the
individuals who contribute to these rates are not a specific set of people who are
followed through time.

When the exposure groups in a cohort study represent groups that are defined
at the start of follow-up, with no movement of individuals between exposure
groups during the follow-up, the exposure groups are sometimes called fixed

cohorts. The groups defined by treatment allocation in clinical trials are examples
of fixed cohorts. If the follow-up of fixed cohorts suffers from losses to follow-up
or competing risks, incidence rates can still be directly measured and used to
estimate average risks and incidence times. If no losses occur from a fixed cohort,
the cohort satisfies the definition of a closed population, so is then called a closed

cohort. In such cohorts, unconditional risks (which include the effect of compet-
ing risks) and average survival times can be directly measured.

It is tempting to think of the identification of study cohorts as simply a process
of identifying and classifying individuals as to their exposure status. The process
can be complicated, however, by the need to classify the experience of a single
individual in different exposure categories at different times. If the exposure can
vary over time, at a minimum the investigator needs to allow for the time
experienced by each study subject in each category of exposure in the definition of
the study cohorts. The sequence or timing of exposure could also be important. If
there can be many possible exposure sequences, each individual could have
a unique sequence of exposure levels and so define a unique exposure cohort
containing only that individual.

A simplifying assumption common in epidemiologic analysis is that the only
aspect of exposure determining current risk is some simple numeric summary of
exposure history. Typical summaries include current level of exposure, average
exposure, or cumulative exposure, that is, the sum of each exposure level mul-
tiplied by the time spent at that level. Often, exposure is lagged in the summary,
which means that only exposure at or up to some specified time before the current
time is counted. Although one has enormous flexibility in defining exposure
summaries, methods based on assuming that only a single summary is relevant
can be severely biased under certain conditions (Robins, 1987). For now, we will
assume that a single summary is an adequate measure of exposure. With this
assumption, cohort studies may be analyzed by defining the cohorts based on
person-time rather than on persons, so that a person may be a member of differ-
ent exposure cohorts at different times. We nevertheless caution the reader to bear
in mind the single-summary assumption when interpreting such analyses.

The time that an individual contributes to the denominator of one or more of
the incidence rates in a cohort study is sometimes called the time at risk, in the
sense of being at risk for development of the disease. Some people and, conse-
quently, all their person-time are not at risk for a given disease because they are
immune or they lack the target organ for the study disease. For example, women
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who have had a hysterectomy and all men are by definition not at risk for uterine
cancer, because they have no uterus.

4.2. Classifying person-time

The main guide to the classification of persons or person-time is the study
hypothesis, which should be defined in as much detail as possible. If the study
addresses the question of the extent to which eating carrots will reduce the sub-
sequent risk of lung cancer, the study hypothesis is best stated in terms of what
quantity of carrots consumed over what period of time will prevent lung cancer.
Furthermore, the study hypothesis should specify an induction time between the
consumption of a given amount of carrots and the subsequent effect: The effect of
the carrot consumption could take place immediately, begin gradually, or only
begin after a delay, and it could extend beyond the time that an individual might
cease eating carrots (Rothman, 1981).

In studies with chronic exposures (i.e., exposures that persist over an extended
period of time), it is easy to confuse the time during which exposure occurs with
the time at risk of exposure effects. For example, in occupational studies, time
of employment is sometimes confused with time at risk for exposure effects. The
time of employment is a time during which exposure accumulates. In contrast, the
time at risk for exposure effects must logically come after the accumulation of a
specific amount of exposure, because only after that time disease can be caused or
prevented by that amount of exposure. The lengths of these two time periods have
no constant relation to one another. The time at risk of effects might well extend
beyond the end of employment. It is only the time at risk of effects that should be
tallied in the denominator of incidence rates for that amount of exposure.

How should the investigator study hypotheses that do not specify induction
times? For these, the appropriate time periods on which to stratify the incidence
rates are unclear. There is no way to estimate exposure effects, however, without
making some assumption, implicitly or explicitly, about the induction time. The
decision about what time to include for a given individual in the denominator of
the rate corresponds to the assumption about induction time. But what if the
investigator does not have any basis for hypothesizing a specific induction period?
It is possible to learn about the period by estimating effects according to cat-
egories of time since exposure. For example, the incidence rate of leukemia among
atomic bomb survivors relative to that among those who were distant from the
bomb at the time of the explosion can be examined according to years since
the explosion. In an unbiased study, we would expect the effect estimates to rise
above the null value when the minimum induction period has passed. This pro-
cedure works best when the exposure itself occurs at a point or narrow interval of
time, but it can be used even if the exposure is chronic, as long as there is a way to
define when a certain hypothesized accumulation of exposure has occurred.

The definition of chronic exposure based on anticipated effects is more com-
plicated than when exposure occurs only at a point in time. We may conceptualize
a period during which the exposure accumulates to a sufficient extent to trigger a
step in the causal process. This accumulation of exposure experience may be a
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complex function of the intensity of the exposure and time. The induction period
begins only after the exposure has reached this hypothetical triggering point, and
that point will likely vary across individuals. Occupational epidemiologists have
often measured the induction time for occupational exposure from the time of
first exposure, but this procedure involves the extreme assumption that the first
contact with the exposure can be sufficient to produce disease. Whatever
assumption is adopted, it should be made an explicit part of the definition of the
cohort and the period of follow-up.

4.3. Nonexposed time in exposed subjects

What happens to the time experienced by exposed subjects that does not meet the
definition of time at risk of exposure effects according to the study hypothesis?
Specifically, what happens to the time after the exposed subjects become exposed
and before the minimum induction has elapsed, or after a maximum induction
time has passed? Two choices are reasonable for handling this experience. One
possibility is to consider any time that is not related to exposure as unexposed
time and to apportion that time to the study cohort that represents no exposure.
Possible objections to this approach would be that the study hypothesis may be
based on guesses about the threshold for exposure effects and the induction
period and that time during the exposure accumulation or induction periods may
in fact be at risk of exposure effects. To treat the latter experience as not at risk of
exposure effects may then lead to an underestimate of the effect of exposure.
Alternatively, one may simply omit from the study the experience of exposed
subjects that is not at risk of exposure effects according to the study hypothesis.
For this alternative to be practical, there must be a reasonably large number of
cases observed among subjects with no exposure.

For example, suppose a 10-year minimum induction time is hypothesized. For
individuals followed from start of exposure, this hypothesis implies that no expo-
sure effect can occur within the first 10 years of follow-up. Only after the first
10 years of follow-up an individual can experience disease due to exposure.
Therefore, under the hypothesis, only person-time occurring after 10 years of
exposure should contribute to the denominator of the rate among exposed. If the
hypothesis were correct, we should assign the first 10 years of follow-up to the
denominator of the unexposed rate. Suppose, however, that the hypothesis were
wrong and exposure could produce cases in less than 10 years. Then, if the cases
and person-time from the first 10 years of follow-up were added to the unexposed
cases and person-time, the resulting rate would be biased toward the rate in the
exposed, thus reducing the apparent differences between the exposed and unex-
posed rates. If computation of the unexposed rate were limited to truly unexposed
cases and person-time, this problem would be avoided.

The price of avoidance, however, would be reduced precision in estimating the
rate among the unexposed. In some studies, the number of truly unexposed cases
is too small to produce a stable comparison and thus the early experience of
exposed persons is too valuable to discard. In general, the best procedure in a
given situation would depend on the decrease in precision produced by excluding
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the early experience of exposed persons and the amount of bias that is introduced
by treating the early experience of exposed persons as if it were equivalent to that
of people who were never exposed. An alternative that attempts to address both
problems is to treat the induction time as a continuous variable rather than a fixed
time, and model exposure effects as depending on the times of exposure (Thomas,
1983, 1988). This approach is arguably more realistic insofar as the induction time
varies across individuals.

Similar issues arise if the exposure status can change from exposed to unex-
posed. If the exposure ceases but the effects of exposure are thought to continue,
it would not make sense to put the experience of a formerly exposed individual in
the unexposed category. On the other hand, if exposure effects are thought to be
approximately contemporaneous with the exposure, which is to say that the in-
duction period is near zero, then changes in exposure status should lead to cor-
responding changes in how the accumulating experience is classified with respect
to exposure.

4.4. Categorizing exposure

Another problem to consider is that the study hypothesis may not provide
reasonable guidance on where to draw the boundary between exposed and un-
exposed. If the exposure is continuous, it is not necessary to draw boundaries at
all. Instead one may use the quantitative information from each individual fully
either by using some type of smoothing method, such as moving averages, or by
putting the exposure variable into a regression model as a continuous term. Of
course, the latter approach depends on the validity of the model used for esti-
mation. Special care must be taken with models of repeatedly measured exposures
and confounders, which are sometimes called longitudinal-data models.

The simpler approach of calculating rates directly will require a reasonably
sized population within categories of exposure if it is to provide a statistically
stable result. To get incidence rates, then, we need to group the experience of
individuals into relatively large categories for which we can calculate the incidence
rates. In principle, it should be possible to form several cohorts that correspond to
various levels of exposure. For a cumulative measure of exposure, however,
categorization may introduce additional difficulties for the cohort definition. An
individual who passes through one level of exposure along the way to a higher
level would later have time at risk for disease that theoretically might meet the
definition for more than one category of exposure.

For example, suppose we define moderate smoking as having smoked 50,000
cigarettes (equivalent to about 7 pack-years), and we define heavy smoking as
having smoked 150,000 cigarettes (about 21 pack-years). Suppose a man smoked
his 50,000th cigarette in 1970 and his 150,000th in 1980. After allowing for a
5-year minimum induction period, we would classify his time as moderate smok-
ing beginning in 1975. By 1980 he has become a heavy smoker, but the 5-year
induction period for heavy smoking has not elapsed. Thus, from 1980 to 1985, his
experience is still classified as moderate smoking, but from 1985 onward his
experience is classified as heavy smoking. Usually, the time is allocated only to
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the highest category of exposure that applies. This example illustrates the com-
plexity of the cohort definition with a hypothesis that takes into account both the
cumulative amount of exposure and a minimum induction time. Other appor-
tionment schemes could be devised based on other hypotheses about exposure
action, including hypotheses that allowed induction time to vary with exposure
history.

One invalid allocation scheme would apportion to the denominator of the
exposed incidence rate the unexposed experience of an individual who eventually
became exposed. For example, suppose that in an occupational study, exposure is
categorized according to duration of employment in a particular job, with the
highest exposure category being at least 20 years of employment. Suppose a
worker is employed at that job for 30 years. It is a mistake to assign the 30 years
of experience for that employee to the exposure category of 20 or more years of
employment. The worker only reached that category of exposure after 20 years
on the job, and only the last 10 years of his or her experience is relevant to the
highest category of exposure. Note that if the worker had died after 10 years
of employment, the death could not have been assigned to the 20-years-of-
employment category, because the worker would have only had 10 years of
employment.

A useful rule to remember is that the event and the person-time that is being
accumulated at the moment of the event should both be assigned to the same
category of exposure. Thus, once the person-time spent at each category of
exposure has been determined for each study subject, the classification of the
disease events (cases) follows the same rules. The exposure category to which an
event is assigned is the same exposure category in which the person-time for that
individual was accruing at the instant in which the event occurred. The same rule –
that the classification of the event follows the classification of the person-time –
also applies with respect to other study variables that may be used to stratify the
data. For example, person-time will be allocated into different age categories as an
individual ages. The age category to which an event is assigned should be the same
age category in which the individual’s person-time was accumulating at the time of
the event.

4.5. Average intensity and alternatives

One can also define current exposure according to the average (arithmetic or
geometric mean) intensity or level of exposure up to the current time, rather than
by a cumulative measure. In the occupational setting, the average concentration
of an agent in the ambient air would be an example of exposure intensity,
although one would also have to take into account any protective gear that might
affect the individual’s exposure to the agent. Intensity of exposure is a concept
that applies to a point in time, and intensity typically will vary over time. Studies
that measure exposure intensity might use a time-weighted average of intensity,
which would require multiple measurements of exposure over time. The amount
of time that an individual is exposed to each intensity would provide its weight in
the computation of the average.
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An alternative to the average intensity is to classify exposure according to the
maximum intensity, median intensity, minimum intensity, or some other function
of the exposure history. The follow-up time that an individual spends at a given
exposure intensity could begin to accumulate as soon as that level of intensity
is reached. Induction time must also be taken into account. Ideally, the study
hypothesis will specify a minimum induction time for exposure effects, which in
turn will imply an appropriate lag period to be used in classifying individual
experience.

4.6. Immortal person-time

Occasionally, a cohort’s definition will require that everyone meeting the
definition must have survived for a specified period. Typically, this period of
immortality comes about because one of the entry criteria into the cohort is
dependent on survival. For example, an occupational cohort might be defined as
all workers who have been employed at a specific factory for at least 5 years.
There are certain problems with such an entry criterion, among them that these
will guarantee that the study will miss effects among short-term workers who may
be assigned more highly exposed jobs than regular long-term employees, may
include persons more susceptible to exposure effects, and may quit early because
of those effects. Let us assume, however, that only long-term workers are of
interest for the study and that all relevant exposures (including those during the
initial 5 years of employment) are taken into account in the analysis.

The 5-year entry criterion will guarantee that all of the workers in the study
cohort survived their first 5 years of employment, since those who died would
never meet the entry criterion and so would be excluded. It follows that mortality
analysis of such workers should exclude the first 5 years of employment for each
worker. This period of time is referred to as immortal person-time. The workers at
the plant were not immortal during this time, of course, since they could have
died. The subset of workers that satisfy the cohort definition, however, is iden-
tified after the fact as those who have survived this period.

The correct approach to handling immortal person-time in a study is to
exclude it from any denominator, even if the analysis does not focus on mortality.
This approach is correct because including immortal person-time will down-
wardly bias estimated disease rates and, consequently, bias effect estimates
obtained from internal comparisons. To avoid this bias, if a study has a criterion
for a minimum amount of time before a subject is eligible to be in a study, the
time during which the eligibility criterion is met should be excluded from the
calculation of incidence rates. More generally, the follow-up time allocated to
a specific exposure category should exclude time during which the exposure-
category definition is being met.

4.7. Postexposure events

Allocation of follow-up time to specific categories should not depend on events
that occur after the follow-up time in question has accrued. For example, consider
a study in which a group of smokers is advised to quit smoking with the objective
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of estimating the effect on mortality rates of quitting versus continuing to smoke.
For a subject who smokes for a while after the advice is given and then quits later,
the follow-up time as a quitter should only begin at the time of quitting not at the
time of giving the advice, because it is the effect of quitting that is being studied
not the effect of advice (were the effect of advice under study, follow-up time
would begin with the advice). But how should a subject be treated who quits for a
while and then later takes up smoking again?

When this question arose in an actual study of this problem, the investigators
excluded anyone from the study who switched back to smoking. Their decision
was wrong, because if the subject had died before switching back to smoking, the
death would have counted in the study and the subject would not have been
excluded. A subject’s follow-up time was excluded if the subject switched back to
smoking, something that occurred only after the subject had accrued time in the
quit-smoking cohort. A proper analysis should include the experience of those
who switched back to smoking up until the time that they switched back. If the
propensity to switch back was unassociated with risk, their experience subsequent
to switching back could be excluded without introducing bias. The incidence rate
among the person-years while having quit could then be compared with the rate
among those who never quit.

As another example, suppose that the investigators wanted to examine the
effect of being an ex-smoker for at least 5 years, relative to being an ongoing
smoker. Then, anyone who returned to smoking within 5 years of quitting would
be excluded. The person-time experience for each subject during the first 5 years
after quitting should also be excluded, since it would be immortal person-time.

4.8. Timing of outcome events

As may be apparent from earlier discussion, the time at which an outcome event
occurs can be a major determinant of the amount of person-time contributed by a
subject to each exposure category. It is therefore important to define and deter-
mine the time of the event as unambiguously and precisely as possible. For some
events, such as death, neither task presents any difficulty. For other outcomes,
such as human immunodeficiency virus (HIV) seroconversion, the time of the
event can be defined in a reasonably precise manner (the appearance of HIV
antibodies in the bloodstream), but measurement of the time is difficult. For
others, such as multiple sclerosis and atherosclerosis, the very definition of the
onset time can be ambiguous, even when the presence of the disease can be
unambiguously determined. Likewise, time of loss to follow-up and other cen-
soring events can be difficult to define and determine. Determining whether an
event occurred by a given time is a special case of determining when an event
occurred, because knowing that the event occurred by the given time requires
knowing that the time it occurred was before the given time.

Addressing the aforementioned problems depends heavily on the details of
available data and the current state of knowledge about the study outcome. In all
situations, we recommend that one start with at least one written protocol to
classify subjects based on available information. For example, seroconversion
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time may be measured as the midpoint between time of last negative and first
positive test. For unambiguously defined events, any deviation of actual times
from the protocol determination can be viewed as measurement error. Ambig-
uously timed diseases, such as cancers or vascular conditions, are often taken as
occurring at diagnosis time, but the use of a minimum lag period is advisable
whenever a long latent (undiagnosed or prodromal) period is inevitable. It may
sometimes be possible to interview cases about the earliest onset of symptoms,
but such recollections and symptoms can be subject to considerable error and
between-person variability.

Some ambiguously timed events are dealt with by standard, if somewhat
arbitrary, definitions. For example, in 1993, AIDS onset was redefined as occur-
rence of any AIDS-defining illnesses or clinical event (e.g., CD4 count o200/mL).
As a second example, time of loss to follow-up is conventionally taken as midway
between the last successful attempt to contact and the first unsuccessful attempt
to contact. Any difficulty in determining an arbitrarily defined time of an event is
then treated as a measurement problem. One should recognize, however, that the
arbitrariness of the definition for the time of an event represents another source of
measurement error.

4.9. Expense

Cohort studies are usually large enterprises. Most diseases affect only a small
proportion of a population, even if the population is followed for many years. To
obtain stable estimates of incidence requires a substantial number of cases of dis-
ease, and therefore the person-time giving rise to the cases must also be substan-
tial. Sufficient person-time can be accumulated by following cohorts for a long
span of time. Some cohorts with special exposures (e.g., Japanese victims of
atomic bombs (Beebe, 1979)) or with detailed medical and personal histories
(e.g., the Framingham, Massachusetts, study cohort (Kannel and Abbott, 1984))
have indeed been followed for decades. If a study is intended to provide more
timely results, the requisite person-time can be attained by increasing the size of
the cohorts. If exposure accumulation is time dependent and the disease induction
time is lengthy (Rothman, 1981), either a lengthy study or obtaining some
information retrospectively may be necessary. Of course, lengthy studies of large
populations are expensive. It is not uncommon for cohort studies to cost millions
of dollars, and expenses in excess of $100 million have occurred. Most of the
expense derives from the need to establish a continuing system for monitoring
disease occurrence in a large population.

The expense of cohort studies often limits feasibility. The lower the disease
incidence, the poorer the feasibility of a cohort study. Feasibility is further hand-
icapped by a long induction period between the hypothesized cause and its effect.
A long induction time contributes to a low overall incidence because of the
additional follow-up time required to obtain exposure-related cases. To detect
any effect, the study must span an interval at least as long as, and in practice
considerably longer than, the minimum induction period. Cohort studies are
poorly suited to study the effect of exposures that are hypothesized to cause rare
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diseases with long induction periods. Such cohort studies are expensive in rela-
tion to the amount of information returned, which is to say that they are not
efficient.

The expense of cohort studies can be reduced in a variety of ways. One way is
to use an existing system for monitoring disease occurrence. For example, a
regional cancer registry may be used to ascertain cancer occurrence among cohort
members. If the expense of case ascertainment is already being borne by the
registry, the study will be considerably cheaper.

Another way to reduce cost is to rely on historical cohorts. Rather than iden-
tifying cohort members concurrently with the initiation of the study and planning
to have the follow-up period occur during the study, the investigator may choose
to identify cohort members based on records of previous exposure. The follow-up
period until the occurrence of disease may be wholly or partially in the past. To
ascertain cases occurring in the past, the investigators must rely on records to
ascertain disease in cohort members. If the follow-up period begins before the
period during which the study is conducted but extends into the study period,
then active surveillance or a new monitoring system to ascertain new cases of
disease can be devised.

To the extent that subject selection occurs after the follow-up period under
observation (sometimes called retrospective), the study will generally cost less
than an equivalent study in which subject selection occurs before the follow-up
period (sometimes called prospective). A drawback of retrospective cohort studies
is their dependence on records, which may suffer from missing or poorly recorded
information. Another drawback is that entire subject records may be missing.
When such ‘‘missingness’’ is related to the variables under study, the study may
suffer from selection biases similar to those that can occur in case-control studies
(see below). For example, if records are systematically deleted upon the death of a
cohort member, then all of the retrospective person-time will be immortal, and
should therefore be excluded.

A third way to reduce cost is to replace one of the cohorts, specifically the
unexposed cohort, with general population information. Rather than collecting
new information on a large unexposed population, existing data on a general
population is used for comparison. This procedure has several drawbacks. For
one, it is reasonable only if there is some assurance that only a small proportion
of the general population is exposed to the agent under study, as is often the case
with occupational exposures. To the extent that part of the general population
is exposed, there is misclassification error that will introduce a bias into the
comparison in the direction of underestimating the effect. Another problem is
that information obtained for the exposed cohort may differ in quality from the
existing data for the general population. If mortality data are used, the death
certificate is often the only source of information for the general population. If
additional medical information were used to classify deaths in an exposed cohort,
the data thus obtained would not be comparable with the general population
data. This noncomparability may reduce or increase bias in the resulting com-
parisons (Greenland and Robins, 1985a). Finally, another problem is the high
likelihood that the exposed cohort will differ from the general population in many
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ways that are not measured, thus leading to uncontrollable confounding in the
comparison. The classical ‘‘healthy worker effect’’ is one example of this problem,
in which confounding arises because workers must meet a minimal standard of
health (they must be able to work) that the general population does not.

A fourth way to reduce the cost of a cohort study is to conduct a case-control
study within the cohort rather than including the entire cohort population in the
study. Such ‘‘nested’’ case-control studies can often be conducted at a fraction of
the cost of a cohort study and yet produce the same findings with nearly the same
level of precision.

4.10. Special-exposure and general-population cohorts

An attractive feature of cohort studies is the capability they provide to study a
range of possible health effects stemming from a single exposure. A mortality
follow-up can be accomplished just as easily for all causes of death as for any
specific cause. Health surveillance for one disease endpoint can sometimes be
expanded to include many or all endpoints without much additional work. A
cohort study can provide a comprehensive picture of the health effect of a given
exposure. Attempts to derive such comprehensive information about exposures
motivate the identification of ‘‘special-exposure’’ cohorts, which are identifiable
groups with exposure to agents of interest. Examples of such special-exposure
cohorts include occupational cohorts exposed to workplace exposures, studies of
fishermen or farmers exposed chronically to solar radiation, atomic bomb victims
and the population around Chernobyl exposed to ionizing radiation, the pop-
ulation around Seveso, Italy exposed to environmental dioxin contamination,
Seventh Day Adventists who are ‘‘exposed’’ to vegetarian diets, and populations
who are exposed to stress through natural calamities, such as earthquakes. These
exposures are not common and require the identification of exposed cohorts to
provide enough information for study.

Common exposures are sometimes studied through cohort studies that survey
a segment of the population that is identified without regard to exposure status.
Such ‘‘general-population’’ cohorts have been used to study the effects of smok-
ing, oral contraceptives, diet, and hypertension. It is most efficient to limit a
general-population cohort study to exposures that a substantial proportion of
people have experienced; otherwise, the unexposed cohort will be inefficiently
large relative to the exposed cohort. A surveyed population can be classified
according to smoking, alcoholic beverage consumption, diet, drug use, medical
history, and many other factors of potential interest. A disadvantage is that
usually the exposure information must be obtained by interviews with each sub-
ject, as opposed to obtaining information from records, as is often done with
special-exposure cohorts.

5. Case-control studies

Conventional wisdom about case-control studies is that they do not yield
estimates of effect that are as valid as measures obtained from cohort studies.
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This thinking may reflect common misunderstandings in conceptualizing case-
control studies, which is clarified below, but it also reflects concern about quality
of exposure information and biases in case or control selection. For example,
if exposure information comes from interviews, then cases will have usually
reported the exposure information after learning of their diagnosis, which can
lead to errors in the responses that are related to the disease (recall bias). While it
is true that recall bias does not occur in prospective cohort studies, neither does
it occur in all case-control studies. Exposure information that is taken from
records will not be subject to recall bias. Similarly, while a cohort study may log
information on exposure for an entire source population at the outset of the
study, it still requires tracing of subjects to ascertain exposure variation and
outcomes, and the success of this tracing may be related to exposure. These
concerns are analogous to case-control problems of loss of subjects with unknown
exposure and to biased selection of controls and cases. Each study, whether
cohort or case-control, must be considered on its own merits.

Conventional wisdom also holds that cohort studies are useful for evaluating
the range of effects related to a single exposure, while case-control studies provide
information only about the one disease that afflicts the cases. This thinking con-
flicts with the idea that case-control studies can be viewed simply as more efficient
cohort studies. Just as one can choose to measure more than one disease outcome
in a cohort study, it is possible to conduct a set of case-control studies nested
within the same population using several disease outcomes as the case series. The
case-cohort study (see below) is particularly well suited to this task, allowing one
control group to be compared with several series of cases. Whether or not the
case-cohort design is the form of case-control study that is used, case-control
studies do not have to be characterized as being limited with respect to the
number of disease outcomes that can be studied.

For diseases that are sufficiently rare, cohort studies become impractical, and
case-control studies become the only useful alternative. On the other hand, if
exposure is rare, ordinary case-control studies are inefficient, and one must use
methods that selectively recruit additional exposed subjects, such as special cohort
studies or two-stage designs. If both the exposure and the outcome are rare, two-
stage designs may be the only informative option, as they employ oversampling of
both exposed and diseased subjects.

Ideally, a case-control study can be conceptualized as a more efficient version
of a corresponding cohort study. Under this conceptualization, the cases in the
case-control study are the same cases as would ordinarily be included in the
cohort study. Rather than including all of the experience of the source pop-
ulation that gave rise to the cases (the study base), as would be the usual practice
in a cohort design, controls are selected from the source population. The sam-
pling of controls from the population that gave rise to the cases affords the
efficiency gain of a case-control design over a cohort design. The controls pro-
vide an estimate of the prevalence of the exposure and covariates in the source
population. When controls are selected from members of the population who
were at risk for disease at the beginning of the study’s follow-up period, the
case-control odds ratio estimates the risk ratio that would be obtained from a

Epidemiologic study designs 85



cohort design. When controls are selected from members of the population who
were noncases at the times that each case occurs, or otherwise in proportion to
the person-time accumulated by the cohort, the case-control odds ratio estimates
the rate ratio that would be obtained from a cohort design. Finally, when con-
trols are selected from members of the population who were noncases at the end
of the study’s follow-up period, the case-control odds ratio estimates the inci-
dence odds ratio that would be obtained from a cohort design. With each con-
trol selection strategy, the odds ratio calculation is the same, but the measure of
effect estimated by the odds ratio differs. Study designs that implement each of
these control selection paradigms will be discussed after topics that are common
to all designs.

5.1. Common elements of case-control studies

In a cohort study, the numerator and denominator of each disease frequency
(incidence proportion, incidence rate, or incidence odds) are measured, which
requires enumerating the entire population and keeping it under surveillance. A
case-control study attempts to observe the population more efficiently by using a
control series in place of complete assessment of the denominators of the disease
frequencies. The cases in a case-control study should be the same people who
would be considered cases in a cohort study of the same population.

5.2. Pseudo-frequencies and the odds ratio

The primary goal for control selection is that the exposure distribution among
controls be the same as it is in the source population of cases. The rationale for
this goal is that, if it is met, we can use the control series in place of the deno-
minator information in measures of disease frequency to determine the ratio of
the disease frequency in exposed people relative to that among unexposed people.
This goal will be met if we can sample controls from the source population such
that the ratio of the number of exposed controls (B1) to the total exposed ex-
perience of the source population is the same as the ratio of the number of
unexposed controls (B0) to the unexposed experience of the source population,
apart from sampling error. For most purposes, this goal need only be followed
within strata of factors that will be used for stratification in the analysis, such as
factors used for restriction or matching.

Using person-time to illustrate, the goal requires that B1 has the same ratio to
the amount of exposed person-time (T1) as B0 has to the amount of unexposed
person-time (T0):

B1

T1
¼

B0

T0

Here B1/T1 and B0/T0 are the control-sampling rates – that is, the number of
controls selected per unit of person-time. Suppose A1 exposed cases and A0 un-
exposed cases occur over the study period. The exposed and unexposed rates are
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then

I1 ¼
A1

T1
and I0 ¼

A0

T0

We can use the frequencies of exposed and unexposed controls as substitutes
for the actual denominators of the rates to obtain exposure-specific case-control
ratios, or pseudo-rates:

Pseudo-rate1 ¼
A1

B1

and

Pseudo-rate0 ¼
A0

B0

These pseudo-rates have no epidemiologic interpretation by themselves.
Suppose, however, that the control-sampling rates B1/T1 and B0/T0 are equal
to the same value r, as would be expected if controls are selected independently of
exposure. If this common sampling rate r is known, the actual incidence rates can
be calculated by simple algebra, since apart from sampling error, B1/r should
equal the amount of exposed person-time in the source population and B0/r

should equal the amount of unexposed person-time in the source population:
B1/r ¼ B1/(B1/T1) ¼ T1 and B0/r ¼ B0/(B0/T0) ¼ T0. To get the incidence rates,
we need only to multiply each pseudo-rate by the common sampling rate, r.

If the common sampling rate is not known, which is often the case, we can still
compare the sizes of the pseudo-rates by division. Specifically, if we divide the
pseudo-rate for exposed by the pseudo-rate for unexposed, we obtain

Pseudo-rate1

Pseudo-rate0
¼

A1=B1

A0=B0
¼

A1=½ðB1=T1ÞT1�

A0=½ðB0=T0ÞT0�
¼

A1=ðr � T1Þ

A0=ðr � T0Þ
¼

A1=T1

A0=T0

In other words, the ratio of the pseudo-rates for the exposed and unexposed is
an estimate of the ratio of the incidence rates in the source population, provided
that the control-sampling rate is independent of exposure. Thus, using the case-
control study design, one can estimate the incidence rate ratio in a population
without obtaining information on every subject in the population. Similar der-
ivations in the section below on variants of case-control designs show that one
can estimate the risk ratio by sampling controls from those at risk for disease at
the beginning of the follow-up period (case-cohort design) and that one can
estimate the incidence odds ratio by sampling controls from the noncases at the
end of the follow-up period (cumulative case-control design). With these designs,
the pseudo-frequencies correspond to the incidence proportions and incidence
odds, respectively, multiplied by common sampling rates.

There is a statistical penalty for using a sample of the denominators rather than
measuring the person-time experience for the entire source population: The pre-
cision of the estimates of the incidence rate ratio from a case-control study is less
than the precision from a cohort study of the entire population that gave rise to
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the cases (the source population). Nevertheless, the loss of precision that stems
from sampling controls will be small if the number of controls selected per case is
large. Furthermore, the loss is balanced by the cost savings of not having to
obtain information on everyone in the source population. The cost savings might
allow the epidemiologist to enlarge the source population and so obtain more
cases resulting in a better overall estimate of the incidence rate ratio, statistically
and otherwise, than would be possible using the same expenditures to conduct a
cohort study.

The ratio of the two pseudo-rates in a case-control study is usually written as
A1B0/A0B1 and is sometimes called the cross-product ratio. The cross-product ratio
in a case-control study can be viewed as the ratio of cases to controls among the
exposed subjects (A1/B1) divided by the ratio of cases to controls among the
unexposed subjects (A0/B0). This ratio can also be viewed as the odds of being
exposed among cases (A1/A0) divided by the odds of being exposed among controls
(B1/B0) in which case it is termed the exposure odds ratio. While either interpre-
tation will give the same result, viewing this odds ratio as the ratio of case-control
ratios shows more directly how the control group substitutes for the denominator
information in a cohort study and how the ratio of pseudo-frequencies gives the
same result as the ratio of the incidence rates, incidence proportion, or incidence
odds in the source population, if sampling is independent of exposure.

5.3. Defining the source population

If the cases are a representative sample of all cases in a precisely defined and
identified population and the controls are sampled directly from this source
population, the study is said to be population based or a primary base study. For
a population-based case-control study, random sampling of controls may be fea-
sible if a population registry exists or can be compiled. When random sampling
from the source population of cases is feasible, it is usually the most desirable
option.

Random sampling of controls does not necessarily mean that every person
should have an equal probability of being selected to be a control. As explained
above, if the aim is to estimate the incidence rate ratio, then we would employ
longitudinal (density) sampling, in which a person’s control selection probability
is proportional to the person’s time at risk. For example, in a case-control study
nested within an occupational cohort, workers on an employee roster will have
been followed for varying lengths of time, and a random sampling scheme should
reflect this varying time to estimate the incidence rate ratio.

When it is not possible to identify the source population explicitly, simple
random sampling is not feasible and other methods of control selection must be
used. Such studies are sometimes called studies of secondary bases, because the
source population is identified secondarily to the definition of a case-finding
mechanism. A secondary source population or secondary base is therefore a
source population that is defined from (secondary to) a given case series.

Consider a case-control study in which the cases are patients treated for severe
psoriasis at the Mayo Clinic. These patients come to the Mayo Clinic from all
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corners of the world. What is the specific source population that gives rise to these
cases? To answer this question, we would have to know exactly who would go to
the Mayo Clinic if he or she had severe psoriasis. We cannot enumerate this
source population because many people in it do not know themselves that they
would go to the Mayo Clinic for severe psoriasis, unless they actually developed
severe psoriasis. This secondary source might be defined as a population spread
around the world that constitutes those people who would go to the Mayo Clinic
if they developed severe psoriasis. It is this secondary source from which the con-
trol series for the study would ideally be drawn. The challenge to the investigator
is to apply eligibility criteria to the cases and controls so that there is good
correspondence between the controls and this source population. For example,
cases of severe psoriasis and controls might be restricted to those in counties
within a certain distance of the Mayo Clinic, so that at least a geographic
correspondence between the controls and the secondary source population can be
assured. This restriction might however leave very few cases for study.

Unfortunately, the concept of a secondary base is often tenuously connected to
underlying realities, and can be highly ambiguous. For the psoriasis example,
whether a person would go to the Mayo Clinic depends on many factors that vary
over time, such as whether the person is encouraged to go by their regular phy-
sicians and whether the person can afford to go. It is not clear, then, how or even
whether one could precisely define let alone sample from the secondary base, and
thus it is not clear one could ensure that controls were members of the base at the
time of sampling. We therefore prefer to conceptualize and conduct case-control
studies as starting with a well-defined source population and then identify and
recruit cases and controls to represent the disease and exposure experience of
that population. When one instead takes a case series as a starting point, it is
incumbent upon the investigator to demonstrate that a source population can be
operationally defined to allow the study to be recast and evaluated relative to this
source. Similar considerations apply when one takes a control series as a starting
point, as is sometimes done (Greenland, 1985).

5.4. Case selection

Ideally, case selection will amount to a direct sampling of cases within a source
population. Therefore, apart from random sampling, all people in the source
population who develop the disease of interest are presumed to be included as
cases in the case-control study. It is not always necessary, however, to include all
cases from the source population. Cases, like controls, can be randomly sampled
for inclusion in the case-control study, so long as this sampling is independent of
the exposure under study within strata of factors that will be used for stratifi-
cation in the analysis. Of course, if fewer than all cases are sampled, the study
precision will be lower in proportion to the sampling fraction.

The cases identified in a single clinic or treated by a single medical practitioner
are possible case series for case-control studies. The corresponding source pop-
ulation for the cases treated in a clinic is all people who would attend that clinic
and be recorded with the diagnosis of interest if they had the disease in question.
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It is important to specify ‘‘if they had the disease in question’’ because clinics
serve different populations for different diseases, depending on referral patterns
and the reputation of the clinic in specific specialty areas. As noted above, without
a precisely identified source population, it may be difficult or impossible to select
controls in an unbiased fashion.

5.5. Control selection

The definition of the source population determines the population from which
controls are sampled. Ideally, control selection will amount to a direct sampling
of people within the source population. Based on the principles explained above
regarding the role of the control series, many general rules for control selection
can be formulated. Two basic rules are that: (1) Controls should be selected from
the same population – the source population – that gives rise to the study cases. If
this rule cannot be followed, there needs to be solid evidence that the population
supplying controls has an exposure distribution identical to that of the population
that is the source of cases, which is a very stringent demand that is rarely
demonstrable. (2) Within strata of factors that will be used for stratification in the
analysis, controls should be selected independently of their exposure status, in
that the sampling rate for controls (r in the above discussion) should not vary
with exposure.

If these rules and the corresponding case rule are met, then the ratio of pseudo-
frequencies will, apart from sampling error, equal the ratio of the corresponding
measure of disease frequency in the source population. If the sampling rate is
known, then the actual measures of disease frequency can also be calculated
(see Chapter 21 of Rothman and Greenland, 1998). For a more detailed discus-
sion of the principles of control selection in case-control studies, see Wacholder
et al. (1992a, 1992b, 1992c).

When one wishes controls to represent person-time, sampling of the person-
time should be constant across exposure levels. This requirement implies that
the sampling probability of any person as a control should be proportional to the
amount of person-time that person spends at risk of disease in the source pop-
ulation. For example, if in the source population one person contributes twice as
much person-time during the study period as another person, the first person
should have twice the probability of the second of being selected as a control.

This difference in probability of selection is automatically induced by sampling
controls at a steady rate per unit time over the period in which cases occur
(longitudinal, or density sampling), rather than by sampling all controls at a point
in time (such as the start or end of the study). With longitudinal sampling of
controls, a population member present for twice as long as another will have twice
the chance of being selected.

If the objective of the study is to estimate a risk or rate ratio, it should be
possible for a person to be selected as a control and yet remain eligible to become
a case, so that person might appear in the study as both a control and a case. This
possibility may sound paradoxical or wrong, but is nevertheless correct. It
corresponds to the fact that in a cohort study, a case contributes to both the

K. J. Rothman et al.90



numerator and the denominator of the estimated incidence. If the controls are
intended to represent person-time and are selected longitudinally, similar argu-
ments show that a person selected as a control should remain eligible to be
selected as a control again, and thus might be included in the analysis repeatedly
as a control (Lubin and Gail, 1984; Robins et al., 1986).

5.6. Common fallacies in control selection

In cohort studies, the study population is restricted to people at risk for the
disease. Because they viewed case-control studies as if they were cohort studies
done backwards, some authors argued that case-control studies ought to be re-
stricted to those at risk for exposure (i.e., those with exposure opportunity).
Excluding sterile women from a case-control study of an adverse effect of oral
contraceptives and matching for duration of employment in an occupational
study are examples of attempts to control for exposure opportunity. Such re-
strictions do not directly address validity issues and can ultimately harm study
precision by reducing the number of unexposed subjects available for study
(Poole, 1986). If the factor used for restriction (e.g., sterility) is unrelated to the
disease, it will not be a confounder, and hence the restriction will yield no benefit
to the validity of the estimate of effect. Furthermore, if the restriction reduces the
study size, the precision of the estimate of effect will be reduced.

Another principle sometimes been used in cohort studies is that the study
cohort should be ‘‘clean’’ at start of follow-up, including only people who have
never had the disease. Misapplying this principle to case-control design suggests
that the control group ought to be ‘‘clean,’’ including only people who are
healthy, for example. Illness arising after the start of the follow-up period is not
reason to exclude subjects from a cohort analysis, and such exclusion can lead
to bias; similarly controls with illness that arose after exposure should not be
removed from the control series. Nonetheless, in studies of the relation between
cigarette smoking and colorectal cancer, certain authors recommended that the
control group should exclude people with colon polyps, because colon polyps are
associated with smoking and are precursors of colorectal cancer (Terry and
Neugut, 1998). But such an exclusion reduces the prevalence of the exposure in
the controls below that in the actual source population of cases, and hence biases
the effect estimates upward (Poole, 1999).

5.7. Sources for control series

The methods suggested below for control sampling apply when the source pop-
ulation cannot be explicitly enumerated, so random sampling is not possible. All
these methods should only be implemented subject to the reservations about
secondary bases described above.

5.7.1. Neighborhood controls

If the source population cannot be enumerated, it may be possible to select
controls through sampling of residences. This method is not straightforward.
Usually, a geographic roster of residences is not available, so a scheme must be
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devised to sample residences without enumerating them all. For convenience,
investigators may sample controls who are individually matched to cases from the
same neighborhood. That is, after a case is identified, one or more controls
residing in the same neighborhood as that case are identified and recruited into
the study. If neighborhood is related to exposure, the matching should be taken
into account in the analysis.

Neighborhood controls are often used when the cases are recruited from a
convenient source, such as a clinic or hospital. Such usage can introduce bias,
however, for the neighbors selected as controls may not be in the source pop-
ulation of the cases. For example, if the cases are from a particular hospital,
neighborhood controls may include people who would not have been treated at
the same hospital had they developed the disease. If being treated at the hospital
from which cases are identified is related to the exposure under study, then using
neighborhood controls would introduce a bias. For any given study, the suita-
bility of using neighborhood controls needs to be evaluated with regard to the
study variables on which the research focuses.

5.7.2. Random digit dialing

Sampling of households based on random selection of telephone numbers is
intended to simulate sampling randomly from the source population. Random

digit dialing, as this method has been called (Waksberg, 1978), offers the advan-
tage of approaching all households with a wired telephone in a designated area.
The method requires considerable attention to details, however, and carries no
guarantee of unbiased selection.

First, case eligibility should include residence in a house that has a telephone,
so that cases and controls come from the same source population. Second, even if
the investigator can implement a sampling method so that every telephone has the
same probability of being called, there will not necessarily be the same probability
of contacting each eligible control subject, because households vary in the number
of people who reside in them, the amount of time someone is at home, and the
number of operating phones. Third, making contact with a household may re-
quire many calls at various times of day and various days of the week, demanding
considerable labor; to obtain a control subject meeting specific eligibility char-
acteristics can require many dozens of telephone calls on average (Wacholder
et al., 1992b). Fourth, some households use answering machines, voicemail, or
caller identification to screen calls, and may not answer or return unsolicited calls.
Fifth, the substitution of mobile telephones for landlines by some households
further undermines the assumption that population members can be selected
randomly by random digit dialing. Finally, it may be impossible to distinguish
accurately business from residential telephone numbers, a distinction required to
calculate the proportion of nonresponders.

Random-digit-dialing controls are usually matched to cases on area code
(in the U.S., the first three digits of the telephone number) and exchange (the
three digits following the area code). In the past, area code and prefix were related
to residence location and telephone type (landline or mobile service). Thus, if
geographic location or participation in mobile telephone plans was likely related
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to exposure, then the matching should be taken into account in the analysis. More
recently, telephone companies in the U.S. have assigned overlaying area codes
and have allowed subscribers to retain their telephone number when they move
within the region, so the correspondence between assigned telephone numbers
and geographic location has diminished. Furthermore, the increasing use of
mobile telephones and caller identification continues to diminish the utility of this
method.

5.7.3. Hospital- or clinic-based controls

As noted above, the source population for hospital- or clinic-based case-control
studies is not often identifiable, since it represents a group of people who would
be treated in a given clinic or hospital if they developed the disease in question. In
such situations, a random sample of the general population will not necessarily
correspond to a random sample of the source population. If the hospitals or
clinics that provide the cases for the study only treat a small proportion of cases in
the geographic area, then referral patterns to the hospital or clinic are important
to take into account in the sampling of controls. For these studies, a control series
comprising patients from the same hospitals or clinics as the cases may provide
a less-biased estimate of effect than general-population controls (such as those
obtained from case neighborhoods or by random-digit dialing). The source pop-
ulation does not correspond to the population of the geographic area, but rather
to those people who would seek treatment at the hospital or clinic if they de-
veloped the disease under study. While the latter population may be difficult or
impossible to enumerate or even define very clearly, it seems reasonable to expect
that other hospital or clinic patients will represent this source population better
than general-population controls. The major problem with any nonrandom sam-
pling of controls is the possibility that they are not selected independently of
exposure in the source population. Patients hospitalized with other diseases, for
example, may be unrepresentative of the exposure distribution in the source
population either because exposure is associated with hospitalization, or because
the exposure is associated with the other diseases, or both. For example, suppose
the study aims to evaluate the relation between tobacco smoking and leukemia
using hospitalized cases. If controls are people hospitalized with other conditions,
many of them will have been hospitalized for conditions associated with smoking.
A variety of other cancers, as well as cardiovascular diseases and respiratory
diseases, are related to smoking. Thus, a control series of people hospitalized for
diseases other than leukemia would include a higher proportion of smokers than
would the source population of the leukemia cases.

Limiting the diagnoses for controls to conditions for which there is no prior
indication of an association with the exposure improves the control series. For
example, in a study of smoking and hospitalized leukemia cases, one could excl-
ude from the control series anyone who was hospitalized with a disease known
to be related to smoking. Such an exclusion policy may exclude most of the
potential controls, since cardiovascular disease by itself would represent a large
proportion of hospitalized patients. Nevertheless, even a few common diagnostic
categories should suffice to find enough control subjects, so that the exclusions

Epidemiologic study designs 93



will not harm the study by limiting the size of the control series. Indeed, in
limiting the scope of eligibility criteria, it is reasonable to exclude categories of
potential controls even on the suspicion that a given category might be related to
the exposure. If wrong, the cost of the exclusion is that the control series becomes
more homogeneous with respect to diagnosis and perhaps a little smaller. But if
right, then the exclusion is important to the ultimate validity of the study.

On the other hand, an investigator can rarely be sure that an exposure is not
related to a disease or to hospitalization for a specific diagnosis. Consequently, it
would be imprudent to use only a single diagnostic category as a source of
controls. Using a variety of diagnoses has the advantage of potentially diluting
the biasing effects of including a specific diagnostic group that is related to the
exposure.

Excluding a diagnostic category from the list of eligibility criteria for iden-
tifying controls is intended simply to improve the representativeness of the con-
trol series with respect to the source population. Such an exclusion criterion does
not imply that there should be exclusions based on disease history (Lubin and
Hartge, 1984). For example, in a case-control study of smoking and hospitalized
leukemia patients, one might use hospitalized controls but exclude any who are
hospitalized because of cardiovascular disease. This exclusion criterion for con-
trols does not imply that leukemia cases who have had cardiovascular disease
should be excluded; only if the cardiovascular disease was a cause of the hos-
pitalization should the case be excluded. For controls, the exclusion criterion
should only apply to the cause of the hospitalization used to identify the study
subject. A person who was hospitalized because of a traumatic injury and who is
thus eligible to be a control would not be excluded if he or she had previously
been hospitalized for cardiovascular disease. The source population includes
people who have had cardiovascular disease, and they should be included in the
control series. Excluding such people would lead to an underrepresentation of
smoking relative to the source population and produce an upward bias in the
effect estimates.

If exposure directly affects hospitalization (for example, if the decision to
hospitalize is in part based on exposure history), the resulting bias cannot be
remedied without knowing the hospitalization rates, even if the exposure is
unrelated to the study disease or the control diseases. This problem was in fact
one of the first problems of hospital-based studies to receive detailed analysis
(Berkson, 1946), and is often called Berksonian bias.

5.7.4. Other diseases

In many settings, especially in populations with established disease registries or
insurance-claims databases, it may be most convenient to choose controls from
people who are diagnosed with other diseases. The considerations needed for
valid control selection from other diagnoses parallel those just discussed for hos-
pital controls. It is essential to exclude any diagnoses known or suspected to be
related to exposure, and better still to include only diagnoses for which there is
some evidence to indicate they are unrelated to exposure. These exclusion and
inclusion criteria apply only to the diagnosis that brought the person into the
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registry or database from which controls are selected. The history of an exposure-
related disease should not be a basis for exclusion. If however the exposure
directly affects the chance of entering the registry or database, the study will be
subject to the Berksonian bias mentioned earlier for hospital studies.

5.7.5. Friend controls

Choosing friends of cases as controls, like using neighborhood controls, is a
design that inherently uses individual matching and needs to be evaluated with
regard to the advantages and disadvantages of such matching. Aside from the
complications of individual matching, there are further concerns stemming from
use of friend controls. First, being named as a friend by the case may be related to
the exposure status of the potential control (Flanders and Austin, 1986). For
example, cases might preferentially name as friends their acquaintances with
whom they engage in specific activities that might relate to the exposure. Physical
activity, alcoholic beverage consumption, and sun exposure are examples of such
exposures. People who are more reclusive may be less likely to be named as
friends, so their exposure patterns will be underrepresented among a control
series of friends. Exposures more common to extroverted people may become
overrepresented among friend controls. This type of bias was suspected in a study
of insulin-dependent diabetes mellitus in which the parents of cases identified the
controls. The cases had fewer friends than controls, had more learning problems,
and were more likely to dislike school. Using friend controls could explain these
findings (Siemiatycki, 1989).

5.7.6. Dead controls

A dead control cannot be a member of the source population for cases, since
death precludes the occurrence of any new disease. Suppose, however, that the
cases are dead. Does the need for comparability argue in favor of using dead
controls? While certain types of comparability are important, choosing dead
controls will misrepresent the exposure distribution in the source population if the
exposure causes or prevents death in a substantial proportion of people or if it is
associated with an uncontrolled factor that does. If interviews are needed and
some cases are dead, it will be necessary to use proxy respondents for the dead
cases. To enhance comparability of information while avoiding the problems of
taking dead controls, proxy respondents can also be used for those live controls
matched to dead cases (Wacholder et al., 1992b). The main justification for using
dead controls is convenience, such as in studies based entirely on deaths (see the
discussion of proportional-mortality studies below).

5.8. Other considerations for subject selection

5.8.1. Representativeness

Some textbooks have stressed the need for representativeness in the selection of
cases and controls. The advice has been that cases should be representative of all
people with the disease and that controls should be representative of the entire
nondiseased population. Such advice can be misleading. A case-control study
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may be restricted to any type of case that may be of interest: female cases, old
cases, severely ill cases, cases that died soon after disease onset, mild cases, cases
from Philadelphia, cases among factory workers, and so on. In none of these
examples the cases would be representative of all people with the disease, yet
in each one perfectly valid case-control studies are possible (Cole, 1979). The
definition of a case can be virtually anything that the investigator wishes.

Ordinarily, controls should represent the source population for cases, rather
than the entire nondiseased population. The latter may differ vastly from the
source population for the cases by age, race, sex (e.g., if the cases come from a
Veterans Administration hospital), socioeconomic status, occupation, and so on –
including the exposure of interest. One of the reasons for emphasizing the sim-
ilarities rather than the differences between cohort and case-control studies is that
numerous principles apply to both types of study but are more evident in the
context of cohort studies. In particular, many principles relating to subject
selection apply identically to both types of study. For example, it is widely
appreciated that cohort studies can be based on special cohorts rather than on the
general population. It follows that case-control studies can be conducted by
sampling cases and controls from within those special cohorts. The resulting
controls should represent the distribution of exposure across those cohorts,
rather than the general population, reflecting the more general rule that controls
should represent the source population of the cases in the study, not the general
population.

5.8.2. Comparability of information

Many authors discuss a general principle that information obtained from cases
and controls should be of comparable accuracy (e.g., Wacholder et al., 1992a).
The rationale for this principle is the notion that nondifferential exposure meas-
urement error biases the observed odds ratio toward the null. This rationale
underlies the argument that bias in studies with comparably accurate case and
control information is more predictable than in studies without such compara-
bility.

The comparability-of-information principle is often used to guide selection of
controls and collection of data. For example, it is the basis for using proxy
respondents instead of direct interviews for living controls whenever case infor-
mation is obtained from proxy respondents. Unfortunately, in most settings, the
arguments for the principle are logically unsound. For example, in a study that
used proxy respondents for cases, use of proxy respondents for the controls
might lead to greater bias than use of direct interviews with controls, even if
measurement error is differential. The comparability-of-information principle is
therefore applicable only under very limited conditions. In particular, it would
seem to be useful only when confounders and effect modifiers are measured
with negligible error and when measurement error is reduced by using compa-
rable sources of information. Otherwise, the effect of forcing comparability of in-
formation may be as unpredictable as the effect of using noncomparable
information.
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5.8.3. Timing of classification and diagnosis

The principles for classifying persons, cases, and person-time units in cohort
studies according to exposure status also apply to cases and controls in case-
control studies. If the controls are intended to represent person-time (rather than
persons) in the source population, one should apply principles for classifying
person-time to the classification of controls. In particular, principles of person-
time classification lead to the rule that controls should be classified by their
exposure status as of their selection time. Exposures accrued after that time
should be ignored. The rule necessitates that information (such as exposure
history) be obtained in a manner that allows one to ignore exposures accrued
after the selection time. In a similar manner, cases should be classified as of time
of diagnosis or disease onset, accounting for any built-in lag periods or induction-
period hypotheses. Determining the occurrence time of cases can involve all the
problems and ambiguities discussed earlier for cohort studies and needs to be
resolved by study protocol before classifications can be made.

6. Variants of the case-control design

6.1. Nested case-control studies

Epidemiologists sometimes refer to specific case-control studies as nested case-
control studies when the population within which the study is conducted is a fully
enumerated cohort, which allows formal random sampling of cases and controls
to be carried out. The term is usually used in reference to a case-control study
conducted within a cohort study, in which further information (perhaps from
expensive tests) is obtained on most or all cases, but for economy is obtained from
only a fraction of the remaining cohort members (the controls). Nonetheless,
many population-based case-control studies can be thought of as nested within an
enumerated source population.

6.2. Case-cohort studies

The case-cohort study is a case-control study in which the source population is a
cohort and (within sampling or matching strata) every person in this cohort has
an equal chance of being included in the study as a control, regardless of how
much time that person has contributed to the person-time experience of the co-
hort or whether the person developed the study disease. This is a logical way to
conduct a case-control study when the effect measure of interest is the ratio of
incidence proportions rather than a rate ratio, as is common in perinatal studies.
The average risk (or incidence proportion) of falling ill during a specified period
may be written as

R1 ¼
A1

N1
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for the exposed subcohort and

R0 ¼
A0

N0

for the unexposed subcohort, where R1 and R0 are the incidence proportions
among the exposed and unexposed, respectively, and N1 and N0 are the initial
sizes of the exposed and unexposed subcohorts. (This discussion applies equally
well to exposure variables with several levels, but for simplicity we will consider
only a dichotomous exposure.) Controls should be selected such that the exposure
distribution among them will estimate without bias the exposure distribution in
the source population. In a case-cohort study, the distribution we wish to estimate
is among the N1+N0 cohort members, not among their person-time experience
(Thomas, 1972; Kupper et al., 1975; Miettinen, 1982).

The objective is to select controls from the source cohort such that the ratio of
the number of exposed controls (B1) to the number of exposed cohort members
(N1) is the same as ratio of the number of unexposed controls (B0) to the number
of unexposed cohort members (N0), apart from sampling error:

B1

N1
¼

B0

N0

Here, B1/N1 and B0/N0 are the control-sampling fractions (the number of
controls selected per cohort member). Apart from random error, these sam-
pling fractions will be equal if controls have been selected independently of
exposure.

We can use the frequencies of exposed and unexposed controls as substitutes
for the actual denominators of the incidence proportions to obtain ‘‘pseudo-
risks’’:

Pseudo-risk1 ¼
A1

B1

and

Pseudo-risk0 ¼
A0

B0

These pseudo-risks have no epidemiologic interpretation by themselves. Sup-
pose, however, that the control-sampling fractions are equal to the same fraction,
f. Then, apart from sampling error, Bl/f should equal N1, the size of the exposed
subcohort; and B0/f should equal N0, the size of the unexposed subcohort: Bl/f ¼
Bl/(B1/N1) ¼ N1 and B0/f ¼ B0/(B0/N0) ¼ N0. Thus, to get the incidence pro-
portions, we need only to multiply each pseudo-risk by the common sampling
fraction, f. If this fraction is not known, we can still compare the sizes of the
pseudo-risks by division:

Pseudo-risk1

Pseudo-risk0
¼

A1=B1

A0=B0
¼

A1=½ðB1=N1ÞN1�

A0=½ðB0=N0ÞN0�
¼

A1=fN1

A0=fN0
¼

A1=N1

A0=N0
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In other words, the ratio of pseudo-risks is an estimate of the ratio of incidence
proportions (risk ratio) in the source cohort if control sampling is independent of
exposure. Thus, using a case-cohort design, one can estimate the risk ratio in a
cohort without obtaining information on every cohort member.

Thus far, we have implicitly assumed that there is no loss to follow-up or
competing risks in the underlying cohort. If there are such problems, it is still
possible to estimate risk or rate ratios from a case-cohort study provided that we
have data on the time spent at risk by the sampled subjects or we use certain
sampling modifications (Flanders et al., 1990). These procedures require the
usual assumptions for rate-ratio estimation in cohort studies, namely, that loss-
to-follow-up and competing risks are either not associated with exposure or not
associated with disease risk.

An advantage of the case-cohort design is that it facilitates conduct of a set of
case-control studies from a single cohort, all of which use the same control group.
Just as one can measure the incidence rate of a variety of diseases within a single
cohort, one can conduct a set of simultaneous case-control studies using a single
control group. A sample from the cohort is the control group needed to compare
with any number of case groups. If matched controls are selected from people at
risk at the time a case occurs (as in risk-set sampling, which is described below),
the control series must be tailored to a specific group of cases. To have a single
control series serve many case groups, another sampling scheme must be used.
The case-cohort approach is a good choice in such a situation.

Wacholder (1991) has discussed the advantages and disadvantages of the case-
cohort design relative to the usual type of case-control study. One point to note
is that, because of the overlap of membership in the case and control groups
(controls who are selected may also develop disease and enter the study as cases),
one will need to select more controls in a case-cohort study than in an ordinary
case-control study with the same number of cases, if one is to achieve the same
amount of statistical precision. Extra controls are needed because the statistical
precision of a study is strongly determined by the numbers of distinct cases and
noncases. Thus, if 20% of the source cohort members will become cases, and
all cases will be included in the study, one will have to select 1.25 times as
many controls as cases in a case-cohort study to insure that there will be as many
controls who never become cases in the study. On average, only 80% of the
controls in such a situation will remain noncases; the other 20% will become
cases. Of course, if the disease is uncommon, the number of extra controls needed
for a case-cohort study will be small.

6.3. Density case-control studies

Earlier, we described how case-control odds ratios will estimate rate ratios if the
control series is selected so that the ratio of the person-time denominators T1/T0 is
validly estimated by the ratio of exposed to unexposed controls B1/B0. That is, to
estimate rate ratios, controls should be selected so that the exposure distribution
among them is, apart from random error, the same as it is among the person-time
in the source population. Such control selection is called density sampling because
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it provides for estimation of relations among incidence rates, which have been
called ‘‘incidence densities.’’

If a subject’s exposure may vary over time, then a case’s exposure history is
evaluated up to the time the disease occurred. A control’s exposure history is
evaluated up to an analogous index time, usually taken as the time of sampling;
exposure after the time of selection must be ignored. This rule helps to ensure that
the number of exposed and unexposed controls will be in proportion to the
amount of exposed and unexposed person-time in the source population.

The time during which a subject is eligible to be a control should be the time in
which that person is also eligible to become a case, if the disease should occur.
Thus, a person in whom the disease has already developed or who has died is no
longer eligible to be selected as a control. This rule corresponds to the treatment
of subjects in cohort studies. Every case that is tallied in the numerator of a
cohort study contributes to the denominator of the rate until the time that the
person becomes a case, when the contribution to the denominator ceases. One
way to implement this rule is to choose controls from the set of people in the
source population who are at risk of becoming a case at the time that the case is
diagnosed. This set is sometimes referred to as the risk set for the case, and this
type of control sampling is sometimes called risk-set sampling. Controls sampled
in this manner are matched to the case with respect to sampling time; thus, if time
is related to exposure, the resulting data should be analyzed as matched data
(Greenland and Thomas, 1982). It is also possible to conduct unmatched density
sampling using probability sampling methods if one knows the time interval
at risk for each population member. One then selects a control by sampling
members with probability proportional to time at risk and then randomly samples
a time to measure exposure within the interval at risk.

As mentioned earlier, a person selected as a control who remains in the study
population at risk after selection should remain eligible to be selected once again
as a control. Thus, although unlikely in typical studies, the same person may
appear in the control group two or more times. Note, however, that including the
same person at different times does not necessarily lead to exposure (or con-
founder) information being repeated, because this information may change with
time. For example, in a case-control study of an acute epidemic of intestinal
illness, one might ask about food ingested within the previous day or days. If a
contaminated food item was a cause of the illness for some cases, then the expo-
sure status of a case or control chosen 5 days into the study might well differ from
what it would have been 2 days into the study when the subject might also have
been included as a control.

6.4. Cumulative (‘‘epidemic’’) case-control studies

In some research settings, case-control studies may address a risk that ends before
subject selection begins. For example, a case-control study of an epidemic of
diarrheal illness after a social gathering may begin after all the potential cases
have occurred (because the maximum induction time has elapsed). In such a
situation, an investigator might select controls from that portion of the
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population that remains after eliminating the accumulated cases; that is, one
selects controls from among noncases (those who remain noncases at the end of
the epidemic follow-up).

Suppose that the source population is a cohort and that a fraction f of both
exposed and unexposed noncases are selected to be controls. Then the ratio of
pseudo-frequencies will be

A1=B1

A0=B0
¼

A1=f ðN1 � A1Þ

A0=f ðN0 � A0Þ
¼

A1=ðN1 � A1Þ

A0=ðN0 � A0Þ

which is the incidence odds ratio for the cohort. The latter ratio will provide a
reasonable approximation to the rate ratio, provided that the proportions falling
ill in each exposure group during the risk period are low, that is, less than about
20%, and that the prevalence of exposure remains reasonably steady during the
study period. If the investigator prefers to estimate the risk ratio rather than the
incidence rate ratio, the study odds ratio can still be used (Cornfield, 1951), but
the accuracy of this approximation is only about half as good as that of the odds
ratio approximation to the rate ratio (Greenland, 1987a). The use of this
approximation in the cumulative design is the basis for the common and mistaken
teaching that a rare-disease assumption is needed to estimate risk ratios in all
case-control studies.

Prior to the 1970s, the standard conceptualization of case-control studies in-
volved the cumulative design, in which controls are selected from noncases at the
end of a follow-up period. As discussed by numerous authors (Sheehe, 1962;
Miettinen, 1976a; Greenland and Thomas, 1982), density designs and case-cohort
designs have several advantages outside of the acute epidemic setting, including
potentially much less sensitivity to bias from exposure-related loss-to-follow-up.

6.5. Case-only studies

There are a number of situations in which cases are the only subjects used to
estimate or test hypotheses about effects. For example, it is sometimes possible to
employ theoretical considerations to construct a prior distribution of exposure in
the source population, and use this distribution in place of an observed control
series. Such situations naturally arise in genetic studies, in which basic laws of
inheritance may be combined with certain assumptions to derive a population or
parental-specific distribution of genotypes (Self et al., 1991). It is also possible to
study certain aspects of joint effects (interactions) of genetic and environmental
factors without using control subjects (Khoury and Flanders, 1996).

6.6. Case-specular and case-crossover studies

When the exposure under study is defined by proximity to an environmental
source (e.g., a power line), it may be possible to construct a specular (hypothet-
ical) control for each case by conducting a ‘‘thought experiment.’’ Either the
case or the exposure source is imaginarily moved to another location that would
be equally likely were there is no exposure effect; the case exposure level under
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this hypothetical configuration is then treated as the (matched) ‘‘control’’ expo-
sure for the case (Zaffanella et al., 1998). When the specular control arises by
examining the exposure experience of the case outside of the time in which ex-
posure could be related to disease occurrence, the result is called a case-crossover

study.
The classic crossover study is a type of experiment in which two (or more)

treatments are compared, as in any experimental study. In a crossover study,
however, each subject receives both treatments, with one following the other.
Preferably, the order in which the two treatments are applied is randomly chosen
for each subject. Enough time should be allocated between the two administra-
tions so that the effect of each treatment can be measured and can subside before
the other treatment is given. A persistent effect of the first intervention is called a
carryover effect. A crossover study is only valid to study treatments for which
effects occur within a short induction period and do not persist, i.e., carryover
effects must be absent, so that the effect of the second intervention is not
intermingled with the effect of the first.

The case-crossover study is a case-control analogue of the crossover study
(Maclure, 1991). For each case, one or more predisease or postdisease time peri-
ods are selected as matched ‘‘control’’ periods for the case. The exposure status of
the case at the time of the disease onset is compared with the distribution of
exposure status for that same person in the control periods. Such a comparison
depends on the assumption that neither exposure nor confounders are changing
over time in a systematic way. There are a number of ways to select control time
periods under a case-crossover design, each with different analytic consequences.
See Vines and Farrington (2001), Navidi and Weinhandl (2002), and Janes et al.
(2005) for details.

Only a limited set of research topics are amenable to the case-crossover design.
The exposure must vary over time within individuals rather than stay constant. If
the exposure does not vary within a person, then there is no basis for comparing
exposed and unexposed time periods of risk within the person. Like the crossover
study, the exposure must also have a short induction time and a transient effect;
otherwise, exposures in the distant past could be the cause of a recent disease
onset (a carryover effect).

Maclure (1991) used the case-crossover design to study the effect of sexual
activity on incident myocardial infarction. This topic is well suited to a case-
crossover design because the exposure is intermittent and is presumed to have a
short induction period for the hypothesized effect. Any increase in risk for a
myocardial infarction from sexual activity is presumed to be confined to a short
time following the activity. A myocardial infarction is an outcome well suited to
this type of study because it is thought to be triggered by events close in time.

Each case and its control in a case-crossover study is automatically matched on
all characteristics (e.g., sex and birth date) that do not change within individuals.
Matched analysis of case-crossover data controls for all such fixed confounders,
whether or not they are measured. Control for measured time-varying confound-
ers is possible using modeling methods for matched data. It is also possible to
adjust case-crossover estimates for bias due to time trends in exposure through
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use of longitudinal data from a nondiseased control group (case-time controls)
(Suissa, 1995). Nonetheless, these trend adjustments themselves depend on
additional no-confounding assumptions and may introduce bias if those assump-
tions are not met (Greenland, 1996b).

6.7. Two-stage sampling

Another variant of the case-control study uses two-stage or two-phase sampling
(Walker, 1982; White, 1982). In this type of study, the control series comprises a
relatively large number of people (possibly everyone in the source population),
from whom exposure information or perhaps some limited amount of informa-
tion on other relevant variables is obtained. Then, for only a subsample of the
controls, more detailed information is obtained on exposure or on other study
variables that may need to be controlled in the analysis. More detailed infor-
mation may also be limited to a subsample of cases. This two-stage approach is
useful when it is relatively inexpensive to obtain the exposure information (e.g.,
by telephone interview), but the covariate information is more expensive to obtain
(say, by laboratory analysis). It is also useful when exposure information already
has been collected on the entire population (e.g., job histories for an occupational
cohort), but covariate information is needed (e.g., genotype). This situation arises
in cohort studies when more information is required than was gathered at base-
line. This type of study requires special analytic methods to take full advantage of
the information collected at both stages.

6.8. Proportional-mortality studies

In proportional-mortality studies, the cases are deaths occurring within the source
population. Controls are not selected directly from the source population, which
consists of living people, but are taken from other deaths within the source pop-
ulation. This control series is acceptable if the exposure distribution within this
group is similar to that of the source population. Consequently, the control series
should be restricted to categories of death that are not related to the exposure.
These studies should be analyzed as ordinary case-control studies, with the odds
ratio as the effect measure, instead of using the proportional-mortality ratio, a
biased measure of the mortality rate ratio (Miettinen and Wang, 1981).

6.9. Case-control studies with prevalent cases

Case-control studies are sometimes based on prevalent cases rather than incident
cases. When it is impractical to include only incident cases, it may still be possible
to select existing cases of illness at a point in time. If the prevalence odds ratio in
the population is equal to the incidence rate ratio, then the odds ratio from a case-
control study based on prevalent cases can unbiasedly estimate the rate ratio. The
conditions required for the prevalence odds ratio to equal the rate ratio are very
strong, however, and a simple relation does not exist for age-specific ratios. If
exposure is associated with duration of illness or migration out of the prevalence
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pool, then a case-control study based on prevalent cases cannot by itself distin-
guish exposure effects on disease incidence from the exposure association with
disease duration or migration, unless the strengths of the latter associations are
known. If the size of the exposed or the unexposed population changes with time
or there is migration into the prevalence pool, the prevalence odds ratio may be
further removed from the rate ratio. Consequently, it is always preferable to select
incident rather than prevalent cases when studying disease etiology.

Prevalent cases are usually drawn in studies of congenital malformations. In
such studies, cases ascertained at birth are prevalent because they have survived
with the malformation from the time of its occurrence until birth. It would be
etiologically more useful to ascertain all incident cases, including affected abort-
uses that do not survive until birth. Many of these, however, do not survive until
ascertainment is feasible, and thus it is virtually inevitable that case-control
studies of congenital malformations are based on prevalent cases. In this example,
the source population comprises all conceptuses, and miscarriage and induced
abortion represent emigration before the ascertainment date. Although an expo-
sure will not affect duration of a malformation, it may very well affect risks of
miscarriage and abortion.

Other situations in which prevalent cases are commonly used are studies
of chronic conditions with ill-defined onset times and limited effects on
mortality, such as obesity and multiple sclerosis, and studies of health services
utilization.

7. Conclusion

Epidemiologic research employs a range of study designs, including both exper-
imental and nonexperimental studies. No epidemiologic study is perfect, and this
caution applies to experimental as well as nonexperimental studies. A clear
understanding of the principles of study design is essential for valid study design,
conduct, and analysis, and for proper interpretation of results.
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Analyzing Biomarker Data

Stephen W. Looney and Joseph L. Hagan

Abstract

The analysis of biomarker data often requires the proper application of

statistical methods that are typically not covered in introductory statistics

textbooks. In this chapter, we use examples from the biomarker literature

to illustrate some of the challenges faced in handling data from biomarker

studies and describe methods for the appropriate analysis and interpretation

of these data.

1. Introduction

According to the Dictionary of Epidemiology, a biomarker is ‘‘a cellular or
molecular indicator of exposure, health effects, or susceptibility’’ (Last, 1995,
p. 17). Our primary focus here will be on markers of exposure, although the
techniques we describe can be applied to any type of biomarker.

In this chapter, we provide descriptions and illustrations of many of the
statistical methods that we have found useful in the analysis of biomarker data.
It is often the case that data collected in studies involving biomarkers require
‘‘non-standard’’ analyses because of the presence of such characteristics as non-
normality, heterogeneity, dependence, censoring, etc. In addition, sample sizes in
biomarker studies can be rather small, so that large-sample approximations to the
null distributions of test statistics are no longer valid. For these reasons, we have
emphasized using exact methods whenever possible, and have recommended
distribution-free and robust methods in many situations. In some instances, we
have illustrated improper applications of ‘‘standard’’ statistical analyses by citing
articles from the biomarker literature. It is not our intention to be overly critical
of the authors of these articles, but rather to demonstrate that many of the
published accounts of biomarker data analyses have not made proper use of the
methods included in this chapter. It is often the case that the statistical analyses
that appear in print represent the best that could be done at the time of
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publication due to unavoidable limitations on time, personnel, or resources, and
that more thorough analyses could have been performed under different circum-
stances. It is hoped, however, that those who read this chapter will be better able
to assess the quality of a biomarker and to conduct proper analyses of biomarker
data in their future research endeavors.

It should also be noted that our discussion of the statistical analysis of bio-
marker data is not intended to be comprehensive. We have attempted instead to
offer practical advice on the appropriate methods to use when analyzing bio-
marker data and we hope that our recommendations will be helpful to those who
perform statistical analyses of these data on a regular basis. To the greatest
extent possible, we have based our recommendations on the published advice of
recognized authorities in the field. Our emphasis is on statistical methods and
procedures that can be implemented using widely available statistical software,
and we have indicated how commonly used statistical packages (primarily
StatXact (Cytel Inc., Cambridge, MA) and SAS (SAS Institute Inc., Cary, NC))
can be used to carry out the recommended analyses. However, since statistics is a
dynamic field, many of the recommendations contained in this chapter may soon
prove to be obsolete because of new developments in the discipline and/or new
advances in statistical software.

2. Statistical methods for assessing biomarkers

2.1. Validation of biomarkers

The proper statistical analysis of biomarker data cannot proceed unless it has
been established that the biomarker has been validated; i.e., that it is known to be
both valid and reliable. Reliability refers to ‘‘the degree to which the results
obtained by a measurement procedure can be replicated’’ (Last, 1995). The
reliability of a measurement process is most often described in terms of intra-rater
and inter-rater reliability. Intra-rater reliability refers to the agreement between
two different determinations made by the same individual and inter-rater

reliability refers to the agreement between the determinations made by two
different individuals. A reliable biomarker must exhibit adequate levels of both
types of reliability. The reliability of a biomarker must be established before validity

can be examined; if the biomarker cannot be assumed to provide an equivalent
result upon repeated determinations on the same biological material, it will not be
useful for practical application.

The validity of a biomarker is defined to be the extent to which it measures
what it is intended to measure. For example, Qiao et al. (1997) proposed that the
expression of a tumor-associated antigen by exfoliated sputum epithelial cells
could be used as a biomarker in the detection of preclinical, localized lung cancer.
For their biomarker to be valid, there must be close agreement between the
classification of a patient (cancer/no cancer) using the biomarker and the diag-
nosis of lung cancer using the gold standard (in this case, consensus diagnosis
using ‘‘best information’’). As another example, body-fluid levels of cotinine have
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been proposed for use as biomarkers of environmental tobacco smoke exposure
(Benowitz, 1999). For cotinine level to be a valid biomarker of tobacco exposure,
it must be the case that high levels of cotinine consistently correspond to high
levels of tobacco exposure and low levels of cotinine consistently correspond to
low levels of exposure.

The appropriate statistical methods for assessing the reliability and validity of
a biomarker are discussed in detail in Looney (2001) and therefore will not be
treated fully in this chapter. However, there are two types of statistical analyses
involving biomarker comparisons that are typically part of the validation process
for a biomarker that we feel are worthy of consideration here. These analyses are
discussed in Sections 2.2 and 2.3.

2.2. Comparing biomarkers with other diagnostic tests in terms of accuracy

It is often of interest to compare the accuracies of two or more biomarkers or to
compare the accuracy of a biomarker with those of other diagnostic tests. One
may wish to determine which of several newly proposed biomarkers is the most
accurate, or to compare one or more newly proposed biomarkers to an existing
measure of exposure or disease. For example, Qiao et al. (1997) used the ‘‘paired
w2 test’’ to compare the accuracy of a new biomarker they were proposing with
two ‘‘routine clinical detection methods’’ for lung cancer (sputum cytology and
chest X-ray). When analyzing paired data of this type, the appropriate method for
comparing two biomarkers in terms of accuracy is McNemar’s test (Conover,
1999, pp. 166–170). There is no statistical method that is commonly known as the
‘‘paired w2 test.’’ Although a w2 approximation is available for McNemar’s test,
it is preferable to use the exact version of the test (Siegel and Castellan, 1988,
pp. 78–79; Suissa and Shuster, 1991). When comparing the accuracies of three or
more biomarkers (as in the Qiao et al. study), the preferred method to use is the
Cochran Q test (Lehmann, 1975, pp. 267–270).

2.2.1. McNemar test

Qiao et al. (1997) did not present sufficient data in their article for us to be able to
perform the exact version of McNemar’s test. A hypothetical 2� 2 table for the
comparison of their biomarker with chest X-ray based on the assumption that
their biomarker agreed with the result of the chest X-ray on all true cases of the
disease is given in Table 1.

To perform McNemar’s test, let nij ¼ # of subjects in the (i,j) cell of Table 1.
Let pij ¼ true probability that a subject falls into cell (i,j) in Table 1. Then the true
probabilities of accurate lung cancer diagnoses by the two methods are given by
p1+ and p+1, respectively. When p1+ ¼ p+1, we say that marginal homogeneity is
present. Since p1+–p+1 ¼ p12–p21, marginal homogeneity in a 2� 2 table is
equivalent to equality of the ‘‘off-diagonal’’ probabilities, i.e., p12 ¼ p21. Let
n� ¼ n12+n21 denote the total count in the two off-diagonal cells. Conditional on
the value of n�, the allocation of the n* observations to one of the two off-
diagonal cells is a binomial random variable (RV) with n� trials and probability
of ‘‘success’’ p. Under the null hypothesis H0: p12 ¼ p21, each of the n�

Statistical methods for assessing biomarkers and analyzing biomarker data 111



observations has probability 1/2 of being in cell (1,2) and probability 1/2 of being
in cell (2,1). So, n12 and n21 are the number of ‘‘successes’’ and ‘‘failures’’ for a
binomial RV having n* trials and probability of success 1/2. Thus, a conditional
test of H0: p12 ¼ p21 can be performed using the binomial distribution to calculate
the exact p-value. First, consider the one-sided alternative hypothesis Ha:
p1+4p+1 or, equivalently, Ha: p124p21. From Table 1, n12 ¼ 41, n21 ¼ 7, and
n� ¼ 48. The reference distribution (conditional on the value of n�) is a binomial
with n� ¼ 48 and p ¼ 0.5. The p-value for the one-sided alternative above is then
Pr (n12X41|n� ¼ 48, p ¼ 0.5) ¼ 0.0000003. For the two-sided alternative Ha:
p1+ 6¼ p+1, the two-tailed p-value would be twice the upper-tailed p-value, or
0.0000006. Thus, there is very strong evidence of a difference in diagnostic
accuracy between the new biomarker and chest X-ray.

2.2.2. Cochran Q test

Let n denote the number of biological specimens under study, and let k denote the
number of biomarkers being compared. Let yij denote the determination (usually
‘‘positive’’ or ‘‘negative’’) based on the jth biomarker for the ith specimen, where
yij ¼ 1 for ‘‘positive’’ and yij ¼ 0 for ‘‘negative,’’ and let

yi: ¼
Xk

j¼1

yij

denote the total number of positive findings for the ith specimen. Similarly, let

y:j ¼
Xn

i¼1

yij

denote the total number of specimens that are classified as positive by the jth
biomarker.

The test statistic for Cochran’s Q test is

Q ¼

kðk � 1Þ
Pk
j¼1

y:j � ðy::=kÞ
� �2

ky:: �
Pn
i¼1

y2
i:

, (1)

Table 1

Hypothetical 2� 2 table for comparison of accuracy of a new biomarker for lung cancer vs. chest

X-ray

Chest X-Ray

Biomarker Positive Negative Total

Positive 24 41 65

Negative 7 61 68

Total 31 102 133
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where y:: denotes the total number of specimens that are classified as positive by
any biomarker. The test statistic Q is asymptotically distributed as w2k�1; so an
approximate two-sided p-value is given by p ¼ PrðQ 
 QcalÞ; where Qcal is the
observed value of the test statistic given by (1) above. The exact two-sided
p-value for Cochran’s Q test can be obtained using the permutation approach,
as described by Mehta and Patel (2005, p. 227).

Qiao et al. (1997) did not present sufficient data in their article for us to
perform Cochran’s test. A hypothetical data set for the comparison of their bio-
marker with sputum cytology and chest X-ray was generated based on the
assumption that their biomarker agreed with the sputum cytology and X-ray
results on all true cases of the disease. This hypothetical data set is given in
Table 2.

The value of Cochran’s Q for the data in Table 2 is 122.43 and with df ¼ 2, the
w2 asymptotic p-value iso0.001. The exact p-value, approximated by StatXact
using simulation, is alsoo0.001. Thus, there is strong evidence to indicate that
there is a difference in the accuracies of the three classifiers.

2.3. Measuring agreement among biomarkers

2.3.1. Dichotomous biomarkers

Tockman et al. (1988) examined the use of murine monoclonal antibodies to a
glycolipid antigen of human lung cancer as a biomarker in the detection of early
lung cancer. As part of their assessment of the inter-rater reliability of scoring
stained specimens, they compared the results obtained on 123 slides read by both
a pathologist and a cytotechnologist (Table 3). The authors stated that they
used McNemar’s test to test for ‘‘significant agreement (P ¼ 1.000)’’ between the
readers. However, what they really did was to test for a significant difference in

Table 2

Data layout for hypothetical agreement among three diagnostic tests for lung cancer

Pattern of Agreementa Frequency

Cases

1 1 1 12

1 0 1 12

0 0 1 18

0 0 0 15

Controls

1 1 1 0

1 0 0 7

0 0 1 16

0 0 0 53

a The first value in each pattern indicates the result for sputum cytology, the second value indicates the

result for chest X-ray, and the third value indicates the result of the new biomarker. The pattern

1 0 1, for example, indicates that sputum cytology classified the specimen as positive, the chest

X-ray classified the specimen as negative, and the new biomarker classified the specimen as positive.

Statistical methods for assessing biomarkers and analyzing biomarker data 113



classification accuracy between the two readers. While such a test is often in-
formative, one should also measure the degree of agreement between the readers
(Kraemer, 1980). The generally accepted method for assessing agreement
between two dichotomous biomarkers, neither of which can be assumed to be
the gold standard, is Cohen’s kappa, although alternative measures are also
available (see Section 2.3.1.1). When measuring agreement among three or more
dichotomous biomarkers, we recommend the method of Fleiss (1971), which is
described in Section 2.3.1.2.

2.3.1.1. Cohen’s kappa and alternatives (two dichotomous biomarkers). Consider
the general 2� 2 table showing agreement between two dichotomous variables
A and B given in Table 4. The two most commonly used measures of agreement
between two dichotomous variables are the Index of Crude Agreement, given by

p0 ¼
n11 þ n22

n
, (2)

and Cohen’s kappa, given by

k̂ ¼
p0 � p̂e

1� p̂e

,

Table 3

2� 2 Table showing agreement between a pathologist and a cytotechnologist when scoring the same

stained specimen

Pathologist’s Reading Cytotechnologist’s Reading

Positive Negative

Positive 31 1

Negative 0 91

Source: Reprinted from Table 4 of Tockman et al. (1988) with permission from the American Society

of Clinical Oncology.

Table 4

2� 2 Table showing agreement between two dichotomous variables

Variable A Variable B

Positive Negative Total

Positive n11 n12 n1.
Negative n21 n22 n2.
Total n.1 n.2 n

S. W. Looney and J. L. Hagan114



where pe is the percentage agreement between the two variables that ‘‘can be
attributed to chance’’ (Cohen, 1960). This degree of agreement is estimated by

p̂e ¼ p1:p:1 þ p2:p:2,

where p1: ¼ n1:=n; p:1 ¼ n:1=n; p2: ¼ 1� p1:; and p:2 ¼ 1� p:1: The formula for
Cohen’s kappa now becomes

k̂ ¼
2ðn11n22 � n12n21Þ

n2ðp1:p:2 þ p:1p2:Þ
. (3)

The approximate variance of k̂ is given by

dVarðk̂Þ ¼ 1

nð1� p̂eÞ
2
�

X2
i¼1

pii 1� ðpi: þ p:iÞð1� k̂Þ
� �2 

þ ð1� k̂Þ2
X
iaj

pijðpi: þ p:jÞ
2
� k̂� p̂eð1� k̂Þ
� �2!

, ð4Þ

where n is the number of subjects being rated by the two raters, and pij ¼

nij=n; i ¼ 1; 2; j ¼ 1; 2:
Approximate 100(1�a)% confidence limits for k are given by k̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðk̂Þq
:

For the data given in Table 3, we obtain k̂ ¼ 0.98 using Eq. (3) and dVarðk̂Þ ¼
0:0004494 using (4).

This yields an approximate 95% confidence interval (CI) for k of (0.94, 1.00).
These results indicate excellent inter-rater reliability for the biomarker proposed
by Tockman et al. (1988).

Cohen’s kappa is the generally accepted method for assessing agreement be-
tween two dichotomous variables, neither of which can be assumed to be the gold
standard (Bartko, 1991), but several deficiencies have been noted (Feinstein and
Cicchetti, 1990, p. 545; Byrt et al., 1993, p. 425). These deficiencies include: (i) If
either method classifies no subjects into one of the two categories, k̂ ¼ 0: (ii) If
there are no agreements for one of the two categories, k̂o 0: (iii) The value of k̂ is
affected by the difference in the relative frequency of ‘‘disease’’ and ‘‘no disease’’
in the sample. The higher the discrepancy, the larger the value of p̂e and the
smaller the value of k̂: (iv) The value of k̂ is affected by any discrepancy between
the relative frequency of ‘‘disease’’ for Method A and the relative frequency of
‘‘disease’’ for Method B. The greater the discrepancy, the smaller the expected
agreement, and the larger the value of k̂:

To adjust for these deficiencies, Byrt et al. (1993) propose that, in addition to k̂;
one also reports the prevalence-adjusted and bias-adjusted kappa (PABAK),

PABAK ¼
ðn11 þ n22Þ � ðn12 þ n21Þ

n
¼ 2p0 � 1,

where p0 is the index of crude agreement given in Eq. (2). (Note that PABAK is
equivalent to the proportion of ‘‘agreements’’ between the variables minus the
proportion of ‘‘disagreements.’’) The approximate variance of PABAK is given
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by dVarðPABAKÞ ¼ 4p0ð1� p0Þ=n and approximate 100(1�a)% confidence limits
for the true value of PABAK are given by

PABAK� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðPABAKÞ

q
.

As an illustration of some of the deficiencies of k̂; consider the hypothetical
data on the agreement between two dichotomous biomarkers given in Table 5.
Even though the two biomarkers agree on 80% of the specimens, the value of k̂ is
–0.08, indicating poor agreement (Landis and Koch, 1977, p. 165). Two of the
previously mentioned deficiencies are at work here. First, since the two bio-
markers did not agree on any of the subjects who were classified as ‘‘negative,’’
k̂o0: Second, the value of k̂ is adversely affected by the difference in the relative
frequencies of ‘‘disease’’ (90%) and ‘‘no disease’’ (10%) in the sample. The
PABAK coefficient, which adjusts for both of these shortcomings, has the value
2p0–1 ¼ 2(0.80)–1 ¼ 0.60, with an approximate 95% CI for the true value of
PABAK of (0.44, 0.76). We contend that the PABAK coefficient is a much more
accurate measure than k̂ of the agreement between the two biomarkers suggested
by Table 5.

In addition to using k̂ and the PABAK coefficient to measure overall agree-
ment, it is also advisable to describe the agreement separately in terms of those
specimens that appear to be positive and those that appear to be negative. Using
measures of positive agreement and negative agreement in assessing reliability is
analogous to using sensitivity and specificity in assessing validity in the presence
of a gold standard. Such measures can be used to help diagnose the type(s) of
disagreement that may be present.

Cicchetti and Feinstein (1990) proposed indices of average positive agreement

(ppos) and average negative agreement (pneg) for this purpose:

ppos ¼
n11

ðn1: þ n:1Þ=2

and

pneg ¼
n22

ðn2: þ n:2Þ=2

Note that the denominators of ppos and pneg are the average number of subjects
which the two methods classify as positive and negative, respectively.

Table 5

Hypothetical 2� 2 table showing agreement between two dichotomous biomarkers

Biomarker B

Biomarker A Positive Negative Total

Positive 80 15 95

Negative 5 0 5

Total 85 15 100
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Following Graham and Bull (1998), let

f11 ¼ 2=ð2p11 þ p12 þ p21Þ � 4p11=ð2p11 þ p12 þ p21Þ
2,

f12 ¼ f21 ¼ �2p11=ð2p11 þ p12 þ p21Þ
2,

and

f22 ¼ 0.

Then the variance of ppos can be estimated using

dVarðpposÞ ¼
1

n

X2
i¼1

X2
j¼1

f2
ijpij �

X2
i¼1

X2
j¼1

fijpij

 !2
0@ 1A.

Similarly, let

g11 ¼ 0,

g12 ¼ g21 ¼ �2p22=ð2p22 þ p12 þ p21Þ
2,

and

g22 ¼ 2=ð2p22 þ p12 þ p21Þ � 4p22=ð2p22 þ p12 þ p21Þ
2.

Then the variance of pneg can be estimated using

dVarðpnegÞ ¼
1

n

X2
i¼1

X2
j¼1

g2ijpij �
X2
i¼1

X2
j¼1

gijpij

 !2
0@ 1A. (5)

Approximate 100(1�a)% confidence intervals (CIs) for the true values of ppos

and pneg are given by ppos � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpposÞ

q
and pneg � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpnegÞ

q
; respec-

tively. Simulation results due to Graham and Bull (1998) suggest that these
approximate CIs provide adequate coverage for n4200. For smaller n, they rec-
ommend that a bootstrap or Bayesian procedure be used to construct the CI.
However, they do not provide software for implementing either of these
approaches, both of which require rather extensive computer programming.

For the data in Table 5, ppos ¼ 80= ð95þ 85Þ=2
	 


¼ 88:9% and pneg ¼

0= ð5þ 15Þ=2
	 


¼ 0:0%: Thus, there is moderate overall agreement between the
two observers (as measured by the PABAK coefficient of 0.60), ‘‘almost perfect
agreement’’ on specimens that appear to be positive, and no agreement on spec-
imens that appear to be negative. Hence, efforts to improve the biomarker deter-
mination process should be targeted toward those specimens that are negative.

Using the formulas given above, we obtain an approximate 95% CI for the true

value of ppos of ppos � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpposÞ

q
¼ ð84:0%; 94:7%Þ: Of course, this interval

may be inaccurate since no200 (Graham and Bull, 1998). In terms of a CI for the
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true value of pneg, note that if p22 ¼ 0 as in Table 5, dVarðpnegÞ ¼ 0 using Eq. (5).
Therefore, the asymptotic approach does not yield a meaningful CI for the true
value of pneg in this case.

2.3.1.2. More than two dichotomous biomarkers. The method of Fleiss (1971) can
be used to calculate an overall measure of agreement among kX2 dichotomous
biomarkers. As described in Section 2.2.2, Cochran’s Q test could also be used to
test for significant disagreement among the biomarkers (what Shoukri (2004,
pp. 49–51) refers to as ‘‘inter-rater bias’’). Let n denote the number of biological
specimens under study, and let k denote the number of biomarkers being com-
pared. Let yij denote the determination (usually ‘‘positive’’ or ‘‘negative’’) based
on the jth biomarker for the ith specimen, where yij ¼ 1 for ‘‘positive’’ and yij ¼ 0
for ‘‘negative,’’ and let

yi ¼
Xk

j¼1

yij

denote the number of positive ratings on the ith specimen. Fleiss (1971) gener-
alized Cohen’s kappa to a new measure, k̂f as follows:

k̂f ¼
p0 � p̂e

1� p̂e

,

where

p0 ¼ 1�
2

n

Xn

i¼1

yiðk � yiÞ

kðk � 1Þ
,

p̂e ¼ 1� 2p̂ð1� p̂Þ,

and

p̂ ¼

Pn
i¼1

yi

nk
.

For the hypothetical data in Table 2, p̂ ¼ 0:2531; p̂e ¼ 0:6219; p0 ¼ 0.7343, and
k̂f ¼ 0:30; indicating ‘‘fair’’ agreement of the new biomarker with sputum
cytology and chest X-ray. Of course, Cohen’s kappa (or the PABAK coefficient)
could also be used to describe the agreement between the new biomarker and
either sputum cytology or chest X-ray.

2.3.2. Continuous biomarkers

Bartczak et al. (1994) compared a high-pressure liquid chromatography (HPLC)-
based assay and a gas chromatography (GC)-based assay for urinary muconic
acid, both of which have been used as biomarkers to assess exposure to benzene.
Their data, after omitting an outlier due to an unresolved chromatogram peak,
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are given in Table 6. They used Pearson’s correlation coefficient r in their
assessment of the agreement between the two methods (p. 255). However, at
least as far back as 1973, it was recognized that r is not appropriate for assessing
agreement in what are typically called ‘‘method comparison studies,’’ i.e., studies
in which neither method of measurement can be considered to be the gold
standard (Westgard and Hunt, 1973). In fact, Westgard and Hunt go so far as to
state that ‘‘the correlation coefficienty is of no practical use in the statistical
analysis of comparison data’’ (1973, p. 53).

Despite the general agreement among statisticians that r is not an acceptable
measure of agreement in method comparison studies, its use in this context is still
quite prevalent. Hagan and Looney (2004) found that r was used in 28% (53/189)
of the method comparison studies published in the clinical research literature in
2001. The prevalence of the use of r in method comparison studies involving
biomarkers was not examined separately in their study, but it is unlikely that it
differed substantially from that found in the clinical research literature as a whole.

Acceptable alternatives to Pearson’s r that are recommended for assessing
agreement between continuous biomarkers include the coefficient of concordance
(Lin, 1989, 2000), the Bland–Altman method (Altman and Bland, 1983; Bland
and Altman, 1986), and Deming regression (Strike, 1996). Each of these is dis-
cussed in the sections that follow. It is interesting to note, however, that these
methods are rarely used even today in method comparison studies published in
the clinical research literature: Hagan and Looney (2004) found that Deming
regression was used in none of the 189 method comparison studies published in
2001 and Lin’s coefficient was used in only one. The Bland–Altman method was
used in only 25 of the published studies (13.2%). The most commonly used

Table 6

Data on comparison of determinations of muconic acid (ng/ml) in human urine by HPLC–diode array

and GC–MS analysis

Specimen Number HPLC (X1) GC–MS (X2) X1–X2 (X1+X2)/2

1 139 151 �12.00 145.00

2 120 93 27.00 106.50

3 143 145 �2.00 144.00

4 496 443 53.00 469.50

5 149 153 �4.00 151.00

6 52 58 �6.00 55.00

7 184 239 �55.00 211.50

8 190 256 �66.00 223.00

9 32 69 �37.00 50.50

10 312 321 �9.00 316.50

11 19 8 11.00 13.50

12 321 364 �43.00 342.50

Source: Copyright (1994) from ‘‘Evaluation of Assays for the Identification and Quantitation of

Muconic Acid, a Benzene Metabolite in Human Urine,’’ Journal of Toxicology and Environmental

Health, by A. Bartczak et al. Reproduced by permission of Taylor & Francis Group, LLC., http://

www.taylorandfrancis.com.
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method was the intra-class correlation coefficient (ICC), appearing in 118
(62.4%) of the published studies. However, the use of the ICC in method com-
parison studies has been criticized by several authors (e.g., Bartko, 1994; Bland
and Altman, 1990; Lin, 1989; Looney, 2001) and its general use for this purpose is
not recommended.

2.3.2.1. Lin’s coefficient of concordance. An alternative to r that is often useful in
evaluating agreement between continuous biomarkers is the coefficient of

concordance proposed by Lin (1989, 2000). In general, to calculate the agree-
ment between two continuous measurements X1 and X2, one calculates the sample
version of Lin’s coefficient, denoted by rc:

rc ¼
2s12

s21 þ s22 þ ðx̄1 � x̄2Þ
2
, (6)

where s12 is the sample covariance of X1 and X2, x̄1 the sample mean of X1, x̄2 the
sample mean of X2, s21 the sample variance of X1, and s22 the sample variance of X2.

It can be shown that rc ¼ 1 if there is perfect agreement between the sample values
of X1 and X2, rc ¼ �1 if there is perfect disagreement, and �1orco1 otherwise.

The approximate standard error (SE) of Lin’s coefficient is given by

bseðrcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 2

1� r2

r2
r2cð1� r2cÞ

� �
þ 2r3cð1� rcÞ

ðx̄1 � x̄2Þ
2

s1s2r

� �
� r4c
ðx̄1 � x̄2Þ

4

2s21s22r2

� �s
,

(7)

where r is the Pearson correlation coefficient for X 1 and X 2 and n the number of
samples for which paired observations for X 1 and X 2 are obtained.

When nX30, an approximate 100(1�a)% CI for the population value of Lin’s
coefficient, denoted by rc, can be obtained using rc � za=2 bseðrcÞ: When no30,
an approximate CI based on a bootstrap approach is recommended. SAS code
for calculating the bootstrap CI and the interval based on bseðrcÞ can be found
at http://www.ucsf.edu/cando/resources/software/linscon.sas. See Cheng and
Gansky (2006) for more details.

For the data given in Table 6, n ¼ 12, x̄1 ¼ 179:75; x̄2 ¼ 191:67; s1 ¼ 137:87;
s2 ¼ 134:06; s12 ¼ 17; 906:5455; and r ¼ 0.969. Therefore, from Eqs (6) and (7),

rc ¼
2s12

s21 þ s22 þ ðx̄1 � x̄2Þ
2
¼

2ð17; 906:5455Þ

ð137:87Þ2 þ ð134:06Þ2 þ ð179:75� 191:67Þ2

¼ 0:965

and bseðrcÞ ¼ 0:022: An approximate 95% CI for rc based on 1,000 bootstrap sam-
ples is given by (0.879, 0.985).

2.3.2.2. The Bland–Altman method. An alternative method for measuring agree-
ment between two biomarkers X1 and X2 in which both biomarker determinations
are in the same units is to apply the methodology proposed by Altman and Bland
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(Altman and Bland, 1983; Bland and Altman, 1986). The steps involved in this
approach are as follows:

(1) Construct a scatterplot and superimpose the line X2 ¼ X1.
(2) Plot the difference between X1 and X2 (denoted by d) vs. the mean of X1 and

X2 for each subject.
(3) Perform a visual check to make sure that the within-subject repeatability is

not associated with the size of the measurement, i.e., that the bias (as meas-
ured by (X1–X2)) does not increase (or decrease) systematically as (X1+X2)/2
increases.

(4) Perform a formal test to confirm the visual check in Step (3) by testing the
hypothesis H0: r ¼ 0, where r is the true correlation between (X1–X2 ) and
(X1+X2)/2.

(5) If there is no association between the size of the measurement and the bias,
then proceed to Step (6) below. If there does appear to be significant asso-
ciation, then an attempt should be made to find a transformation of X1, X2, or
both, so that the transformed data do not exhibit any association. This can be
accomplished by repeating Steps (2)–(4) for the transformed data. The log-
arithmic transformation has been found to be most useful for this purpose.
[If no transformation can be found, Altman and Bland (1983) recommend
describing the differences between the methods by regressing (X1–X2) on
(X1+X2)/2.]

(6) Calculate the ‘‘limits of agreement’’: d̄ � 2sd to d̄ þ 2sd ; where d̄ is the mean
difference between X1 and X2 and sd the standard deviation of the differences.

(7) Approximately 95% of the differences should fall within the limits in Step (6)
(assuming a normal distribution). If the differences within these limits are
not clinically relevant, then the two methods can be used interchangeably.
However, it is important to note that this method is applicable only if both
measurements are made in the same units.

Figure 1 shows the scatterplot of X2 vs. X1 with the line X2 ¼ X1 superimposed
for the data in Table 6. This plot indicates fairly good agreement except that 9 of
the 12 data points are below the line of agreement.

Figure 2 shows the plot of the difference (HPLC�GC) vs. the mean of HPLC
and GC for each subject. A visual inspection of Fig. 2 suggests that the within-
subject repeatability is not associated with the size of the measurement, i.e., that
(HPLC�GC) does not increase (or decrease) systematically as (HPLC+GC)/2
increases. The sample correlation between (HPLC�GC) and (HPLC+GC)/2 is
r ¼ 0.113 and the p-value for the test of H0: r ¼ 0 is 0.728. Therefore, the
assumption of the independence between the difference and the average is not
contradicted by the data. The ‘‘limits of agreement’’ are d̄ � 2sd ¼ �11:9�
2ð34:2Þ ¼ �80:3 to d̄ þ 2sd ¼ �11:9þ 2ð34:2Þ ¼ 56:5 and these are represented
(along with d̄) by dotted lines in Fig. 2. (Note that all of the differences fall
within the limits d̄ � 2sd to d̄ þ 2sd :) If differences as large as 80.3 are not
clinically relevant, then the two methods can be used interchangeably. Given
the order of magnitude of the measurements in Table 6, it appears that a
difference of 80 would be clinically important, so there is an indication of
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inadequate agreement between the two methods. This was not obvious from the
plot in Fig. 1.

2.3.2.3. Deming regression. Strike (1996) describes an approach for determining
the type of disagreement that may be present when comparing two biomarkers.
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Fig. 1. Scatterplot of data on agreement between (HPLC)-based and (GC)-based assays for urinary

muconic acid with the line of perfect agreement (X2 ¼ X1) superimposed.
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Fig. 2. Plot of difference vs. mean for data on agreement between (HPLC)-based and (GC)-based

assays for urinary muconic acid.
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These methods are most likely to be applicable when one of the methods
(Method X) is a reference method, perhaps a biomarker that is already in routine
use, and the other method (Method Y) is a test method, usually a new biomarker
that is being evaluated. Any systematic difference (or bias) between the two
biomarkers is relative in nature, since neither method can be thought of as
representing the true exposure.

As in the Bland–Altman method described in Section 2.3.2.2, the first step is to
construct a scatterplot of Y vs. X and superimpose the line Y ¼ X. Any systematic
discrepancy between the two biomarkers will be represented on this plot by a
general shift in the location of the points away from the line Y ¼ X. Strike
assumes that systematic differences between the two biomarkers can be attributed
to either constant bias, proportional bias, or both, and assumes the following
models for each biomarker result:

X i ¼ xi þ di; 1 � i � n, (8)

Y i ¼ Zi þ �i; 1 � i � n,

where Xi is the observed value for biomarker X, xi the true value of biomarker X,
di the random error for biomarker X, Yi the observed value for biomarker Y, Zi

the true value of biomarker Y, and ei the random error for biomarker Y.
Strike further assumes that the errors di and ei are stochastically independent of

each other and normally distributed with constant variance (s2d and s2� ; respec-
tively) throughout the range of biomarker determinations in the study sample.
[Strike points out that constant variance assumptions are usually unrealistic in
practice and recommends a computationally intensive method for accounting for
this lack of homogeneity. This method is incorporated into the MINISNAP
software provided with Strike (1996).]

Strike assumes that any systematic discrepancy between Methods X and Y can
be represented by

Zi ¼ b0 þ b1xi. (9)

In this model, constant bias is represented by deviations of b0 from 0 and
proportional bias by deviations of b1 from 1. [This is the same terminology used by
Westgard and Hunt (1973).] If we now incorporate Eq. (9) into the equation for
Yi in Eq. (8), we have

Y i ¼ b0 þ b1X i þ ð�i � b1diÞ. (10)

Model (2.10) is sometimes called a functional errors-in-variables model and
assessing agreement between biomarkers X and Y requires the estimation of the
parameters b0 and b1. Strike proposes a method that requires an estimate of the
ratio of the error variances given by l ¼ s2� =s

2
d: This method is generally referred to

in the clinical laboratory literature as ‘‘Deming regression’’; however, this is some-
what of a misnomer as Deming was concerned with generalizing the errors-
in-variables model to non-linear relationships. Strike points out that the method he
advocates for obtaining estimates of b0 and b1 is actually due to Kummel (1879).
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The equations for estimating b0 and b1 are as follows:

b̂1 ¼
ðSyy � l̂SxxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSyy � l̂SxxÞ

2
þ 4l̂S2

xy

q
2Sxy

, (11)

b̂0 ¼ Ȳ � b̂1X̄ ,

where

l̂ ¼
ŝ2�
ŝ2d

,

Syy ¼
Xn

i¼1

ðyi � ȳÞ2; Sxx ¼
Xn

i¼1

ðxi � x̄Þ2; Sxy ¼
Xn

i¼1

ðxi � x̄Þðyi � ȳÞ:

The estimate l̂ can be obtained either from error variance estimates for each
biomarker provided by the laboratory or by estimating each error variance using

ŝ2 ¼

Pn
i¼1

d2
i

2n

where di is the difference between the two determinations of the biomarker (rep-
licates) for specimen i. (Note that the methodology proposed by Strike cannot be
applied without an estimate of the ratio of error variances of the two biomarkers.)

To perform significance tests for b0 and b1; we need formulas for the standard
errors (SEs) of b̂0 and b̂1: The approximations that Strike recommends for routine
use are given by

SEðb̂1Þ ¼
b̂
2

1 1� r2
	 


=r2
	 


n� 2

( )1=2

(12)

and

SEðb̂0Þ ¼
½SEðb̂1Þ�

2Pn
i¼i

x2
i

n

8>><>>:
9>>=>>;

1=2

,

where

r2 ¼
Sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p !2

is the usual ‘‘R2’’ value for the regression of Y on X. Tests of H0 : b1 ¼ 1 and
H0 : b0 ¼ 0 can be performed by referring ðb̂1 � 1Þ=SEðb̂1Þ and b̂0=SEðb̂0Þ;
respectively, to the t(n � 2) distribution.

S. W. Looney and J. L. Hagan124



As mentioned earlier, the approach described above is based on the assumption
that the error variances s2d and s2� are constant throughout the range of biomarker
determinations in the study sample. However, as Strike points out, this assump-
tion is usually unrealistic in practice and recommends the ‘‘weighted Deming
regression’’ methods of Linnet (1990, 1993) for accounting for this lack of
homogeneity. These methods are incorporated into the MINISNAP software
provided with Strike (1996); however, replicate measurements are required for
each test specimen using both biomarkers in order to apply these methods.

As an example, consider the hypothetical data in Table 7. The scatterplot for
these data in Fig. 3 indicates substantial lack of agreement between X and Y and

Table 7

Hypothetical data on the agreement between biomarkers A and B

Specimen Number Biomarker A Biomarker B

1 31 206

2 4 28

3 17 112

4 14 98

5 16 104

6 7 47

7 11 73

8 4 43

9 14 93

10 7 57

11 10 87
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Fig. 3. Scatterplot of hypothetical data on agreement between biomarkers A and B with the line of

perfect agreement (Y ¼ X) superimposed.
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this is borne out by Lin’s coefficient, which indicates substantial disagreement
(rc ¼ 0.102). (Note that r ¼ 0.989, indicating near-perfect linear association. This
illustrates one of the major deficiencies in using r as a measure of agreement.)
We apply Strike’s method to gain a better understanding of the lack of agreement
between X and Y.

Applying Eqs (11) and (12), we obtain b̂1 ¼ 0:158; SEðb̂1Þ ¼ 0:007; b̂0 ¼
�1:342; and SEðb̂0Þ ¼ 0:614: For the test of H0 : b1 ¼ 1; this yields

tcal ¼
b̂1 � 1

SEðb̂1Þ
¼

0:158� 1

0:007
¼ �129:54,

and using a t-distribution with n � 2 ¼ 9 degrees of freedom, we find po 0.0001.
Therefore, there is significant proportional bias (which in this case is negative
since b̂1 o 1:0). For the test of H0 : b0 ¼ 0; we have

tcal ¼
b̂0

SEðb̂0Þ
¼
�1:342

0:614
¼ �2:19,

and, again using a t-distribution with 9 degrees of freedom, we have p ¼ 0.056.
Thus, the constant bias is not statistically significant, but just misses the usual
cutoff of 0.05.

3. Statistical methods for analyzing biomarker data

3.1. Testing distributional assumptions

It is well known that violating the distributional assumption(s) underlying a
statistical procedure can have serious adverse effects on the performance of the
procedure (Wilcox, 1987). Therefore, it is beneficial to attempt to verify such
assumptions prior to beginning data analysis. However, in many analyses of
biomarker data, the underlying distributional assumptions are typically ignored
and/or no attempt is made to check the distributional assumptions before pro-
ceeding with the analyses. Some authors may state something to the effect that
‘‘due to the skewed nature of the data, nonparametric statistical methods were
used,’’ but usually no formal test of the distributional assumption was ever per-
formed. For example, in their evaluation of hemoglobin adducts as biomarkers
of exposure to tobacco smoke, Atawodi et al. (1998) state that ‘‘because the
distribution of HPB-Hb adduct levels was not normal, we used the nonparametric
Kruskal–Wallis testy’’ (p. 819); however, they offer no justification for why they
concluded that the adduct levels were not normally distributed.

3.1.1. Graphical methods for assessing normality

Several graphical methods for verifying the assumption of normality have been
proposed (D’Agostino, 1986). One commonly used method is the probability plot

(Gerson, 1975), of which the quantile–quantile (Q–Q) plot is a special case.
Another graphical method that is not as widely used as the probability plot is the
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normal density plot (Jones and Daly, 1995; Hazelton, 2003), which is easier to
interpret than a probability plot because it is based on a direct comparison of a
certain plot of the sample data vs. the familiar bell-shaped curve of the normal
distribution.

While graphical examination of data can be extremely valuable in assessing a
distributional assumption, the interpretation of any plot or graph is inherently
subjective. Therefore, it is not sufficient to base the assessment of a distributional
assumption entirely on a graphical device. Bernstein et al. (1999) evaluated
the use of a bile acid-induced apoptosis assay as a measure of colon cancer risk.
They determined that their apoptotic index (AI) ‘‘had a Gaussian distribution,
as assessed by a box plot, quantile–quantile plot, and histogram’’ (p. 2354).
However, each of these methods is a graphical technique, and different data
analysts could interpret the plots differently. One should always supplement the
graphical examination of a distributional assumption with a formal statistical
test, which may itself be based on the results of the graphical device that was used.
For example, correlation coefficient tests based on probability plots have been
shown to have good power for detecting departures from normality against a
wide variety of non-normal distributions (Looney and Gulledge, 1985). Formal
tests of the distributional assumption can also be based on a normal density plot
(Jones and Daly, 1995; Hazelton, 2003).

3.1.2. The Shapiro–Wilk (S–W) test

Another formal test of the assumption of normality that we recommend for
general use is the Shapiro–Wilk (S–W) test (Shapiro and Wilk, 1965). Several
studies have demonstrated that the S–W test has good statistical power against a
wide variety of non-normal distributions (e.g., Shapiro et al., 1968). Even though
the S–W test is not based directly on a graphical method for assessing normality,
it is a valuable adjunct to such methods. The S–W test has been used in several
studies involving biomarker data (e.g., Buckley et al., 1995; Lagorio et al., 1998;
MacRae et al., 2003), although at least one author incorrectly treated the S–W
test as upper-tailed, rather than lower-tailed (Buckley et al., 1995).

To perform the S–W test for normality, assume that the sample is composed of
n independent and identically distributed observations ðx1; x2; . . . ; xnÞ from a
normal distribution with unspecified mean and variance. If x½1�;x½2�; . . . ; x½n�
represents the n observations arranged in ascending sequence, the test statistic is

W ¼

Pn
i¼1

aix½i�

� �2
Pn
i¼1

ðxi � xÞ2
,

where the ai’s represent constants that are functions of n (see Royston, 1982).
The null hypothesis of normality is rejected for small values of W. Although not
normally distributed under the null hypothesis (even asymptotically), W can be
transformed to approximate normality when 7pnp2,000 (Royston, 1982, 1992).
For 3pnp6, the methods described by Wilk and Shapiro (1968) should be used
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to find the lower-tailed p-value. It is especially important to account for the
presence of ties when applying the S–W test (Royston, 1989). The S–W test can be
performed using StatXact or the UNIVARIATE procedure within SAS.

3.1.3. Remedial measures for violation of a distributional assumption

If it has been determined that a violation of the distributional assumption un-
derlying a statistical procedure has occurred, and that this departure is important
enough to adversely affect the results of the proposed statistical analyses, at least
three approaches have been recommended: (a) attempt to find a transformation
of the data that will result in a new random variable that does appear to follow
the assumed underlying distribution (usually the normal), (b) attempt to find a
statistical procedure that is more robust to the distributional assumption, or (c)
use a distribution-free test that is not dependent on the assumption of an
underlying statistical distribution. Robust methods are beyond the scope of
this chapter and will not be treated here; for a general treatment of these
techniques, see Huber (1996). Distribution-free (also called non-parametric)
alternatives to normal-theory-based methods for measuring association and
for comparing groups are described in Sections 3.2.3.2 and 3.3, respectively.
Methods for identifying an appropriate transformation for biomarker data that
appear to violate a distributional assumption are discussed in the following
section.

3.1.4. Choosing a transformation

A transformation based on the logarithm (usually the ‘‘natural’’ logarithm, loge)
is commonly used in the analysis of biomarker data (e.g., Atawodi et al., 1998;
MacRae et al., 2003; Strachan et al., 1990). However, authors usually provide no
justification for such a transformation other than that it is commonly used in
analyzing the type of data collected in the study. At the very least, the log-
transformed data should be tested for normality as described in Sections 3.1.1 and
3.1.2 above. If one concludes that the log-transformed data are not normally
distributed, then there are many other possible transformations that one could
try. Several families of possible transformations have been proposed, including
the Box–Cox family (Box and Cox, 1964), the Tukey ‘‘ladder of powers’’ (Tukey,
1977, pp. 88–93), the Johnson Su family (Johnson, 1949), and the Pearson family
(Stuart and Ord, 1987, pp. 210–220). The Box–Cox approach is particularly
attractive, in that there is a formal statistical test for determining if the chosen
transformation is ‘‘statistically significant’’; however, selecting the appropriate
transformation can be computationally difficult (Atkinson, 1973). (A SAS
module for selecting the appropriate Box–Cox transformation parameter is
available from the first author.) The Tukey ‘‘ladder of powers’’ is also attractive
in that it requires that one consider only a small number of possible transfor-
mations. Whatever method is used to select a transformation, the transformed
data should be tested for normality before proceeding to the next stage of the
analysis, as was done in MacRae et al. (2003).
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3.2. Analyzing cross-classified categorical data

3.2.1. Comparing two independent groups in terms of a binomial proportion

It is often of interest in the analysis of biomarker data to compare two inde-
pendent groups in terms of a binomial proportion. (The comparison of dependent
proportions is treated in Section 2.2.1 of this chapter.) For example, Pérez-Stable
et al. (1995) compared smokers and non-smokers in terms of the proportion
diagnosed with depression using the Depression Interview Schedule (DIS)
(Table 8). As is commonly done with data of this type, they performed the
comparison using the w2 test. However, this test is known to have very poor
statistical properties, especially if the number of subjects in either group is small
(Mehrotra et al., 2003), and is not recommended for general use. A preferred
method is the ‘‘exact’’ version of Fisher’s exact test, as implemented in StatXact
or SAS. This test is described below.

Suppose that we wish to perform an exact test of the null hypothesis
H0: p1 ¼ p2. Following the argument in Mehta and Patel (2005), denote the
common probability of success for the two populations by p ¼ p1 ¼ p2. Under
the null hypothesis, the probability of observing the data in Table 8 is

f 0ðx11;x12; x21;x22Þ ¼
n1

x11

 !
n2

x21

 !
px11þx21ð1� pÞx12þx22 , (13)

where xij denotes the count in cell (i,j) of the 2� 2 table, and n1 and n2 denote the
sample sizes in the two groups being compared. In order to calculate the exact
p-value for any test of H0, we will need to calculate the probability of obtaining
a 2� 2 table at least as extreme as the observed table given in Table 8. The
probability of any such table will involve the parameter p, as in Eq. (13). The
‘‘conditional’’ approach to exact inference for 2� 2 tables involves eliminating p
from the probability calculations by conditioning on its sufficient statistic
(Cox and Hinkley, 1974, Chapter 2). This is the approach implemented in many
of the exact statistical procedures in StatXact, and one that is recommended here.
After conditioning on the sufficient statistic for p, we find that the exact distri-
bution of x11 (the test statistic for Fisher’s exact test) is hypergeometric.

For the upper-tailed alternative Ha: p14p2, any 2� 2 table with the same
marginal row and column totals as the observed table that has a count in the (1,1)

Table 8

Association between dichotomized cotinine level and diagnosis of depression using the Diagnostic

Interview Survey (DIS), female subjects only

DIS Diagnosis

Cotinine X15 Positive Negative Total

Yes 27 202 229

No 7 121 128

Total 34 323 357

Source: Adapted from Table 4 of Pérez-Stable et al. (1995) with permission from Elsevier.
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cell that is greater than or equal to x11 in the observed table will be favorable
to Ha. The hypergeometric probability for each of these tables should then be
accumulated when calculating the upper-tailed p-value. The reference set under
the conditional approach is defined to be any 2� 2 table with the same marginal
row and column totals as the observed table.

In Table 8, the test statistic for Fisher’s exact test is x11 ¼ 27. Then, the exact
upper-tailed p-value for the test of H0 would be found by accumulating the
hypergeometric probabilities for all possible values in the (1,1) position that are
greater than 27, assuming that the row and column totals remain at the same
values as in Table 8. This yields an exact upper-tailed p-value of 0.0355, and a
two-tailed p-value of 0.0710.

Fisher’s exact test as formulated here is known to be conservative (Agresti,
1996, pp. 41–44). That is, the hypergeometric distribution used to calculate the
exact p-values is highly discrete, especially when n1 or n2 is small. This means that
there will be only a small number of possible values that x11 can assume, leading
to a small number of possible p-values, and hence a small number of possible
significance levels, none of which may be close to 0.05. By convention, we choose
the upper-tailed significance level that is closest to, but less than or equal to 0.025.
For example, for the data in Table 8, examination of the exact conditional null
distribution of x11 based on the hypergeometric distribution indicates that the
upper-tailed significance level closest to, but less than, 0.025 is 0.013 (obtained
using a critical value of x11 ¼ 28).

To help diminish the effect of the conservativeness of Fisher’s exact test, we
follow the recommendation of Agresti (2002, p. 94) that one use the mid-p-value,
which is equal to the appropriate exact p-value, minus half the exact point prob-
ability of the observed value of the test statistic. For the data in Table 8, this
yields a one-tailed mid-p-value of 0:0355� ð1=2Þð0:0222Þ ¼ 0:0244: The two-tailed
mid-p-value is 2(0.0244) ¼ 0.0488.

3.2.2. Testing for trend in proportions

Tunstall-Pedoe et al. (1995) examined the association between passive smoking,
as measured by level of serum cotinine, and the presence or absence of several
adverse health outcomes (chronic cough, coronary heart disease, etc.). Serum
cotinine level was classified into four ordinal categories: ‘‘non-detectable,’’ and
0.01–1.05, 1.06–3.97, or 3.98–17.49 ng/ml. The authors calculated odds ratios for
the comparison of each serum cotinine category vs. ‘‘non-detectable’’ in terms
of the odds of each health outcome. However, an additional analysis that we
recommend for data of this type is to perform a test for trend across the serum
cotinine categories in terms of the prevalence of the outcomes. Such an analysis
would be especially helpful in establishing dose–response relationships between
passive smoking and the adverse outcomes. Tunstall-Pedoe et al. (1995) speak in
terms of a ‘‘gradient’’ across exposure categories, but perform no statistical test to
determine if their data support the existence of such a gradient.

Recommended procedures for testing for trend include the permutation test
(Gibbons and Chakraborti, 2003, Chapter 8) and the Cochran–Armitage test
(Cochran, 1954; Armitage, 1955).
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To perform the Cochran–Armitage (C–A) test, let k denote the number of
ordinal categories for the biomarker, and suppose that a score xi has been
assigned to the ith category (i ¼ 1, 2,y, k). Within the ith category, assume that
ri specimens out of a total of ni have been detected as ‘‘positive’’ using the bio-
marker. Then the total sample size n ¼

Pk
i¼1ni: Let r ¼

Pk
i¼1ri denote the total

number of positive specimens in the sample of size n, and let

x̄ ¼

Pk
i¼1

nixi

n

denote the weighted average of the x-values. Then the test statistic for the C–A
test for trend is given by

X 2
trend ¼

Pk
i¼1

rixi � rx̄

� �2

pð1� pÞ
Pk
i¼1

nix
2
i � nx̄2

� � , (14)

where p ¼ r=n denotes the overall proportion of ‘‘positive’’ findings in the sample.
To perform the asymptotic test for significant trend in proportions, the test
statistic given in Eq. (14) is compared with a w2 distribution with 1 degree of
freedom (upper-tailed test only). An exact test for trend based on the test statistic
in Eq. (14) can be performed by using the same conditioning argument as was
used for the exact version of Fisher’s exact test in Section 3.2.1. The permutation
test (Gibbons and Chakraborti, 2003, Chapter 8) can also be used to perform an
exact test for trend in proportions across ordinal levels of a biomarker. Both
the permutation test and the exact version of the C–A test are available in
StatXact and the exact version of the C–A test is available in the FREQ
procedure in SAS.

For the Tunstall-Pedoe et al. study described above, scores corresponding to
the midpoint were assigned to each serum cotinine category (0.00, 0.53, 2.52, and
10.74 ng/ml) and then the C–A test was performed. The results indicate a highly
significant increasing trend in the prevalence of ‘‘diagnosed coronary heart dis-
ease’’ as serum cotinine level increases (po0.001), a finding that was not reported
by the authors.

One difficulty with the C–A test is that it requires preassigned fixed scores.
In some cases, there may be no reasonable way to select the scores. In addition,
the C–A test is more powerful when the scores and the observed binomial
proportions follow a similar observed trend (Neuhäuser and Hothorn, 1999).
Alternative methods that can be used without specifying scores that are robust
with respect to the dose–response shape have been proposed by Neuhäuser and
Hothorn (1999). However, these methods are not currently available in any
widely used statistical software package, so we are unable to recommend their
general use at this time.
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3.2.3. Testing for linear-by-linear association

Cook et al. (1993) examined the association between the number of smokers to
whom children had been exposed and their salivary cotinine measured in ng/ml.
The ‘‘number of smokers’’ was categorized as 0, 1, 2, and X3, and salivary
cotinine was categorized as ‘‘non-detectable,’’ 0.1–0.2, 0.3–0.6, 0.7–1.7, 1.8–4.0,
4.1–14.7, and 414.7. The authors state that ‘‘salivary cotinine concentration was
strongly related to the number of smokers to whom the child was usually
exposed’’ (p. 16). However, they provide no numerical summary or statistical test
to justify this assertion. One method that could be used to test for significant
association between these two variables would be the linear-by-linear association
test (Agresti et al., 1990). An alternative method would be to use Spearman’s
correlation to produce a single numerical summary of this association, and to
perform a test of the null hypothesis that the population value of Spearman’s
correlation is different from zero.

3.2.3.1. Linear-by-linear association test. To perform the linear-by-linear associ-
ation test, assume that the rows and columns of the r� c contingency table can be
ordered according to some underlying variable. In the example from Cook et al.
(1993) described above, there is a natural ordering in both the rows (‘‘number of
smokers’’) and columns (salivary cotinine level). Following the notation of
Mehta and Patel (2005), let xij denote the count in the (i,j) position of the ‘‘ordered’’
contingency table and consider the test statistic

TðxÞ ¼
Xr

i¼1

Xc

j¼1

uivjxij, (15)

where ui, i ¼ 1, 2,y, r, are row scores, and vj, j ¼ 1, 2,y, c, are column scores. Let
mi, i ¼ 1, 2,y, r, denote the row totals, and nj, j ¼ 1, 2,y, c, denote the column
totals. Under the null hypothesis of no association between the row and column
variables, the test statistic given in Eq. (15) has mean

E½T � ¼

Pr
i¼1

uimi

Pc
j¼1

vjnj

n
,

and variance

Var½T � ¼

Pr
i¼1

u2
i mi �

Pr

i¼1

uimi

� �2

n

2664
3775 Pc

j¼1

v2j nj �

Pc

j¼1

vj nj

� �2

n

2664
3775

n� 1

where

n ¼
Xc

j¼1

nj ¼
Xr

i¼1

mi

is the total sample size.
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Since the test statistic given by

Z� ¼
T � EðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTÞ
p (16)

has an asymptotically standard normal distribution under the null hypothesis,
one can compare the calculated value of Z* in Eq. (16) with the standard normal
tables to obtain an approximate p-value. Exact p-values can be obtained for the
linear-by-linear test by considering the conditional permutation distribution of
the test statistic T under the null hypothesis. Consistent with our earlier discus-
sion of exact distributions, the reference set is defined to be the set of all r� c

contingency tables with the same row and column totals as the observed table.

3.2.3.2. Spearman’s correlation. There are many equivalent ways to define Spear-
man’s correlation coefficient. (We denote the population value by rs and the
sample value by rs.) One of the most useful definitions of rs is the Pearson cor-
relation coefficient calculated on the observations after both the x and y values
have been ordered from smallest to largest and replaced by their ranks. Let u1,

u2,y, un denote the ranks of the n observed values of X and let v1, v2,y, vn

denote the ranks of the n observed values of Y. Then Spearman’s sample
coefficient is defined by

rs ¼
Suvffiffiffiffiffiffiffiffiffiffi
S2

uS2
v

q , (17)

where Suv is the sample covariance between the u’s and v’s, S2
u the sample variance

of the u’s, and S2
v the sample variance of the v’s. If ties are present in the data,

a modified version of Eq. (17) should be used (Gibbons and Chakraborti, 2003,
pp. 429–431), although this will typically have little effect on the calculated value
of rs unless there are a large number of ties. Fisher’s z transformation can be
applied to Spearman’s coefficient and then used to calculate approximate p-values
for hypothesis tests involving rs and to find approximate CIs for rs. Fisher’s z

transformation applied to rs is given by

zs ¼
1

2
ln

1þ rs

1� rs

� �
,

which is approximately normally distributed with mean 0 and SE ŝs ¼
1:03=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

: The exact distribution of rs can be derived using enumeration
(Gibbons and Chakraborti, 2003, pp. 424–428). Both the approximate and
exact inference results for rs are available in StatXact. Hypothesis tests and
CIs based on the Fisher’s z transformation for Spearman’s coefficient are avail-
able in SAS.

For the data presented in Table 1 of Cook et al. (1993), the linear-by-linear
association test indicates a strongly significant association between the ‘‘number
of smokers’’ and salivary cotinine (Z*

¼ 31.67, po0.001). Similar results were
obtained for Spearman’s correlation: rs ¼ 0.72, 95% CI 0.70–0.74, po0.001.
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3.3. Comparison of mean levels of biomarkers across groups

It is widely assumed that the optimal methods for comparing the means of
normally distributed variables across groups are the t-test in the case of two
groups and the analysis of variance (ANOVA) in the case of three or more
groups. The proper application of both the t-test and ANOVA, as they are
usually formulated, is based on two assumptions: (a) that the data in all
groups being compared are normally distributed, and (b) that the population
variances in all groups being compared are equal (Sheskin, 1997). In this section,
we discuss the importance of these assumptions, and provide recommenda-
tions for alternative procedures to use when these assumptions appear to be
violated.

3.3.1. Importance of distributional assumptions

The performance of both the t-test and ANOVA is generally robust against
violations of the normality assumption; however, the presence of certain
types of departures from normality can seriously affect their performance
(Algina et al., 1994). If the methods for testing the assumption of normality
described in Sections 3.1.1 and 3.1.2 above indicate a significant departure
from normality in any of the groups being compared, we recommend that
one consider applying distribution-free alternatives to the t-test and the ANOVA
F-test.

For example, the Mann–Whitney–Wilcoxon (M–W–W) test has been used in
biomarker studies when comparing two groups in terms of a continuous variable
that appears to be non-normally distributed (e.g., Granella et al., 1996; Qiao
et al., 1997). Similarly, the Kruskal–Wallis (K–W) test has been used with bio-
marker data when comparing more than two groups (e.g., Amorim and Alvarez-
Leite, 1997; Atawodi et al., 1998). To perform either the M–W–W or K–W tests,
all of the observations are combined into one sample and ranked from smallest
(1) to largest (n), where n is the combined sample size. Tied observations are
assigned the midrank, i.e., the average rank of all observations having the same
value. The test statistic for the M–W–W test is

T ¼
Xn1
i¼1

wi1,

where the wi1’s represent the rank order of the observations in Group 1. The mean
of T is

mT ¼
n1ðnþ 1Þ

2
,

and the standard deviation of T is

sT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðnþ 1Þn2

12

r
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if there are no ties. If ties are present, then

sT ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðnþ 1Þn2

12

r
,

where

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

P
ðt3 � tÞ

nðn2 � 1Þ

s
, (18)

and t denotes the multiplicity of a tie and the sum is calculated over all sets of t ties.
The exact null distribution for the M–W–W test can be obtained using enu-

meration (or by network algorithms when enumeration is not feasible) and is
available in StatXact and the NPAR1WAY procedure in SAS. Approximate
p-values for the M–W–W test can be obtained by standardizing the observed
value of T using mT and sT as defined above and then using the standard normal
to calculate the appropriate area under the curve. This normal approximation has
been found to be ‘‘reasonably accurate for equal group sizes as small as 6’’
(Gibbons and Chakraborti, 2003, p. 273).

To apply the K–W test (appropriate in situations in which kX3 groups are
being compared in terms of their biomarker determinations), let Ri denote the
sum of the ranks of the observations in Group i, i ¼ 1, 2,y, k. Then the test
statistic for the K–W test is

H ¼
12

nðnþ 1Þ

Xk

i¼1

1

ni

Ri �
niðnþ 1Þ

2

� �2
if there are no ties, and ð1=cÞH; where c is given by Eq. (18), if ties are present.
The exact distribution of H can be obtained using a permutation argument and is
available in StatXact and the NPAR1WAY procedure in SAS. It can also be
shown that H has an approximate w2(k�1) distribution under the null hypothesis.

One interesting feature of any distribution-free test based on ranks (of which
the M–W–W and K–W tests are examples) is that applying a monotonic trans-
formation (such as the logarithm) to the data does not affect the results of the
analysis. Atawodi et al. (1998) were apparently unaware of this fact when they
applied the K–W test to both the original and log-transformed data and obtained
‘‘virtually identical results’’ (p. 820).

It is recommended that exact p-values be used for all of the distribution-free
methods mentioned in this section whenever possible; many commonly used
statistical packages are able to produce only approximate p-values for distribu-
tion-free methods. This may explain the discrepancies found by Atawodi et al.
(1998) when they compared the results of the K–W test for the original and
log-transformed data.

A characteristic of both the M–W–W and K–W tests that is often overlooked
is that these tests are most effective in detecting ‘‘shift alternatives’’; i.e., the
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assumption is made that the populations being compared have identical shapes
and the alternative hypothesis is that at least one of the populations is a ‘‘shifted’’
version of the others. If the ‘‘shift alternative’’ does not appear to be the
appropriate alternative hypothesis, another method that can be used to test the
null hypothesis that the parent populations are identical is the Kolmogorov–
Smirnov test (Conover, 1999, pp. 428–438; Gibbons and Chakraborti, 2003,
pp. 239–246). The exact version of the two-sample Kolmogorov–Smirnov test
is available in both StatXact and the NPAR1WAY procedure in SAS and the
exact version of the k-sample Kolmogorov–Smirnov test is available in the
NPAR1WAY procedure.

3.3.2. The importance of homogeneity of variances in the comparison of means

3.3.2.1. Two-group comparisons in the presence of heterogeneity. The performance
of the ‘‘usual’’ t-test (sometimes called the ‘‘equal variance t-test’’) depends very
strongly on the underlying assumption of equal population variances (sometimes
called homogeneity) between the groups (Moser et al., 1989). One approach would
be to attempt to use the F-test for testing equality of population variances or
another method to verify the homogeneity assumption before applying the equal
variance t-test (Moser and Stevens, 1992). If the hypothesis of equal variances is
not rejected, then one would apply the ‘‘usual’’ t-test. If the hypothesis of equal
variances is rejected, then one would use an alternative approach that does not
depend on the homogeneity assumption. One such alternative is the ‘‘unequal
variance t-test’’ [sometimes referred to as the ‘‘Welch test’’ or ‘‘Satterthwaite
approximation’’ (Moser and Stevens, 1992)], which is generally available in any
statistical package that can perform the equal variance t-test. However, Moser
and Stevens demonstrate that the preliminary F-test of equality of variances
contributes nothing of value and that, in fact, the unequal variance t-test can be
used any time the means of two groups are being compared since the test per-
forms almost as well as the equal variance t-test when the population variances
in the two groups are equal, and outperforms the equal variance t-test when
the variances are unequal. Hence, we follow their advice and recommend that the
unequal variance t-test be used routinely whenever the means of two groups are
being compared and the data appear to be normally distributed in both the
groups. If the data are not normally distributed in either group, a distribution-
free alternative to the t-test such as the M–W–W test (Section 3.3.1) can be used
instead.

The test statistic for the unequal variance t-test recommended here is
given by

t� ¼
ðx̄� ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2x=n1Þ þ ðs2y=n2Þ

q , (19)

where x̄; s2x; and n1 denote the mean, variance, and sample size, respectively, for
the biomarker levels in Group 1, and ȳ; s2y; and n2 the mean, variance, and sample
size, respectively, for the biomarker levels in Group 2. To perform the test of the
null hypothesis that the mean biomarker level is the same in the two groups,
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compare the observed value of t* in Eq. (19) with a Student’s t distribution with
the following degrees of freedom:

u ¼
ð1=n1Þ þ ðu=n2Þ
	 
2

1=n2
1ðn1 � 1Þ

	 

þ u2=n2

2ðn2 � 1Þ
	 


where u ¼ s2y=s2x:
Salmi et al. (2002) evaluated the potential usefulness of soluble vascular

adhesion protein-1 (sVAP-1) as a biomarker to monitor and predict the extent of
ongoing artherosclerotic processes. The investigators compared two groups:
diabetic study participants on insulin treatment only (n ¼ 7) vs. diabetic study
participants on other treatments (n ¼ 41). They used the ‘‘usual’’ (equal-variance)
t-test to compare the mean sVAP-1 levels of the two groups: mean 7 S.D.
1487 114 vs. 1137 6; t ¼ 2.06, df ¼ 46, one-tailed p ¼ 0.023, a statistically
significant result. However, they ignored the fact that the variances in the two
groups they were comparing were quite different (12,996 vs. 36, F ¼ 361,
df ¼ (6,40), po0.001). If the unequal variance t-test is used, as recommended by
Moser and Stevens (1992), one obtains t*

¼ 0.81, u ¼ 6, one-tailed p ¼ 0.224, a
non-significant result. Given the extremely strong evidence that the two popu-
lation variances are unequal, the latter results provide a more valid comparison of
the two study groups.

3.3.2.2. Multiple comparisons in the presence of heterogeneity. It is often of interest
to compare three or more groups in terms of the mean level of a biomarker. For
example, Bernstein et al. (1999) compared the mean levels of AI across three
groups: (a) ‘‘normal’’ subjects; that is; those with no previous history of polyps or
cancer; (b) patients with a history of colorectal cancer; and (c) patients with colo-
rectal adenomas. They used the Tukey method to perform all possible pairwise
comparisons among the three groups. The Tukey method is the technique of choice
if the population variances of the three groups are equal (Dunnett, 1980a); how-
ever, if they are not equal, the methods known as Dunnett’s C and Dunnett’s T3
are preferable (Dunnett, 1980b). These two methods are very similar to the unequal
variance t-test recommended in the previous section. The Tukey, Dunnett’s C, and
Dunnett’s T3 procedures are all available in SPSS (SPSS Inc., Chicago, IL).

Let mi and s2i denote the population mean and population variance, respec-
tively, in the ith group. Let x̄i denote the sample mean and let s2i denote the
unbiased estimate of s2i based on ui degrees of freedom in the ith group. We wish
to find a set of 100(1�a)% joint CI estimates for the kðk � 1Þ=2 differences mi�mj,
1piojpk. Both Dunnett’s C and T3 methods involve constructing joint CI
estimates of the form

ȳi � ȳj � cij;a;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i
ni

þ
s2j

nj

s
,

where cij;a;k is a ‘‘critical value’’ chosen so that the joint confidence coefficient is as
close as possible to 1� a.

Statistical methods for assessing biomarkers and analyzing biomarker data 137



For Dunnett’s C procedure,

cij;a;k ¼
SRa;k;u�

ijffiffiffi
2
p ,

where

SRa;k;u�
ij
¼

SRa;k;ui
s2i =ni

	 

þ SRa;k;uj

s2j =nj

� �
s2i =ni

	 

þ s2j =nj

� �
and SRa;k;u denotes the upper a-percentage point of the distribution of the
Studentized range of k normal variates with an estimate of the variance based on
u degrees of freedom.

For Dunnett’s T3 procedure,

cij;a;k ¼ SMMa;k�;ûij
,

where SMMa;k�;ûij
denotes the upper a-percentage point of the Studentized max-

imum modulus distribution of k*
¼ kðk � 1Þ=2 uncorrelated normal variates with

degrees of freedom ûij given by

ûij ¼
ðs2i =niÞ þ ðs

2
j =njÞ

� �2
s4i =n2

i ðuiÞ
	 


þ s4j =n2
j ðujÞ

� � .
Tables of the percentage points of the SMM distribution are available in Stoline
and Ury (1979). As recommended by Dunnett (1980b), percentage points of the
SMM distribution for fractional degrees of freedom can be obtained by quadratic
interpolation on reciprocal degrees of freedom for percentage points in the
published tables.

3.4. Use of correlation coefficients in analyzing biomarker data

It is often of interest in studies involving biomarkers to examine the association
between two continuous variables, at least one of which is the numerical value of
a particular biomarker. For example, Salmi et al. (2002) correlated observed
levels of sVAP-1 with risk factors for coronary heart disease, measures of liver
dysfunction, diabetic parameter levels, etc. If both variables are normally dis-
tributed, then the appropriate measure of association to use is the Pearson cor-
relation coefficient r. However, if the data for either variable are non-normally
distributed, then a non-parametric measure of association such as Spearman’s rs
should be used instead (Siegel and Castellan, 1988, pp. 224–225). In the study by
Buss et al. (2003), the authors correctly used Spearman correlation in their
evaluation of 3-chlorotyrosine in tracheal aspirates from preterm infants as a
biomarker for protein damage by myeloperoxidase; they stated that they used
Spearman’s rs ‘‘because the data were not normally distributed’’ (p. 5). The
calculation of rs was described in Section 3.2.3.2.
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In the following sections, we consider three challenges frequently encountered
when correlation coefficients are used in the analysis of biomarker data: (a)
proper methods of analysis and interpretation of the results, (b) sample size
determination, and (c) comparison of related correlation coefficients.

3.4.1. Proper methods of analysis and interpretation of results

Salmi et al. (2002) determined the ‘‘significance’’ of their correlation coefficients
by testing the null hypothesis H0 : r ¼ 0; where r denotes the population cor-
relation coefficient. However, there are several problems with this approach, the
primary one being that correlations of no practical significance may be declared
to be ‘‘significant’’ simply because the p-value is less than 0.05 (Looney, 1996). We
have found the classification scheme presented by Morton et al. (1996) to be
useful in interpreting the magnitude of correlation coefficients in terms of their
practical significance. They classify correlations between 0.0 and 0.2 as ‘‘negli-
gible,’’ between 0.2 and 0.5 as ‘‘weak,’’ between 0.5 and 0.8 as ‘‘moderate,’’ and
between 0.8 and 1.0 as ‘‘strong.’’ In their sample of 411 Finnish men, Salmi et al.
(2002) found a ‘‘significant’’ correlation of 0.108 between sVAP-1 and carbohy-
drate-deficient transferrin, a measure of liver dysfunction. While this correlation
is statistically significant (p ¼ 0.029), it would be considered ‘‘negligible’’ accord-
ing to the Morton et al. criteria mentioned above, raising doubt about the
practical significance of the result.

In addition to testing H0 : r ¼ 0; one should also construct a CI for the pop-
ulation correlation in order to get a sense of the precision of the correlation
estimate, as well as a reasonable range of possible values for the population
correlation. In the example taken from Salmi et al. (2002) mentioned above, the
95% CI for r is (0.01–0.20). Thus, the entire CI falls within the ‘‘negligible’’ range
according to the Morton et al. criteria, casting further doubt on the practical
significance of the observed correlation.

As discussed in Looney (1996), another problem with declaring a correlation to
be significant simply because po0.05 is that smaller correlations may be declared
to be ‘‘significant’’ even when n is fairly small, resulting in CIs that are too wide to
be of any practical usefulness. In the study by Salmi et al. (2002) mentioned
above, the value of r for the correlation between sVAP-1 and ketone bodies in a
sample of 38 observations taken from diabetic children and adolescents was
0.34 (p ¼ 0.037), a statistically significant result. However, a 95% CI for r is
(0.02–0.60), which indicates that the population correlation could be anywhere
between ‘‘negligible’’ and ‘‘moderate,’’ according to the Morton et al. criteria.
A CI of such large width provides very little useful information about the
magnitude of the population correlation.

3.4.2. Sample size issues in the analysis of correlation coefficients

One way to avoid the difficulties described in the previous section is simply
to perform a sample size calculation prior to beginning the study. There is no
justification of the sample sizes used in the study by Salmi et al. (2002), so one
must assume that no such calculation was done. Looney (1996) describes several
approaches that typically yield sample sizes that provide more useful information
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about the value of the population correlation coefficient and the practical sig-
nificance of the results than if one simply bases the sample size calculation on
achieving adequate power for the test that the population correlation is zero.
These include basing the sample size calculation on (a) the desired width of the CI
for the population correlation, or (b) tests of null hypotheses other than that the
population correlation is zero. (For example, one might test the null hypothesis
H0 : r � 0:2; rejecting this null hypothesis would indicate that the population
correlation is ‘‘non-negligible.’’)

To perform a sample size calculation for the test of H0 : r ¼ r0; where r0a0;
we recommend using Fisher’s z-transformation applied to r as a test statistic; in
other words,

zðrÞ ¼
1

2
ln

1þ r

1� r

� �
.

The following formula could then be used to determine the minimum sample size
n required for achieving power of 100(1�b)% for detecting an alternative cor-
relation value of r14r0 using a one-tailed test of H0 at significance level a:

n ¼ 3þ
ðza þ zbÞ

zðr1Þ � zðr0Þ

� �2
,

where zg denotes the upper g-percentage point of the standard normal and z(r) the
Fisher z-transform of r. If one wished to base the sample size calculation on the
desired width of a CI for r, then one could use the approximate method described
in Looney (1996), or the more precise method recommended by Bonett and
Wright (2000).

3.4.3. Comparison of related correlation coefficients

In some studies involving biomarker data, it has been of interest to compare
‘‘related’’ correlation coefficients; that is, the correlation of variable X with Y vs.
the correlation of variable X with Z. For example, Salmi et al. (2002) found
‘‘significant’’ correlations of sVAP-1 with both glucose (r ¼ 0.57, po0.001) and
ketone bodies (r ¼ 0.34, p ¼ 0.037) in their sample of 38 observations taken from
diabetic children and adolescents. They concluded that there was a ‘‘less-marked’’
correlation of sVAP-1 with ketone bodies than with glucose. However, they did
not perform any statistical test to determine if, in fact, the corresponding
population correlation coefficients were different from each other. Had they
performed such a test, as described in Steiger (1980), they would have found no
significant difference between the two correlations (p ¼ 0.093). (SAS code for
performing comparisons of related correlation coefficients is available from the
first author.)

The null hypothesis for the test of dependent correlations can be stated as

H0 : ruv ¼ ruw, (20)

where ruv denotes the population correlation between the random variables U and
V and ruw the population correlation between the random variables U and W.
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In the example taken from Salmi et al. described above, U ¼ sVAP-1, V ¼ ketone
bodies, and W ¼ glucose. Let ruv and ruw denote the sample correlations between
U and V and between U and W, respectively, and let r̄uv;uw denote the mean of ruv

and ruw: Denote by zuv and zuw; the Fisher’s z-transforms of ruv and ruw; respec-
tively. Then the test statistic recommended by Steiger (1980) for the null
hypothesis in Eq. (20) is given by

Z� ¼
ðzuv � zuwÞ

ffiffiffiffiffiffiffiffiffiffiffi
n� 3
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� s̄uv;uwÞ
p , (21)

where s̄uv;uw is an estimate of the covariance between zuv and zuw given by

s̄uv;uw ¼
ĉuv;uw

ð1� r̄2uv;uwÞ
2

where

ĉuv;uw ¼ rvwð1� 2r̄2uv;uwÞ �
1

2
ðr̄2uv;uwÞð1� 2r̄2uv;uw � r2vwÞ.

The test of H0 in Eq. (20) is performed by comparing the sample value of Z* in
Eq. (21) with the standard normal distribution. For example, using the results
given in Salmi et al. (2002), ruv ¼ 0.57, ruw ¼ 0.34, rvw ¼ 0.55, n ¼ 38, and s̄jk;jh ¼

0:4659; yielding Z*
¼ 1.68 and p ¼ 0.093, as mentioned previously.

3.5. Dealing with non-detectable values in the analysis of biomarker data

In analyzing biomarker data, there may be samples for which the concentration
of the biomarker is below the analytic limit of detection (LOD), i.e., left-censored
at the LOD. These observations are commonly referred to as non-detects, or
ND’s. For example, Amorim and Alvarez-Leite (1997) examined the correlation
between o-cresol and hippuric acid concentrations in urine samples of individuals
exposed to toluene in shoe factories, painting sectors of metal industries, and
printing shops. Out of 54 samples in their study, o-cresol concentrations were
below its LOD (0.2 mg/ml) in 39. In 4 of these samples, the hippuric acid con-
centration was also below its LOD (0.1mg/ml). In another study, Atawodi et al.
(1998) compared 18 smokers with 52 ‘‘never smokers’’ in terms of their levels of
hemoglobin adducts, which were being evaluated as biomarkers of exposure to
tobacco smoke. In 7 of the 52 never smokers, adduct levels were below the LOD
(9 fmol HPB/g Hb).

Unfortunately, methods that are commonly used in the biomarker literature
for handling ND’s are flawed. Perhaps the most commonly used method is to
ignore the missing value(s) and analyze only those samples with complete data.
This was the method used by Lagorio et al. (1998) in their examination of the
correlations among the concentrations of trans,trans muconic acid (t,t-MA)
obtained from the urine of 10 Estonian shale oil workers using three different
preanalytical methods. Another commonly used method is to impute a value
in place of the missing data and then apply the ‘‘usual’’ statistical analyses.
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The values commonly imputed include the LOD (Amorim and Alvarez-Leite,
1997; Atawodi et al., 1998) and LOD/2 (Cook et al., 1993).

Other methods that have been proposed for handling ND’s include the ‘‘non-
parametric approach,’’ in which one treats all ND’s as if they were tied at the
LOD. Thus, if one wished to correlate two biomarkers, at least one of which was
undetectable in some samples, one would calculate Spearman’s rs using the ranks
of the entire data set, where all ND’s were assigned the smallest midrank. If one
wished to compare mean levels of a biomarker that was subject to ND’s across
two groups, one would apply the M–W–W test after computing the ranks of the
two combined samples in this way. This is the method used by Atawodi et al.
(1998) in their evaluation of hemoglobin adducts as biomarkers of exposure to
tobacco smoke.

Recent simulation results (Wang, 2006) suggest that none of the methods
described above for correlating two biomarkers that are both subject to left-
censoring are satisfactory, especially if the two biomarkers are strongly correlated
(rX0.5). Instead, we recommend the maximum likelihood (ML) approach
developed by Lyles et al. (2001) for estimating the correlation coefficient. A sim-
ilar approach developed by Taylor et al. (2001) can be adapted to group com-
parisons of means and is also likely to be preferred to applying a non-parametric
test to the data after replacing the ND’s by the LOD. Other more advanced
methods, such as multiple imputation (Scheuren, 2005), could be applied if
the appropriate missing data mechanism is present. However, these methods are
beyond the scope of this chapter. In this section, we briefly describe the estimation
method proposed by Lyles et al. (2001).

Let X and Y denote the two biomarkers to be correlated, and denote the
two fixed detection limits as Lx and Ly. Assuming a bivariate normal distribu-
tion, Lyles et al. proposed that one estimates the population parameter vector
h ¼ ½mx;my;s

2
x;s

2
y;r�

0 using ML estimation applied to a random sample
(xi,yi); i ¼ 1,y, n. In their derivation of the likelihood function, they noted
that there are four types of observed pairs of (x,y) values: (1) pairs with
both x and y observed, (2) pairs with x observed and yoLy, (3) pairs with y

observed and xoLx, and (4) pairs with xoLx and yoLy. Following the
notation in Lyles et al. (2001), the contribution of each pair of type 1 is
given by

ti1 ¼ ð2psxsyjxÞ
�1 exp �0:5

ðyi � myjxi
Þ
2

s2yjx
þ
ðxi � mxÞ

2

s2x

" #( )
,

where myjxi
¼ my þ rðsy=sxÞðxi � mxÞ and s2yjx ¼ s2yð1� r2Þ:

The contribution of each pair of type 2 is given by

ti2 ¼ ð2ps2xÞ
�1=2 exp �0:5

ðxi � mxÞ
2

s2x

� �
� F

Ly � myjxi

syjx

� �
,
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where Fð�Þ denotes the standard normal distribution function. Similarly, the
contribution of each pair of type 3 is given by

ti3 ¼ ð2ps2yÞ
�1=2 exp �0:5

ðyi � myÞ
2

s2y

" #
� F

Lx � mxjyi

sxjy

� �
,

where mxjyi
¼ mx þ rðsx=syÞðyi � myÞ and s2xjy ¼ s2xð1� r2Þ:

Finally, each pair of type 4 contributes

t4 ¼

Z Ly

�1

F
Lx � mx þ ðrsxðy� myÞ=syÞ

 �
sx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p( )

� ð2ps2yÞ
�1=2 exp �0:5

ðy� myÞ
2

s2y

" #
dy.

Without loss of generality, suppose the data are ordered and indexed by i so that
pairs of type 1 come first, followed by pairs of types 2, 3, and 4. Further, assume
that there are nj terms of type j (j ¼ 1, 2, 3, 4) and define nk� ¼

Pk
j¼1nj for k ¼ 2,

3. Then, the total likelihood can be written as

Lðhjx; yÞ ¼
Yn1
i¼1

ti1

 ! Yn2�
i¼n1þ1

ti2

 ! Yn3�
i¼n2�þ1

ti3

 !
tn4
4 ,

where x is the vector of observed x-values and y the vector of observed y-values.
Once the ML estimates and the corresponding estimated SEs are obtained,

one can construct an approximate 100(1�a)% Wald-type CI for r by using
r̂ML � za=2cSEðr̂MLÞ: Lyles et al. also considered profile likelihood CIs since
Wald-type CIs are known to be potentially suspect when the sample size is small
and they found that they generally performed better than the Wald-type intervals.
For the data given in the study by Amorim and Alvarez-Leite (1997), the method
developed by Lyles et al. yields r̂ML ¼ 0:79 and an approximate 95% CI(r) of
(0.67, 0.91). Analyzing only the 15 cases with complete data yields r ¼ 0.76 with
an approximate 95% CI(r) of (0.40, 0.92).

4. Concluding remarks

In this chapter, we have not attempted to provide a comprehensive treatment of
statistical methods that could be used in analyzing biomarker data; certainly, this
entire volume could have been devoted to this task. Nor is this chapter intended
to be a primer on how to perform elementary statistical analyses of biomarker
data. Basic statistical methods, when properly applied, will usually suffice for this
purpose. [For a good treatment of basic statistical methods and their proper
application to environmental exposure data (for which biomarkers are frequently
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used), see Griffith et al. (1993).] Rather, we have focused our discussion on what
we feel are some important analytic issues that we have encountered in our
examination of biomarker data, and on some statistical techniques that we have
found to be useful in dealing with those issues. It is hoped that the recommen-
dations provided here will prove to be useful to statisticians, biomarker
researchers, and other workers who are faced with the often challenging task of
analyzing biomarker data.

Because of space limitations, we were unable to say very much in this chapter
about power and sample size calculations. Fortunately, both StatXact and the
POWER procedure within SAS are capable of carrying out power and sample size
calculations for many of the procedures discussed in this chapter. Goldsmith
(2001) provides a good general discussion of power and sample size consider-
ations and provides an extensive list of references.

References

Agresti, A. (1996). An Introduction to Categorical Data Analysis. Wiley, New York.

Agresti, A. (2002). Categorical Data Analysis, 2nd ed. Wiley, Hoboken, NJ.

Agresti, A., Mehta, C.R., Patel, N.R. (1990). Exact inference for contingency tables with ordered

categories. Journal of the American Statistical Association 85, 453–458.

Algina, J., Oshima, T.C., Lin, W. (1994). Type I error rates for Welch’s test and James’s second-order

test under nonnormality and inequality of variance when there are two groups. Journal of

Educational and Behavioral Statistics 19, 275–291.

Altman, D.G., Bland, J.M. (1983). Measurement in medicine: The analysis of method comparison

studies. The Statistician 32, 307–317.

Amorim, L.C.A., Alvarez-Leite, E.M. (1997). Determination of o-cresol by gas chromatography and

comparison with hippuric acid levels in urine samples of individuals exposed to toluene. Journal of

Toxicology and Environmental Health 50, 401–407.

Armitage, P. (1955). Test for linear trend in proportions and frequencies. Biometrics 11, 375–386.

Atawodi, S.E., Lea, S., Nyberg, F., Mukeria, A., Constantinescu, V., Ahrens, W., Brueske-Hohlfeld,

I., Fortes, C., Boffetta, P., Friesen, M.D. (1998). 4-Hydroxyl-1-(3-pyridyl)-1-butanone-hemoglobin

adducts as biomarkers of exposure to tobacco smoke: Validation of a method to be used in

multicenter studies. Cancer Epidemiology Biomarkers & Prevention 7, 817–821.

Atkinson, A.C. (1973). Testing transformations to normality. Journal of the Royal Statistical Society

Series B 35, 473–479.

Bartczak, A., Kline, S.A., Yu, R., Weisel, C.P., Goldstein, B.D., Witz, G. (1994). Evaluation of assays

for the identification and quantitation of muconic acid, a benzene metabolite in human urine.

Journal of Toxicology and Environmental Health 42, 245–258.

Bartko, J.J. (1991). Measurement and reliability: Statistical thinking considerations. Schizophrenia

Bulletin 17, 483–489.

Bartko, J.J. (1994). General methodology II. Measures of agreement: A single procedure. Statistics in

Medicine 13, 737–745.

Benowitz, L. (1999). Biomarkers of environmental tobacco smoke exposure. Environmental Health

Perspectives 107(Suppl 2), 349–355.

Bernstein, C., Bernstein, H., Garewal, H., Dinning, P., Jabi, R., Sampliner, R.E., McCluskey, M.K.,

Panda, M., Roe, D.J., L’Heureux, L.L., Payne, C. (1999). A bile acid-induced apoptosis assay for

colon cancer risk and associated quality control studies. Cancer Research 59, 2353–2357.

Bland, J.M., Altman, D.G. (1986). Statistical methods for assessing agreement between two methods

of clinical measurement. The Lancet (February 8, 1986), 307–310.

S. W. Looney and J. L. Hagan144



Bland, J.M., Altman, D.G. (1990). A note on the use of the intraclass correlation coefficient in the

evaluation of agreement between two methods of measurement. Computers in Biology and Medicine

20, 337–340.

Bonett, D.G., Wright, T.A. (2000). Sample size requirements for estimating Pearson, Kendall, and

Spearman correlations. Psychometrica 65, 23–28.

Box, G.E.P., Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society

Series B 26, 211–252.

Buckley, T.J., Waldman, J.M., Dhara, R., Greenberg, A., Ouyang, Z., Lioy, P.J. (1995). An

assessment of a urinary biomarker for total human environmental exposure to benzo[a]pyrene.

International Archives of Occupational and Environmental Health 67, 257–266.

Buss, I.H., Senthilmohan, R., Darlow, B.A., Mogridge, N., Kettle, A.J., Winterbourn, C.C. (2003).

3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from

preterm infants: Association with adverse respiratory outcome. Pediatric Research 53, 455–462.

Byrt, T., Bishop, J., Carlin, J.B. (1993). Bias, prevalence, and kappa. Journal of Clinical Epidemiology

46, 423–429.

Cheng, N.F., Gansky, S.A. A SAS macro to compute Lin’s concordance correlation with confidence

intervals. UCSF CAN-DO website. Accessed December 29, 2006. http://www.ucsf.edu/cando/

resources/software/linscon.doc

Cicchetti, D.V., Feinstein, A.R. (1990). High agreement but low kappa: II. Resolving the paradoxes.

Journal of Clinical Epidemiology 43, 551–558.

Cochran, W.G. (1954). Some methods for strengthening the common w2 tests. Biometrics 10, 417–454.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement 20, 37–46.

Conover, W.J. (1999). Practical Nonparametric Statistics, 3rd ed. Wiley, New York.

Cook, D.G., Whincup, P.H., Papacosta, O., Strachan, D.P., Jarvis, M.J., Bryant, A. (1993). Relation

of passive smoking as assessed by salivary cotinine concentration and questionnaire to spirometric

indices in children. Thorax 48, 14–20.

Cox, D.R., Hinkley, D.V. (1974). Theoretical Statistics. Chapman & Hall, London.

D’Agostino, R.B. (1986). Graphical analysis. In: D’Agostino, R.B., Stephens, M.A. (Eds.), Goodness-

of-Fit Techniques. Marcel Dekker, New York, pp. 7–62.

Dunnett, C.W. (1980a). Pairwise multiple comparisons in the homogeneous variance, unequal sample

size case. Journal of the American Statistical Association 75, 789–795.

Dunnett, C.W. (1980b). Pairwise multiple comparisons in the unequal variance case. Journal of the

American Statistical Association 75, 796–800.

Feinstein, A.R., Cicchetti, D.V. (1990). High agreement but low kappa: I. The problems of two

paradoxes. Journal of Clinical Epidemiology 43, 543–549.

Fleiss, J.L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin 76,

378–382.

Gerson, M. (1975). The techniques and uses of probability plots. The Statistician 24, 235–257.

Gibbons, J.D., Chakraborti, S. (2003). Nonparametric Statistical Inference, 4th ed. Marcel Dekker,

New York.

Goldsmith, L.J. (2001). Power and sample size considerations in molecular biology. In: Looney, S.W.

(Ed.), Methods in Molecular Biology, Vol. 184: Biostatistical Methods. Humana Press, Totowa, NJ,

pp. 111–130.

Graham, P., Bull, B. (1998). Approximate standard errors and confidence intervals for indices of

positive and negative agreement. Journal of Clinical Epidemiology 51, 763–771.

Granella, M., Priante, E., Nardini, B., Bono, R., Clonfero, E. (1996). Excretion of mutagens, nicotine

and its metabolites in urine of cigarette smokers. Mutagenesis 11, 207–211.

Griffith, J., Aldrich, T.E., Duncan, R.C. (1993). Epidemiologic research methods. In: Aldrich, T.,

Griffithh, J., Cooke, C. (Eds.), Environmental Epidemiology and Risk Assessment. Van Nostrand

Reinhold, New York, pp. 27–60.

Hagan, J.L., Looney, S.W. (2004). Frequency of use of statistical techniques for assessing agreement

between continuous measurements. Proceedings of the American Statistical Association. American

Statistical Association, Alexandria, VA, pp. 344–350.

Statistical methods for assessing biomarkers and analyzing biomarker data 145

http://www.ucsf.edu/cando/resources/software/linscon.doc
http://www.ucsf.edu/cando/resources/software/linscon.doc


Hazelton, M.L. (2003). A graphical tool for assessing normality. The American Statistician 57, 285–288.

Huber, P.J. (1996). Robust Statistical Procedures, 2nd ed. Society for Industrial and Applied Math-

ematics, Philadelphia.

Johnson, N.L. (1949). Systems of frequency curves generated by methods of translation. Biometrika

36, 149–176.

Jones, M.C., Daly, F. (1995). Density probability plots. Communications in Statistics – Simulation and

Computation 24, 911–927.

Kraemer, H.C. (1980). Extension of the kappa coefficient. Biometrics 36, 207–216.

Kummel, C.H. (1879). Reduction of observation equations which contain more than one observed

quantity. The Analyst 6, 97–105.

Lagorio, S., Crebelli, R., Ricciarello, R., Conti, L., Iavarone, I., Zona, A., Ghittori, S., Carere, A.

(1998). Methodological issues in biomonitoring of low level exposure to benzene. Occupational

Medicine 8, 497–504.

Landis, J.R., Koch, G.G. (1977). The measurement of observer agreement for categorical data.

Biometrics 33, 159–174.

Last, J.M. (1995). A Dictionary of Epidemiology, 3rd ed. Oxford University Press, New York.

Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San

Francisco, pp. 267–270.

Lin, L.I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45,

255–268.

Lin, L.I. (2000). A note on the concordance correlation coefficient. Biometrics 56, 324–325.

Linnet, K. (1990). Estimation of the linear relationship between the measurements of two methods

with proportional errors. Statistics in Medicine 9, 1463–1473.

Linnet, K. (1993). Evaluation of regression procedures for methods comparison studies. Clinical

Chemistry 39, 424–432.

Looney, S.W. (1996). Sample size determination for correlation coefficient inference: Practical prob-

lems and practical solutions. Proceedings of the Statistical Computing Section, American Statistical

Association. American Statistical Association, Alexandria, VA, pp. 240–245.

Looney, S.W. (Ed.) (2001). Statistical methods for assessing biomarkers. Methods in Molecular

Biology, Vol. 184: Biostatistical Methods. Humana Press, Totowa, NJ, pp. 81–109.

Looney, S.W., Gulledge, T.R. (1985). Use of the correlation coefficient with normal probability plots.

The American Statistician 39, 75–79.

Lyles, R.H., Williams, J.K., Chuachoowong, R. (2001). Correlating two viral load assays with known

detection limits. Biometrics 57, 1238–1244.

MacRae, A.R., Gardner, H.A., Allen, L.C., Tokmakejian, S., Lepage, N. (2003). Outcome validation

of the Beckman Coulter access analyzer in a second-trimester Down syndrome serum screening

application. Clinical Chemistry 49, 69–76.

Mehrotra, D.V., Chan, I.S.F., Berger, R.L. (2003). A cautionary note on exact unconditional inference

for a difference between two independent binomial proportions. Biometrics 59, 441–450.

Mehta, C., Patel, N. (2005). StatXact 7. CYTEL Software Corporation, Cambridge, MA.

Morton, R.F., Hebel, J.R., McCarter, R.J. (1996). A Study Guide to Epidemiology and Biostatistics, 4th

ed. Aspen Publishers, Gaithersburg, MD, pp. 92–97.

Moser, B.K., Stevens, G.R. (1992). Homogeneity of variance in the two-sample means test. The

American Statistician 46, 19–21.

Moser, B.K., Stevens, G.R., Watts, C.L. (1989). The two-sample t test versus Satterthwaite’s

approximate F test. Communications in Statistics Part A-Theory and Methods 18, 3963–3975.
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Abstract

This chapter describes a family of statistical techniques called linear and

non-linear regression that are commonly used in medical research. Regression

is typically used to relate an outcome (or dependent variable or response) to

one or more predictor variables (or independent variables or covariates). We

examine several ways in which the standard linear model can be extended to

accommodate non-linearity. These include non-linear transformation of pre-

dictors and outcomes within the standard linear model framework; generalized

linear models, in which the mean of the outcome is modeled as a non-linear

transformation of the standard linear function of regression parameters and

predictors; and fully non-linear models, in which the mean of the outcome

is modeled as a non-linear function of the regression parameters. We also

briefly discuss several special topics, including causal models, models with

measurement error in the predictors, and missing data problems.

1. Introduction

This chapter describes a family of statistical techniques called linear and
non-linear regression that are commonly used in medical research. Regression is
typically used to relate an outcome (or dependent variable or response) to one or
more predictor variables (or independent variables or covariates). The goal might
be prediction, testing for a relationship with a single predictor (perhaps while
adjusting for other predictors), or in modeling the relationship between the
outcome and all the predictors. We begin with an example.

1.1. Example: Medical services utilization

The most acutely ill patients treated by a hospital system use a highly
disproportionate amount of resources – often in ways that can be prevented.
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For example, persons without insurance may use the emergency room for non-
emergency care. Sorenson et al. (2003) and Masson et al. (2004) described the
utilization of medical resources in 190 patients enrolled in a randomized trial of a
managed care intervention designed to improve access to healthcare. Measure-
ments were taken at baseline, as well as at 6, 12, and 18 months after random-
ization. Outcomes included cost of care, number of emergency room visits, and
death. Predictors included treatment group (managed care or not), gender, the
Beck depression inventory (BDI), and whether the person was homeless. A
primary focus was on the treatment effect, while adjusting for the effects of the
other predictors. A secondary goal was to assess the impact of all the predictors
on the outcomes.

1.2. Linear and non-linear regression methods

The choice of an appropriate regression model depends on both the type of
outcome being modeled, which governs the random portion of the model, and
how the parameters to be estimated enter the model, which governs whether it is a
linear or non-linear model. In our example, cost is likely to be highly skewed
right, while the logarithm of cost might be more approximately normally dis-
tributed. Death during the 18 months of follow-up is binary or could be analyzed
as time to death. And number of emergency room visits is a count variable, for
which we might consider a Poisson distribution appropriate. A further compli-
cation in our example is that we have repeated measurements over time on the
same patient (e.g., number of emergency room visits during the preceding
6 months is collected at 6, 12, and 18 months), so that the data need to be treated
as correlated.

Each of these different outcome types – continuous and skewed right,
continuous and approximately normally distributed, binary, time-to-event, or
count – would typically need a different style of regression analysis. Treating
log(cost) at 6 months as approximately normally distributed might suggest using
the usual linear regression model

log costi ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ �i, (1)

where costi is the 6-month cost of medical care for patient i, x1i is 1 if the patient
was in the case management group and 0 otherwise, x2i is 1 if the patient is female
and 0 otherwise, x3i is the patient’s BDI at baseline, x4i is 1 if the patient was
homeless at baseline and 0 otherwise, and ei is an error term. The parameters to be
estimated (the bs) enter Eq. (1) as a linear combination, hence the name linear

regression.

Re-expressing Eq. (1) as a model for costi by exponentiating both sides of the
equation gives

costi ¼ eb0eb1x1ieb2x2ieb3x3ieb4x4ie�i

¼ g0g
x1i
1 gx2i

2 gx3i
3 gx4i

4 di, ð2Þ

where gk ¼ ebk and di ¼ e�i :
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This is somewhat different, as we elaborate in Section 3.1, from the non-linear

regression equation, below, which assumes (incorrectly) that costi is homoscedas-
tic and normally distributed:

costi ¼ a0a
x1i

1 ax2i

2 ax3i

3 ax4i

4 þ ui with ui 	 i:i:d:Nð0; s2vÞ. (3)

On the other hand, treating death during the 18-month follow-up period as a
binary outcome would usually be handled with a logistic regression model, in
which the probability of death is modeled in the form

PðDiÞ ¼
1

1þ expð�½b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i�Þ
, (4)

where Di is 1 if the ith patient died and 0 otherwise, and these are not the same bs
as in Eq. (1). Clearly the parameters to be estimated for this model (the bs)
enter in a non-linear fashion. There is no error term in this model, because
the randomness is captured by the Bernoulli distribution with the appropriate
probability of death given by Eq. (4).

This is an example of a generalized linear model (GLM) because we can trans-
form the mean response (which is just the probability for a binary variable like Di)
to get a model that is linear in the parameters:

log
PðDiÞ

1� PðDiÞ
¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i. (5)

The left-hand side of Eq. (5) is the log of the ratio of the probability of death
compared to the probability of survival, or the log of the odds of death. Therefore
the logistic regression model is a linear model for the log odds and the parameters
have interpretations in terms of the difference in log odds of the outcome
associated with a one-unit change in the predictor (holding the other variables
‘‘constant’’).

The various regression models are clearly different but still share important
features. The accommodation of multiple predictors and continuous or categor-
ical predictors is similar. Techniques for adjustment by variables to control con-
founding and incorporate interactions, and methods for predictor selection are
similar. Finally, all regression analyses are used to answer the same broad classes
of practical questions involving multiple predictors.

1.3. Overview

This chapter provides a practical survey of linear and non-linear regression anal-
ysis in biomedical studies and to provide pointers to the other, more detailed
chapters on special types of regression models elsewhere in this book. We start by
introducing the idea of linear regression, in which the model for the mean of the
outcome is a linear combination of the parameters, an example of which is Eq.
(1), when the outcome is log(cost). In this context we describe inference, model
checking, extensions to repeated measures data, and choice of predictors. Next,
we show how building a linear model for transformations of the outcome, such as
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the model for log(cost), induces a non-linear model for the untransformed out-
come, e.g., cost itself. Non-linear models are then developed, with identification
of the important special case of generalized linear models, i.e., a model in which a
transformation of the mean is a linear combination of the parameters. We also
cover some models capable of handling censored data, as well as models where no
transformation of the mean is linear in the parameters. Finally, we discuss recent
developments such as the use of classification and regression trees (CART), gen-
eralized additive models (GAMs), and segmented and asymptotic regression, as
well as computing for regression analyses.

2. Linear models

In the multiple linear regression model, the expected value of the outcome for
observation i, given a set of predictors x0i ¼ ðx1i;x2i; . . . ;xpiÞ; is specified by a
linear combination of the parameters b0, b1,y, bp:

E Y ijxi½ � ¼ b0 þ b1x1i þ b2x2i þ � � � þ bpxpi. (6)

In Eq. (6), the coefficient bj gives the change in E[Yi|xi] for an increase of one
unit in predictor xji, holding other factors in the model constant. The intercept b0
gives the value of E[Y|x] if all the predictors were equal to zero. Considering all
observations in the sample (i ¼ 1,y,N), we can write

E½YjX� ¼ Xb, (7)

where the outcomes are written as vector Y of order N; X is the model matrix of
order N by p+1 with ith row x0i; and b is the vector of p+1 regression coefficients.

Random departures of the outcomes from their expectations may result from
measurement error as well as unmeasured determinants of the outcome. Thus

Y ¼ Xbþ e, (8)

where the vector of random errors e has mean 0 and variance–covariance matrix
V. Note that given X, Y also has variance–covariance matrix V. In the basic form
of the multiple linear regression model we usually assume that e 	N(0, s2I),
where I is the identity matrix of order N; that is, the random errors are normally
distributed with mean zero and constant variance s2, and are independent across
observations.

In contrast to the outcome, no distributional assumptions are made about the
predictors. However, we do formally assume that the predictors are measured
without error. This is often not very realistic, and the effects of violations are the
subject of ongoing statistical research. In Section 4.2, we briefly discuss the issue
of measurement error.
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2.1. Maximum likelihood (ML) under normality

Under the assumption that Y has a multivariate normal distribution – that is,

Y 	NðXb; s2IÞ (9)

the likelihood function is

L ¼ Lðb;s2Þ ¼
exp � 1

2
ðY� XbÞ0ðI=s2ÞðY� XbÞ

 �
ð2ps2ÞN=2

. (10)

Thus the log-likelihood is

l ¼ log L ¼ �
N

2
logð2pÞ �

N

2
log s2 �

1

2
ðY� XbÞ0ðY� XbÞ=s2 (11)

Setting the vector of partial derivatives of the log-likelihood with respect to the
elements of b equal to 0 gives the score equation for b:

@l

@b
¼

X0Y� X0Xb

s2
¼ 0 (12)

with solution

b̂ ¼ ðX0XÞ�1X0Y (13)

if (X0X)�1 exists. See McCulloch and Searle (2000) for a full development
of important cases where X is not full rank and generalized inverses of X0X must
be used.

For s2 the score equation is

@l

@s2
¼
ðY� XbÞ0ðY� XbÞ

2s4
�

N

2s2
¼ 0 (14)

with solution

ŝ2ml ¼ ðY� Xb̂Þ0ðY� Xb̂Þ=N (15)

In practice the unbiased restricted maximum likelihood (REML) estimate
(McCulloch and Searle, 2000) is more often used. In REML, b is removed from
the likelihood by considering the likelihood of

I� X X0Xð Þ
�1
X0

h i
Y, (16)

in this simple case giving

ŝ2 ¼
ðY� Xb̂Þ0ðY� Xb̂Þ

N � ðpþ 1Þ
(17)

Finally, under regularity conditions, b̂ is a consistent estimator of b, with
asymptotic variance–covariance estimator ŝ2ðX0XÞ�1 based on the Hessian of the
log-likelihood – that is, the matrix of its second partial derivatives with respect to b.
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2.2. Ordinary least squares

Estimation of the regression parameters in the multiple linear regression model
can also be understood in terms of ordinary least squares (OLS), meaning that b̂ is
the value of b that minimizes the residual sum of squares under the proposed linear
model:

RSS ¼ ðY� XbÞ0ðY� XbÞ. (18)

Setting the vector of partial derivatives of Eq. (18) with respect to b equal to 0

gives

b̂ ¼ ðX0XÞ�1X0Y. (19)

Thus the OLS criterion motivates the same estimator of b, without making
distributional assumptions, as does maximum likelihood in the case where Y is
multivariate normal.

The variance of b̂ can be written as

S ¼ var½ðX0XÞ�1X0Y�

¼ ðX0XÞ�1X0 var½Y�XðX0XÞ�1

¼ ðX0XÞ�1X0VXðX0XÞ�1 ð20Þ

Clearly R simplifies to s2ðX0XÞ�1 when V ¼ s2I.
If E[Y|X] is of the form Xb and X is full rank, b̂ is unbiased:

E½b̂� ¼ E½ðX0XÞ�1X0Y�

¼ ðX0XÞ�1X0E½Y�

¼ ðX0XÞ�1X0Xb

¼ b ð21Þ

Under the assumptions of independence and constant variance – that is, V ¼ s2I –
the OLS estimates are minimally variable among linear unbiased estimators.
They are also well-behaved in large samples when the normality assumptions
concerning Y are not precisely met. A potentially important drawback of OLS is
sensitivity to influential data points.

2.3. Tests and confidence intervals

At least in large samples, the estimates of the regression parameters have a
multivariate normal distribution. This follows on theoretical grounds if the out-
come Y is multivariate normal as in Eq. (9), regardless of sample size. Otherwise,
the OLS estimators converge in distribution to multivariate normality as the
sample size increases under fairly mild assumptions. If the outcome is short-tailed,
then the tests and confidence intervals may be valid with as few as 30–50 ob-
servations. However, with long-tailed or skewed outcomes, samples of at least 100
may be required. Factors influencing the precision of the estimates are made clear
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by writing the variance of a particular b̂j as:

Varðb̂jÞ ¼
s2

ðN � 1Þs2xj
ð1� r2j Þ

. (22)

In Eq. (22), s2xj
is the sample variance of xj, and rj is the multiple correlation of xj

with the other predictors; 1=ð1� r2j Þ is known as the variance inflation factor.
In brief, the parameter bj is more precisely estimated when the residual variance
s2 is small, the sample size N and sample variance of xj are large, and xj is
minimally correlated with the other predictors in the model.

When Y is multivariate normal, the ratio of b̂j � bj to its standard error
(defined as the square root of the estimate of Eq. (22), using Eq. (17) for s2) has a
t-distribution with N � (p+1) degrees of freedom. This reference distribution is
used for Wald tests of H0: bj ¼ 0, and to compute confidence intervals for bj as

b̂j � ta=2;N�ðpþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârðb̂jÞ

q
, (23)

where ta/2,N � (p+1) is the a/2 quantile of the reference t-distribution. By extension,
the variance of a linear combination c ¼ a0b̂ of the parameter estimates is a0Sa;
providing analogous hypothesis tests and confidence intervals for c.

The F-test is used to test composite null hypotheses involving more than one
parameter, including tests for heterogeneity in the mean of the outcome across
levels of multilevel categorical predictors. Suppose the categorical predictor has
k 4 2 levels and is represented by k � 1 indicator variables x2i;x3i; . . . ;xki; with
xji ¼ 1 if observation i is in category j (j ¼ 2,y, k) and 0 otherwise. The cor-
responding parameters are b2;b3; . . . ;bk; x1i and b1 correspond to the reference
level and are omitted. Then the F-statistic for the test of H0 : b2 ¼ b3 ¼ � � � ¼
bk ¼ 0 is

F ¼
ðRSSr �RSSf Þ=ðk � 1Þ

RSSf =ðN � ðpþ 1ÞÞ
(24)

where RSSf is the residual sum of squares from the full model including the k � 1
indicator variables x2, x3,y, xk and RSSr is from the reduced model excluding
these covariates. The statistic is compared to the F-distribution with k � 1 and
N � (p+1) degrees of freedom. Within the maximum likelihood framework, the
F-statistic can be derived as a monotonic transformation of the likelihood-ratio
statistic (McCulloch and Searle, 2000).

These exact methods for inference when Y is multivariate normal do not apply
to non-linear models, nor to linear models used with unbalanced repeated meas-
ures data. For those cases, hypothesis testing with either maximum likelihood
or restricted maximum likelihood utilizes the large sample theory of maximum
likelihood estimators. Typical are Wald tests, in which the estimators divided by
their standard errors are treated as approximately normal to form z-statistics.
Likewise, approximate confidence intervals are based on normality by calculating
the estimate 71.96 standard errors. Standard errors typically come from the
Hessian of the log-likelihood. Kenward and Roger (1997) have suggested
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adjustments to improve the small sample performance of the Wald statistics
in extensions of the linear model for repeated measures (see Section 2.5).
Alternatively, likelihood-ratio tests and confidence regions based on the likeli-
hood are also commonly used to form test statistics and confidence regions for b.
These are regarded as more reliable than the Wald procedures and should be used
in circumstances where the two procedures give discrepant results (Cox and
Hinkley, 1974).

2.4. Checking model assumptions and fit

In the multiple linear regression model (Eq. (8)), we start with assumptions that
E[Y|X] changes linearly with each continuous predictor and that the errors e

are independently multivariate normal with mean zero and constant variance.
Violations of these assumptions have the potential to bias regression coefficient
estimates and undermine the validity of confidence intervals and p-values, and
thus may motivate the use of non-linear models. Residuals are central to detecting
violations of these assumptions and also assessing their severity. Model assump-
tions rarely hold exactly, and small departures can be benign, especially in large
datasets. Nonetheless, careful attention to model assumptions can prevent us
from being seriously misled, and help us to decide when non-linear methods need
to be used.

Linearity. In single predictor models, checks for departures from linearity
could be carried out using a non-parametric smoother, such as LOWESS
(Cleveland, 1981) of the outcome on the single predictor, approximating the
regression line under the weaker assumption that it is smooth but not necessarily
linear. Substantial and systematic deviations of the non-parametric estimate from
the linear fit indicate departures from linearity. Smoothing the residuals rather
than the outcome may give a more sensitive assessment, and extends this strategy
to the multiple linear regression model, providing a check on linearity after the
effects of covariates have been taken into account. In this context, we smooth the
residuals against each continuous predictor (residual vs predictor plots) as well
as the fitted values (residual vs fitted plots). Related diagnostic plots include
component plus residual plots (Larsen and McCleary, 1972), in which the con-
tribution of the predictor of interest to each fitted value is added back into the
corresponding residual, which is then smoothed against the predictor. In all cases,
a well-behaved smoother with skillfully chosen smoothness is important for
detecting non-linearity.

Departures from linearity can often be corrected using transformations of the
continuous predictors causing problems. For strictly positive predictors, log
transformation is useful for modeling ‘‘diminishing returns,’’ in which the mean
of the outcome changes more and more slowly as the predictor increases. In
polynomial models, we may add quadratic, cubic, and even higher-order terms
in the predictor. For mild non-linearities, addition of a quadratic term in the
predictor is often adequate. However, for highly non-linear response patterns,
polynomial models may not provide adequate flexibility, or provide it only at the
cost of poor performance in the extremes of the predictor range.
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In contrast to polynomial models, splines provide more flexibility where the
predictor values are concentrated and better performance at the extremes, by
fitting local polynomial models under constraints that preserve continuity and
smoothness, often making the results more plausible. Simplest are linear splines,
which model the mean response to the predictor as continuous and piecewise
linear, changing slope at knots, or cutpoints in the range of the predictor, but
linear within the intervals between knots. In the simplest cases, the knots are
placed by the analyst at sample quantiles or at inflections in diagnostic smooths;
however, automatic, adaptive methods are also available. Cubic splines are local
third-order polynomials, constrained to have continuous first and second
derivatives at the knots; only the third derivative is allowed to jump. Natural

cubic splines are constrained to be linear beyond the outermost knots, for better
behavior in the tails. These spline models are implemented using a linear com-
bination of basis functions defined for each value of the continuous predictor,
and thus remain linear in the parameters. Smoothing splines can be understood
as cubic splines with a knot at each unique value of the predictor, but incor-
porating a penalty in the log-likelihood to prevent overfitting (Hastie et al., 2001).
This results in shrinkage of the parameter estimates corresponding to the
basis functions of the spline toward zero. The penalty parameter determining the
degree of smoothness is commonly chosen by cross-validation, discussed below.

Normality. Residuals are also central to the evaluation of normality and
constant variance. Quantile–quantile plots provide the most direct assessment of
normality of the residuals; also potentially useful are histograms and non-
parametric density plots. Long tails and skewness are more problematic for linear
models than short-tailed distributions, with reduced efficiency the most likely
result. However, both types of violation become less important with increasing
sample size. In addition to diagnostic plots, which can be difficult to interpret,
particularly in small samples, numerous statistical tests for non-normality
are available. A disadvantage of these tests is that they lack sensitivity in small
samples, where violations are relatively important, and may in contrast ‘‘detect’’
trivial violations in large samples.

Departures from normality can sometimes be corrected by transforming the
outcome. Log and fractional power (square and cube root) transformations
are commonly used for right-skewed outcome variables. Rank transformation,
resulting in a uniform distribution, can be used when both tails are too long,
though this incurs some loss of information. When no normalizing transforma-
tion can be found, the generalized linear models discussed in more detail below
are often used.

Constant variance. Reduced efficiency as well as mistaken inferences can
result from serious violations of this assumption, in particular when the mean of
the outcome is being compared across subgroups of unequal size with substan-
tially different residual variance. The OLS estimates remain unbiased but naive
standard errors can be seriously misleading. In contrast to violations of the nor-
mality assumption, the adverse effects of unequal variance are not mitigated by
increasing sample size.
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The constant variance assumption can be checked by assessing patterns in the
spread of the residuals in the residual vs. predictor and residual vs. fitted plots
also used to assess linearity; similarly, the variance of the residuals within levels of
categorical predictors can be compared. As for normality, tests for heteroscedasti-
city are available (White, 1980), but have low power in small datasets and are thus
not recommended.

One often-used approach to rectifying non-constant variance is transformation
of the outcome. In many situations, the variance grows approximately in pro-
portion to the mean. In that case, the log transformation is ideal in that it will
remove heteroscedasticity. Often, other model assumptions hold on the trans-
formed scale, although this is not guaranteed.

Alternatively, if the variance matrix of the errors is known, inference can
proceed by weighted least squares, which will produce unbiased and efficient
point estimates of b̂: However, the required variance matrix is usually
unknown. For that case, a variety of asymptotic estimators, variants of the
robust or ‘‘sandwich’’ variance estimator (Huber, 1967) explained in more
detail below, are consistent in the presence of heteroscedasticity. In this case V

in Eq. (20) is a diagonal matrix with element vii estimated by some function of
ei ¼ ðY i � x0ib̂Þ; the residual for observation i. While the various estimators are
asymptotically equivalent, their behavior in small sample sizes can vary con-
siderably. In extensive simulations, Long and Ervin (2000) show that the basic
robust HC0 estimator, with v̂ii � e2i ; performs poorly in samples as large as
250 observations. They find that the more conservative HC3
estimator developed by MacKinnon and White (1985) has the best properties
and should be used when subject-matter knowledge or exploratory data
analysis suggests heteroscedasticity. In the HC3 estimator, v̂ii ¼ ðei=ð1� hiiÞÞ

2;
where hii is the ith diagonal element of the hat or projection matrix
H ¼ X(X0X)�1X0.

Influential points. We would mistrust regression results – which purport to
summarize the information in the entire dataset – if they change substantively
when one or a few observations are omitted from the analysis. This can happen
when high-leverage observations with extreme values of one or more of the
predictors, or an anomalous combination of predictor values, also have large
residuals. Especially in small datasets, the OLS coefficient estimates may
unduly reflect minimization of the contribution of these observations to RSS.
In linear models it is easy to compute the exact changes in each of the regression
coefficient estimates, called DFBETAs, when each of the N observations is
omitted; in logistic regression and other GLMs easily computed approximations
are available. Boxplots of these DFBETA statistics for each predictor can then
be used to identify influential points. Statistics that summarize the influence
of each observation on all coefficient estimates include DFITS (Welsch and
Kuh, 1977), Cook’s distance (Cook, 1977), and Welsch distance (Welsch,
1982). Identifying influential sets of observations that are influential in combi-
nation but not necessarily individually remains a difficult computational
problem.
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2.5. Repeated measures

It is not unusual to collect repeated measurements on the same individuals, at the
same centers, or from the same doctors. For example, in the medical services
utilization example, measurements were taken on the same person at baseline,
6, 12, and 18 months after randomization. Outcomes measured on the same
person, center, or doctor (sometimes called a cluster) are almost certain to be
correlated and this needs to be accommodated in the analysis. Another feature
of such data is that predictors can be measured at the observation level
(e.g., length of time post-randomization or whether the person was homeless a
majority of the preceding 6 months) or at the cluster level (gender, treatment
group).

Consider an elaboration of the introductory model to accommodate the
repeated measures:

Y it ¼ log costit ¼ b0 þ b1x1i þ b2x2i þ b3x3it þ b4x4it þ dit, (25)

where costit is the cost of medical care during the previous 6 months for t ¼ 6, 12,
or 18, x1i is 1 if the patient was in the case management group and 0 otherwise, x2i

is 1 if the patient is female and 0 otherwise, x3it is the patient’s BDI at time t, x4it is
1 if the patient was homeless a majority of the past six months and 0 otherwise,
and dit is an error term.

So far there is nothing in the model to incorporate the potential correlation
among measurements within a subject. One method is to directly assume a
correlation among the error terms:

var

di6

di12

di18

0B@
1CA ¼ Sd ¼

sd;6;6 sd;6;12 sd;6;18
sd;12;6 sd;12;12 sd;12;18
sd;18;6 sd;18;6 sd;18;18

0B@
1CA. (26)

Another common strategy is to induce a variance–covariance structure by
hypothesizing the existence of random effects. Essentially we decompose the error
term, dit into two pieces, a subject-specific term, b, and an observation-specific
term, e:

dit ¼ bi þ �it, (27)

with bi 	 i:i:d:Nð0; s2bÞ independent of �it 	 i:i:d:Nð0; s2� Þ: The bi are called
random effects since we have assigned them a distribution. In this case, (25) would
be called a mixed model, since it would include random effects as well as the usual
fixed effects x1, y, x4.

From this model is it easy to calculate the covariance between two observa-
tions on the same subject: covðY it;Y isÞ ¼ covðdit; disÞ ¼ s2b: Note that this result
holds without needing the assumption of normality of bi or �it: In a similar
manner it is straightforward to calculate the variance of Yit or Yis as s2b þ s2e and
the correlation between them as s2b=ðs

2
b þ s2eÞ:

E. Vittinghoff et al.158



So Eq. (27) corresponds to a special case of Eq. (26) with

Sd ¼ Is2� þ Js2b ¼

s2� þ s2b s2b s2b
s2b s2� þ s2b s2b
s2b s2b s2� þ s2b

0B@
1CA, (28)

where J is a matrix of all ones.

2.5.1. Estimation

Whether we formulate the model as Eq. (26) or the special case of Eq. (27), how
should we fit the model and conduct statistical inference? OLS does not accom-
modate the correlated data. If the variance–covariance matrix, V, were known,
then weighted least squares could be used, weighting by the inverse of the var-
iance–covariance matrix. This would yield:

b̂V ¼ ðX
0V�1XÞ�1X0V�1Y. (29)

Or with a full parametric specification (i.e., that the data are multivariate normal)
a logical method is maximum likelihood or a variant mentioned earlier, restricted
maximum likelihood.

Consider a general model for the situation with correlated data and a linear
model for the mean:

Y 	NðXb;VÞ. (30)

For the medical utilization example, if each of the N subjects had exactly three
observations that followed model (26), and if the data vector Y were ordered by
subject, then V ¼ IN  Sd; with  denoting a Kronecker product, i.e., AB is a
partitioned matrix with entries aijB. In particular V ¼ IN  Sd implies that V is
block diagonal with Rd on the diagonal.

It is easy to show that the OLS estimator is unbiased, even in the presence of
correlated data: Eq. (21) remains valid in this case. It is also straightforward to
show that its variance is given by Eq. (20); in this case, of course, V does not
simplify to s2I. Similar calculations show that the weighted least squares esti-
mator, Eq. (29), which is optimal under normality, is also unbiased and has
variance equal to (X0V�1X)�1. Interestingly the OLS estimator often retains
nearly full efficiency compared to the weighted least squares estimator (Diggle
et al., 2002).

In practical situations the variance–covariance matrix of the data is never
known and must be estimated. Typically V is a function of parameters h, and as
long as the parameters h are not functionally related to b, the ML equations for b

take the form:

b̂V̂ ¼ ðX
0V̂
�1
XÞ�1X0V̂

�1
Y, (31)

where V̂ is the ML estimator of V, i.e., V with the ML estimator of h substituted
for h (McCulloch and Searle, 2000).

Linear and non-linear regression methods in epidemiology and biostatistics 159



The ML equations for h are considerably more complicated and depend on
the specific parametric form of V so we will not elaborate here, but refer the
reader to McCulloch and Searle (2000) or Searle et al. (1992). Often the REML
log-likelihood based on Eq. (16), and introduced in Section 2.1, is maximized to
find an estimate of h, which is then used in Eq. (31). Again, see Searle et al. (1992)
for details.

2.5.2. Prediction

One of the advantages of the random effects approach, Eq. (27), is the ability to
generate predicted values for each of the random effects, bi, which we do not get
to observe directly. Mixed models are used, for example, in rating the perform-
ance of hospitals or doctors (Normand et al., 1997; Hofer et al., 1999). In such a
situation the outcome is a performance measure for the hospital, e.g., average log
cost, and the random effects would represent, after adjustment for the fixed
factors in the model, how a particular hospital or doctor deviated from the
average.

Predicted values from random effects models are so-called shrinkage estima-
tors because they are typically closer to a common value than estimates based on
raw or adjusted averages. The shrinkage factor depends on the random effects
variance and the sample size per cluster. When there is little variation from cluster
to cluster and/or when the sample sizes are small, the shrinkage is greatest,
reflecting the facts that clusters with extreme outcome values are likely to be due
to chance in those circumstances. On the other hand, with sufficient data per
cluster or evidence that clusters are quite different, the predicted values exhibit
little shrinkage and are closer to raw or adjusted averages. So with varying sample
sizes per cluster, estimates based on smaller sample sizes will show more shrink-
age. Shrinkage predictions can be shown theoretically (Searle et al., 1992) to give
more accurate predictions than those derived from the raw data. This occurs,
especially with small cluster sizes, because information from other clusters is used
to improve the prediction; this is sometimes called ‘‘borrowing strength’’ from the
other clusters.

2.5.3. Robust and sandwich variance estimators

The fact that the OLS estimator is unbiased and often fairly efficient suggests that
it could be used in practice. The problem with using the usual OLS regression
packages is that they get the standard errors and hence tests and confidence
intervals wrong by assuming all the data are independent.

In the case of longitudinal data, where we have independent data on M differ-
ent subjects, a direct estimator of the true variance of the OLS estimator, Eq. (20)
can be formed. Let Yi denote the ni outcomes for the ith subject, so that the
number of observations N ¼

PM
i¼1ni: Then the model for the ith subject, using a

corresponding model matrix Xi; is

Yi ¼ Xibþ �i i ¼ 1; . . . ;M

var½�i� ¼ Vi. ð32Þ
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In this case the OLS estimator b̂ ¼ ðX0XÞ�1ðX0YÞ can be written as

X
i

X0iXi

 !�1 X
i

X0iYi

 !
(33)

with variance

X
i

X0iXi

 !�1 X
i

X0iViXi

 ! X
i

X0iXi

 !�1
. (34)

A crude estimator of Vi can be formed as V̂i ¼ ðYi � Xib̂ÞðYi � Xib̂Þ
0 giving

vâr½b̂� ¼
X

i

X0iXi

 !�1 X
i

X0iV̂iXi

 ! X
i

X0iXi

 !�1
(35)

Even though V̂i is a crude estimator, Eq. (35) is often a good estimator of the
variance of b̂ due to the averaging over the M subjects and the ‘‘averaging’’ that
takes place when pre- and post-multiplying by Xi: This is called the ‘‘sandwich’’
estimator due to the sandwiching of the X0V�1X piece between (X0X)�1 terms and
is a robust estimator in the sense that it is asymptotically (as M-N) valid
without making assumptions about the variance–covariance structure. As such, it
is quite useful for sensitivity checks against model assumptions. When M is not
large, inferences based on the robust variance estimator may be liberal. This is
consistent with the results cited in Section 2.4 for the HC0 estimator, to which
Eq. (35) reduces when there is only one outcome per subject (see Kauermann and
Carroll, 2001).

2.5.4. Repeated measures ANOVA

Correlated data analyses can sometimes be handled by repeated measures
analysis of variance (ANOVA). When the data are balanced and appropriate for
ANOVA, statistics with exact null hypothesis distributions (as opposed to
asymptotic, likelihood based) are available for testing. However, the variance–
covariance structure is typically estimated by the method of moments, which may
be less efficient than maximum likelihood. For unbalanced data, tests are
approximate, and, even though approximations have been developed (e.g., the
Geisser–Greenhouse correction; Greenhouse and Geisser, 1959), may not achieve
nominal significance levels. Also, in the specification of approximate F-statistics,
it is not always straightforward to specify a denominator mean square (i.e., what
is the ‘‘right’’ error term?).

Maximum likelihood estimation generates test statistics relatively automati-
cally and gives better predictions of the random effects. Maximum likelihood
methods also generalize naturally to non-normally distributed outcomes (see, e.g.,
McCulloch and Searle, 2000), unlike repeated measures ANOVA. See McCulloch
(2005) for further discussion.
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2.6. Model selection

Many more potential predictor variables are commonly measured than can
reasonably be included in a multivariable regression model. In the introductory
example, many factors in addition to gender, the BDI, and homelessness are likely
to influence medical services utilization, including having health insurance and the
range of health conditions driving the need for such services. The difficult prob-
lem of how to select predictors can be resolved to serve three distinct uses of
regression. First, prediction: Can we identify which types of patients will use the
most medical resources? Regression is a powerful and general tool for using
multiple measured predictors to make useful predictions for future observations.
Second, isolating the effect of a single predictor: What is the effect of the case
management treatment on use of the emergency room, after adjusting for whether
the patients in the two treatment groups (although randomized) differ with regard
to gender, depression, or homeless status? Regression is a method to isolate the
effect of one predictor (treatment) while adjusting for other differences. And
third, understanding multiple predictors: Are the homeless at an increased risk of
mortality and does the case management especially help the homeless? Regression
is a method for understanding the joint and combined associations of all the
predictors with the outcome.

2.6.1. Prediction

Here the primary issue is minimizing prediction error rather than causal inter-
pretation of the predictors in the model. Prediction error (PE) measures how well
the model is able to predict the outcome for a new, randomly selected observation
that was not used in estimating the parameters of the prediction model. In this
context, inclusive models that minimize confounding may not work as well as
models with smaller numbers of predictors. This can be understood in terms
of the bias-variance trade-off. Bias is often reduced when more variables are
included, but as less important covariates are added, precision may suffer without
commensurate decreases in bias. The larger models may be overfitted to the data,
reflecting random error to such an extent that they are less able to predict new
observations than models with fewer predictors that give slightly biased estimates
but are less reflective of randomness in the current data.

Because R2, the proportion of variance explained, increases with each addi-
tional covariate, even if it adds minimal information about the outcome, a model
that maximizes R2 is unlikely to minimize PE. Alternative measures include
adjusted R2, which works by penalizing R2 for the number of predictors in the
model. Thus when a variable is added, adjusted R2 increases only if the increment
in R2 outweighs the added penalty. Mallow’s Cp, the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) are analogs which impose
respectively stiffer penalties for each additional variable, and thus lead to
selection of smaller models. Measures of concordance of the observed and
predicted outcomes for the logistic and Cox models include the c-statistic
and Somer’s D (Harrell et al., 1996), as well as adaptations of the Brier score
(Graf et al., 1999).
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More direct estimates of PE are based on cross-validation (CV), a class of
methods that work by using distinct sets of observations to estimate the model
and to evaluate PE. The most straightforward example is the learning set/test set
(LS/TS) approach, in which the parameter estimates are obtained from the
learning set and then used to evaluate PE in the test set. In linear regression,
computing PE is straightforward, using b̂ from the learning set to compute the
predicted value ŷ and corresponding residual for each observation in the test set.
The learning and test sets are sometimes obtained by splitting a single dataset,
often with two-thirds of the observations randomly assigned to the learning set.
However, using an independent sample as the test set may give more generalizable
estimates of PE, since the test set is generally not sampled from exactly the same
population as the learning set.

An alternative to LS/TS is leave-one-out or jackknife methods, in which all but
one observation are used to estimate the model, and then PE is evaluated for the
omitted observation; this is done in turn for each observation. In linear regression
models, the resulting predicted residual sum of squares (PRESS) can be computed
for the entire dataset with minimal extra computation. In logistic and Cox
models, fast one-step approximations are available.

Midway between LS/TS and the jackknife is h-fold cross-validation (hCV). The
dataset is divided into h mutually exclusive subsets and a measure of PE is
evaluated in each subset, using parameter estimates obtained from the remaining
observations. A global estimate of PE is then found by averaging over the h

subset estimates. Typically values of h from 5 to 10 are used.
Bootstrap methods provide a potentially more efficient alternative to cross-

validation for estimating prediction error (Efron, 1986; Harrell et al., 1996).
Prediction models are developed using the methods employed with the original
data but applied to bootstrap samples, and then evaluated using both the boot-
strap and original data. The estimated prediction error of the rule both developed
and evaluated using the original data is then corrected by the average difference
between the two prediction error estimates for the bootstrap datasets.

Modern computing power makes it possible to use CV or the bootstrap not
just to validate a prediction model using independent data but to guide iterative
predictor selection procedures. Among them, Breiman (2001) describes modern
methods that do not follow the paradigm motivated by the bias-variance trade-off
that smaller models are better for prediction. The newer methods tend to keep
all the predictors in play, while using various methods to avoid overfitting and
control variance; cross-validation plays a central role throughout.

The so-called shrinkage procedures also play an important role in prediction,
especially those made on the basis of small datasets. In this approach over-fitting
is avoided and prediction improved by shrinking the estimated regression coeffi-
cients toward zero, rather than eliminating weak predictors from the model.
Variants of shrinkage include the non-negative garrote (Breiman, 1995) and
the LASSO method, short for least absolute shrinkage and selection operator

(Tibshirani, 1997). An alternative to direct shrinkage implements penalties in the
fitting procedure against coefficient estimates which violate some measure of
smoothness. This achieves something like shrinkage of the estimates and thus
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better predictions; see Le Cessie and Van Houwelingen (1992) and Verweij and
Van Houwelingen (1994) for applications to logistic and Cox regression. These
methods derive from ridge regression (Hoerl and Kennard, 1970), a method
for obtaining slightly biased but stabler estimates in linear models with highly
correlated predictors.

Finally, Altman and Royston (2000) give an excellent discussion of validating
prediction models from a broader perspective, focusing on the ways in which
these models may or may not be useful in clinical and other practical applications.

2.6.2. Isolating the effect of a single predictor

In observational data, the main problem in evaluating a predictor of primary
interest is to rule out non-causal explanations of an association between this
predictor and the outcome as persuasively as possible – that is, confounding of the
association by the true causal factors, or correlates of such factors. Confounders
are associated with the predictor of interest and independently associated with the
outcome, and thus may explain all or part of the unadjusted association of
the primary predictor and the outcome. As a result, addition of the confounder
to the model typically affects the estimate for the primary predictor; in most cases,
the adjusted estimate is smaller. Potential confounders to be considered include
factors identified in previous studies or hypothesized to matter on substantive
grounds, as well as variables that behave like confounders by the statistical
measures. Two classes of covariates would not be considered for inclusion in the
model: covariates which are essentially alternative measures of either the outcome
or the predictor of interest, and those hypothesized to mediate its effect – that is,
to lie on a causal pathway between the predictor of interest and the outcome.

To rule out confounding more effectively, a liberal criterion of p o 0.2 for
inclusion of covariates in the model makes sense (Maldonado and Greenland,
1993). A comparably effective alternative is to retain variables if removing them
changes the coefficient for the predictor of interest by more than 10% or 15%
(Greenland, 1989; Mickey and Greenland, 1989). These inclusive rules are par-
ticularly important in small datasets, where even important confounders may not
meet the usual criterion for statistical significance. Among the common proce-
dures that could be used to select covariates, backward selection (that is, starting
with the full model and sequentially eliminating the least important remaining
variable) has the advantage that negatively confounded variables are less likely
to be omitted from the final model (Sun et al., 1999). Negatively confounded
variables appear more important when they are included in the model together,
in contrast to the more common case in which addition of a confounder to the
model attenuates the estimate for the predictor of interest.

Randomized experiments including clinical trials represent a special case where
the predictor of primary interest is the intervention; confounding is not usually an
issue, but covariates are sometimes included in the model for other reasons. These
include design variables in stratified experiments, including clinical center in
multicenter randomized trials, necessary for obtaining valid standard errors,
p-values, and confidence intervals. In linear models inclusion of important prog-
nostic variables can also substantially reduce residual error and thus increase
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power; Hauck et al. (1998) emphasize, however, that the adjusted model should
be pre-specified in the study protocol. Furthermore, adjustment in experiments
with binary or failure time outcomes can avoid attenuation of treatment effect
estimates in logistic (Neuhaus and Jewell, 1993; Neuhaus, 1998) and Cox models
(Gail et al., 1984; Schmoor and Schumacher, 1997; Henderson and Oman, 1999).
Hypothesis tests remain valid when there is no treatment effect (Gail et al., 1988),
but power is lost in proportion to the importance of the omitted covariates
(Lagakos and Schoenfeld, 1984; Begg and Lagakos, 1993). Note, however, that
adjustment for imbalanced covariates can potentially increase as well as decrease
the treatment effect estimate, and can erode both precision and power. Finally,
adjusted or de-attenuated treatment effect estimates are more nearly interpretable
as subject-specific – in contrast to population-averaged (Hauck et al., 1998).

2.6.3. Understanding multiple predictors

This is the most difficult case, and one in which both causal interpretation and
statistical inference are most problematic. When the focus is on isolating the effect
of a single predictor, covariates are included in order to obtain a minimally
confounded estimate. However, broadening the focus to multiple important pre-
dictors of an outcome can make selecting a single best model considerably more
difficult. For example, inferences about most or all of the predictors retained in
the model are now of primary interest, so overfitting and false-positive results are
more of an issue, particularly for novel and seemingly implausible associations.
Interaction – that is, the dependence of the effect of one predictor on the value of
another – will usually be of interest, but systematically assessing the large number
of possible interactions can easily lead to false-positive findings, some at least not
easily rejected as implausible. It may also be difficult to choose between alter-
native models that each include one variable from a collinear pair or set.
Mediation is also more difficult to handle, to the extent that both the overall
effect of a predictor as well as its direct and indirect effects may be of interest.
In this case, models which both exclude and include the mediator may be required
to give a full picture. Especially in the earlier stages of research, modeling
these complex relationships is difficult, prone to error, and likely to require
considerable re-analysis in response to input from subject-matter experts.

2.6.4. Number of predictors

The rationale for inclusive predictor selection rules, whether we are isolating the
effect of single predictor or trying to understand multiple predictors, is to obtain
minimally confounded estimates. However, this can make regression coefficient
estimates less precise, especially for highly correlated predictors. At the extreme,
model performance can be severely degraded by the inclusion of too many pre-
dictors. Rules of thumb have been suggested for number of predictors that can be
safely included as a function of sample size or number of events. A commonly
used guideline prescribes ten observations for each predictor; with binary or
survival outcomes the analogous guideline specifies ten events per predictor
(Peduzzi et al., 1995, 1996; Concato et al., 1995). The rationale is to obtain
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adequately precise estimates, and in the case of the logistic and Cox models, to
ensure that the models behave properly.

However, such guidelines are too simple. Their primary limitation is that the
precision of coefficient estimates depends on other factors as well as the number
of observations or events per predictor. In particular, the variance of a coefficient
estimate in a linear model (Eq. (22)) depends on the residual variance of the
outcome, which is generally reduced by the inclusion of important covariates.
Precision also depends on the multiple correlation between a predictor of interest
and other variables in the model, which figures in the denominator of Eq. (22).
Thus addition of covariates that are at most weakly correlated with the primary
predictor but explain substantial outcome variance can actually improve the
precision of the estimate for the predictor of interest. In contrast, addition of just
one collinear predictor can degrade its precision unacceptably. In addition, the
allowable number of predictors depends on effect size, with larger effects being
more robust to multiple adjustments than smaller ones.

In many contexts where these guidelines might be violated, power is low, in
which case misleading inferences can usually be avoided if confidence intervals are
used to interpret negative findings (Hoenig and Heisey, 2001). However, when
statistically significant associations are found despite the inclusion of more pre-
dictors than this rule allows – with 5 or more events per variable – only a modest
degree of extra caution appears to be warranted (Vittinghoff and McCulloch,
2007).

2.6.5. Model selection complicates inference

Underlying the confidence intervals and p-values which play a central role in
interpreting regression results is the assumption that the predictors to be included
in the model were specified a priori without reference to the data. In confirmatory

analyses in well-developed areas of research, including phase-III clinical trials,
prior determination of the model is feasible and important. In contrast, at earlier
stages of research, data-driven predictor selection and checking are reasonable,
even obligatory, and certainly widely used. However, some of the issues raised for
inference include the following:

� The chance of at least one type-I error can greatly exceed the nominal level used
to test each term.
� In small datasets precision and power are often poor, so important predictors
may be omitted from the model, especially if a restrictive inclusion criterion is
used.
� Parameter estimates can be biased away from the null, owing to selection of
estimates that are large by chance (Steyerberg et al., 1999).
� Choices between predictors can be poorly motivated, especially between col-
linear variables, and are potentially sensitive to addition or deletion of a few
observations. Altman and Andersen (1989) propose bootstrap methods for
assessing this sensitivity.

Breiman (2001) is skeptical of modeling causal pathways using such procedures,
and argues that computer-intensive methods validated strictly in terms of
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prediction error not only give better predictions but may also be more reliable
guides to ‘‘variable importance’’ – another term for understanding multiple
predictors, and with implications for assessing isolating the effect of a single
predictor.

Finally, we note that these issues in predictor selection apply broadly, to non-
linear as well as linear models.

3. Non-linear models

3.1. Introduction: A salary analysis

One of us recently completed an analysis of salary data for the compensation plan
at our university to check for inequities in pay between males and females. Not
surprising, the salary data is highly skewed right with a few extreme salaries
(mostly MDs who generate large amounts of clinical income). The traditional
method of handling such data is to consider a log transformation of the outcome,
which made the data approximately normally distributed. Here is an overly sim-
plistic version of the analysis to illustrate the basic points, adjusting only for
faculty rank before looking for a gender effect. The model uses a reference group
of assistant professor and is given by

logðsalaryiÞ ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ �i, (36)

where salaryi is the monthly salary of the ith faculty member, and x1i, x2i, and x3i

are the indicator functions for the faculty member being an associate professor,
being a full professor, and being male, respectively.

The gender effect, b3, was estimated to be 0.185 with a 95% confidence interval
of (0.116, 0.254). How do we interpret this result? It is unsatisfying to interpret
log(dollars) so the inclination is to back transform both sides of Eq. (36) giving

salaryi ¼ expfb0 þ b1x1i þ b2x2i þ b3x3i þ �ig

¼ eb0eb1x1ieb2x2ieb3x3ie�i

¼ g0g
x1i

1 gx2i

2 gx3i

3 di, ð37Þ

here gj ¼ ebj and di ¼ e�i: Ignoring the error term, d, for the moment, and taking
the ratio of the model equation, Eq. (37), for males and females of the same rank
gives

g3 ¼
g0g

x1

1 gx2

2 g13
g0g

x1

1 gx2

2 g03
(38)

In words, males make, on average, e0.185 ¼ 1.203 or about 20% more with a
confidence interval of (1.123, 1.289).

Being more careful, in Eq. (38), we have taken the ratio of values of
exp{E[log(salary)]}, which is not the same as E[salary]. However, if the log trans-
formation makes the errors, ei, normally distributed (or, more generally sym-
metrically distributed) as it did in this example, then the mean and the median are
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the same. So we can also interpret the model as a model for median log(salary).
Since

expfmedian½logðsalaryÞ�g ¼ expflogðmedian½salary�Þg ¼ median½salary�

(39)

we can interpret g3 in terms of median salaries. In particular, males have a median
salary that is, on average, about 20% higher than females.

This is a very reasonable interpretation and is, in many cases, preferred to a
model for mean salary, which is sensitive to the few extreme salaries. Further-
more, the ratio interpretation (20% more for males) is a common way of thinking
about salaries as opposed to an additive one (e.g., $1,800 more per month) since,
for example, raises are often decided on a percentage basis.

However, what about the medical center administrator in charge of making
sure the compensation plan generates enough revenue to pay all the faculty?
Clearly, she is concerned with mean salary since the total revenue has to exceed
the mean salary times the number of faculty. What models are available if we
require a model for mean salary?

The ratio form of the model, but for the mean salary, could be retained by
fitting a model of the form

salaryi ¼ g�0g
�x1i

1 g�x2i

2 g�x3i

3 þ ��i , (40)

Non-linear least squares could be used and would give consistent estimates even
though we would not feel comfortable assuming that the ��i were homoscedastic
and normally distributed. So confidence intervals or tests for g3 based on nor-
mality assumptions would be suspect but inferences could still be achieved, e.g.,
through bootstrapping. Fitting model (40) to the salary data gave ĝ�3 ¼ 1:165 with
a bootstrap confidence interval of (1.086, 1.244).

But it might be more satisfying to make mild, but reasonable assumptions
about the form of the distribution, for example that the salaries had a gamma
distribution with mean mi given by a multiplicative model and constant
coefficient of variation:

salaryi 	 GammaðmiÞ

logðmiÞ ¼ b��0 þ b��1 x1i þ b��2 x2i þ b��3 x3i:
(41)

Fitting this model gives an estimate expfb̂
��

3 g ¼ 1:223 with a model based con-
fidence interval of (1.138, 1.314) and a bootstrap confidence interval of (1.142,
1.310).

Models (40) and (41) differ from (36) in that they model the mean salary rather
than the median salary and by the fact that they are non-linear in the parameters.
Model (41) differs from (40) in that it is a generalized linear model: a known
transformation of the mean is linear in the parameters (log(mi) is linear in the b��j
whereas the log of the mean of model (40) is not linear in the g�j ). In the next
section, we present a model for survival times which is analogous to model (41)

E. Vittinghoff et al.168



but can also be written as a linear model with a log-transformed outcome and
non-normal errors.

3.2. The accelerated failure time model

Consider examining the effect of the managed care intervention on survival
among homeless patients. Survival times typically have a right-skewed distribu-
tion; hence we might use a model similar to the last model (41) proposed for
faculty salaries:

survivali 	 exponentialðmiÞ

logðmiÞ ¼ b0 þ bx1i þ b2x2i þ b3x3i
(42)

In Eq. (42), x1i is the intervention indicator, x2i is the BDI, and x3i indicates if the
subject is homeless. The exponential distribution is an important special case for
survival data because the so-called hazard function is constant under this model
(see Chapter 9 of this book on survival analysis).

However, an important difference between the salary and survival time out-
come variables is that many subjects either drop out prior to or survive past the
end of the study, so we only know that their actual survival times are greater than
their observed follow-up time Yi. In the salary example, this would amount to
knowing only that some of the faculty were earning more than, say, $500,000 per
year. These survival times are said to be right-censored.

The accelerated failure time (AFT) model can be written in terms of the
so-called survival function, Si(t) ¼ P(survivali 4 t). Under the AFT,

Pðsurvivali4tjxiÞ ¼ SiðtÞ ¼ S0 t expðx0ibÞ
	 


(43)

where S0(t) ¼ P(survivali 4 t|xi ¼ 0) is the baseline survival function. The base-
line survival function plays the role of the intercept b0 in other regression models,
and represents the survival function for a subject with all covariate values equal to
0; this can be made interpretable by centering covariate values. The effect of the
covariates in the model is to multiply t by expðx0ibÞ; in some sense speeding up or
slowing down time, depending on the sign of x0ib: The interpretation is similar to
the equivalence of 1 dog and 7 human years – for the dog, time is accelerated.

The AFT model can also be written as a linear model with log-transformed
outcome:

logðsurvivaliÞ ¼ �x
0
ibþ �i (44)

where ei follows some distribution. In particular, if survivali follows an exponen-
tial distribution, then ei follows the extreme-value distribution. When the distri-
bution of e (or, equivalently S0ð�Þ) is parametrically specified, maximum
likelihood estimation of b is straightforward. The likelihood of the possibly
censored follow-up time Yi has the form

f iðY iÞ
Di SiðY iÞ

ð1�DiÞ (45)
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where fi(t) ¼ �qSi(t)/qt is the density function, and Di is 0 if subject i is censored
and 1 otherwise. Intuitively, the likelihood contribution for a censored observa-
tion is just P(survivali 4 ti).

For example, under the exponential AFT model, with baseline survival
function S0(t) ¼ exp(�lt), the log-likelihood based on Eq. (45) is

XN

i¼1

Diflog lþ x0ib� lY i expðx
0
ibÞg þ ð1� DiÞf�lY iexpðx

0
ibÞg. (46)

This simplifies to

XN

i¼1

Diðlog lþ x0ibÞ � lY i expðx
0
ibÞ (47)

and is straightforward to maximize numerically.
In general, AFT models have proved useful in industrial applications and have

been advocated for biomedical research (Wei, 1992). However, when the distri-
bution of e is unspecified, estimation becomes a complex problem. Considerable
interest has centered on rank-based estimation in the semi-parametric case where
e follows an unspecified distribution. Estimation there has proven difficult due to
non-monotone, non-differentiable estimation functions (Lin and Geyer, 1992).
Recently, more computationally feasible approaches have been developed
(Jin et al., 2003).

3.3. Generalized linear models

We return to the example of Section 1.1 on utilization of health resources. Recall
that interest focused on an intervention to reduce health care costs, number of
emergency room visits, and death. How should we model the outcome of number
of emergency room visits as a function of the predictors: intervention group,
gender, baseline depression score, and homeless status?

This outcome is a count variable and skewed to the right. Furthermore, in
subsets of the data in which the mean value is higher (e.g., among homeless
persons) the variability is higher. Both of these features make a linear regression
model assuming normality and homoscedasticity of the outcome an unattractive
strategy.

We might consider a transformation of the outcome to try to make it more
approximately normally distributed and to achieve variance homogeneity. This
strategy will not work in cases where a large percentage of observations are zero,
as they were for this dataset. The most a transformation will do is move the large
percentage of data exactly equal to zero to a different value. For example the
square root transformation, a common transformation for count data, would
leave the same large percentage of zeros at zero.

The typical linear regression model for the mean is also unattractive for this
example. The mean number of emergency room visits for any particular
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configuration of the predictors must be positive, but a linear regression model will
not be so constrained.

3.3.1. Modeling a transformation of the mean

A solution is to separately define the distribution of the data and then model some
function of the mean instead of the mean itself. For simplicity we will consider
just the first measurement (at 6 months) and accordingly define Yi as the number
of emergency room visits for patient i between the baseline and 6-month visits.

Since the data are counts, we might consider a Poisson distribution as a first
step. With a small mean value, this may accurately model the large percentage of
zeroes. A common and useful function of the mean to model is the logarithm,
which we will justify later. That leads us to

Y i 	 indep: PoissonðE½Y i�Þ

logE½Y i� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i:
(48)

where x1i, x2i, and x3i are the indicators for being in the case management group,
female, and homeless, respectively, and x4i is the patient’s BDI at baseline.

Back transforming the mean in Eq. (48) gives the following non-linear regres-
sion equation relating the mean rate in 6 months to the predictors:

E½Y i� ¼ expfb0 þ b1x1i þ b2x2i þ b3x3i þ b4x4ig

¼ eb0eb1x1ieb2x2ieb3x3ieb4x4i

� g0g
x1i

1 gx2i

2 gx3i

3 gx4i

4 , ð49Þ

with gk � ebk :
Although many of the data points are zero (and hence not acceptable to log

transform) the mean value will not be exactly zero, allowing the use of the log
function. Also, the exponential in Eq. (49) keeps the mean value positive, allowing
flexible linear models for log E[Yi].

Model (49) is clearly a multiplicative model in the parameters and the coeffi-
cients have a ratio interpretation. As an example we calculate the ratio of the
means, holding intervention group, gender, and homeless status as fixed and
evaluating the BDI at the values x*+1 and x*:

E½Y jx4 ¼ x� þ 1�

E½Y jx4 ¼ x��
¼

expfb0 þ b1x1 þ b2x2 þ b3x3 þ b4ðx
� þ 1Þg

expfb0 þ b1x1 þ b2x2 þ b3x3 þ b4x�g

¼ expfb4g ð50Þ
¼ g4.

So g4 has the interpretation as the relative rate of emergency room visits (per
6 months) when BDI is increased by 1. The other coefficients are interpreted
similarly, for example, g3 is the relative rate for homeless compared to non-
homeless. So we see that modeling the log transformation of the mean, called
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using a log link, has two attractive features: it keeps the mean values positive and
provides a relative rate interpretation.

It has a different, more subtle advantage. This is a model for the number of
emergency room visits per half year. What if the subject is followed for only
2 months before dying? Let ti be the amount of time that subject i is followed.
Then we would like to build a model for the rate of emergency room visits
per unit time, namely, E[Yi]/ti. When using the log link the model then can be
rearranged to

log E Y i½ �=ti

	 

¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i,

logE½Y i� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ log ti. ð51Þ

Notably, we can still model the mean of a Poisson variate (Yi/ti is not Poisson
distributed since it can take non-integer values) as long as we include a term,
log ti, on the right-hand side of the equation. This is not quite a predictor or
covariate because it has no coefficient multiplying it and so it is called an offset.

Statistical analysis programs that fit such models usually allow the specification of
an offset so the program does not estimate an associated coefficient.

3.3.2. A log link binary data model

We now consider a similar model, but for binary data. Recall that in Section 1.1
we posited a logistic regression model for the binary outcome of death. This
model had multiplicative interpretations in terms of odds so that exponentiating a
coefficient gave the odds ratio of death associated with increasing the predictor by
1. But some analysts find odds ratios hard to interpret and instead prefer relative

risks, namely the ratio of the risk of death under two different scenarios. We now
investigate the consequences of using a log link for binary outcome data:

Y i ¼ 1 if subject i dies in the first 6 months and 0 otherwise

Y i 	 indep: BernoulliðE½Y i�Þ

log E½Y i� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i:

(52)

Using arguments the same as in Eq. (50) we see that g3 ¼ eb3 gives the relative risk
of death for homeless compared to non-homeless.

The log link is not as attractive in this scenario as it is for the Poisson model.
While the log link keeps the model for the mean (which is the probability of the
outcome for a binary data model) positive, as is required, it does not constrain the
probabilities to be less than 1 (which the logistic model does). So Eq. (52) is
mainly useful when the outcome is rare and probabilities near or above 1 will not
be estimated in a reasonable range of the model; otherwise the model can be
unstable to fit.

3.3.3. A general approach

Models like the one developed in this section are called generalized linear models

because a model that is linear in the parameters is assumed to hold for a known
function of the mean of the outcome. Besides the generality gained by using a
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different function of the mean, this approach has the advantage of separating the
decision as to the distribution of the outcome and what sort of model to create for
the mean. In particular, we illustrated two possible models for the Bernoulli
distribution, using either a logit or log link.

The key to use of a generalized linear model program is the specification of
the relationship of the variance to the mean. As examples, the Poisson distri-
bution assumes the mean (m) and variance (s2) are equal; the Bernoulli assumes
s2 ¼ m(1 � m); and the Gamma assumes s p m. Most programs use this infor-
mation as input to an iteratively re-weighted least squares algorithm and base
inferences on a quasi-likelihood (which does not require specification of a full
probabilistic model). The variance-to-mean relationship may be implied by the
distribution (as with a binary outcome), inferred from past experience (e.g., if
lipid measures are known to have standard deviation proportional to the mean),
or assessed using the data, for example by plotting subgroup standard deviations
against their means.

Generalized linear models have been extended to accommodate correlated data
using two main approaches. The first is by including random effects along with
likelihood estimation (e.g., McCulloch and Searle, 2000). The second approach
is the use of the robust variance estimate (as in Section 2.5.3) using so-called
generalized estimating equations (Diggle et al., 2002).

3.4. Transformations of predictors resulting in non-linear models

In the generalized linear models just described, a function of E[Yi|xi] is specified
by a linear combination of the regression parameters, and thus is similar to a
linear model. And in a previous section we described spline models which, despite
using elaborate transformations of continuous predictors, nonetheless retain this
property. However, some methods of transforming predictors induce models
which are intrinsically non-linear, in that no transformation of the mean of the
outcome can be represented as a linear function of the regression parameters.
These include segmented regression models, GAMs, CART, and other non-linear
models.

Segmented regression models. With segmented regression models, we postulate
that the mean of the outcome is a series of connected line segments (much like
linear regression splines). However, in segmented regression the general form is
specified, but with knots as well as slopes unknown. Segmented regression is thus
useful in problems where inference on the placement of the knots is of interest.
The technique has been used to examine if there were trends in cancer diagnosis
over time and, if so, which were the years of the change points (Hankey et al.,
1999). Such problems are not linear because the mean cannot be represented as a
linear function of the knots.

Generalized additive models (GAMs). An interesting class of models, termed
GAMs (Hastie and Tibshirani, 1990) relax the assumptions of the classic
generalized linear model. These models take the form

gðE½yjx�Þ ¼ f 0 þ f 1ðx1Þ þ � � � þ f pðxpÞ (53)
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where g( � ) is known but the fj( � ) are unspecified but smooth functions. These
models make it possible to examine the response as a non-linear function of the
predictors. The approach is useful for simultaneous non-parametric exploration
of the effects of predictors on the outcome. A description of the effect of the jth
covariate is given in the form of f̂ j :

Classification and regression trees (CART) (Breiman et al., 1984) divide the
predictor space into a series of mutually exclusive and exhaustive subsets. Given
the subsets, the model can be written as linear in a series of indicator functions.
The splits (or nodes) defined by CART are arrived at by recursive partitioning of
the predictor space based on a splitting criterion which measures homogeneity
within the nodes (e.g., the sum of the squared residuals). The approach is
appealing because it seamlessly handles many different predictor types and
missing values, automatically detects interactions and avoids distributional
assumptions. Pruning of the tree based on cross-validation is commonly used to
avoid over-fitting.

3.5. Other non-linear models

In many situations, scientific knowledge about a biological phenomenon of
interest suggests an appropriate form for the regression relationship between
outcome and predictors. Because many such models cannot be reduced to the
linear additive form familiar from conventional regression, alternate techniques
for estimation and inference are often required. An example is provided by anal-
yses of left ventricular pressure data aimed at estimating clinically relevant fea-
tures indicative of cardiac performance (Takeuchi et al., 1991). The basic data are
in the form of pressure data obtained from cardiac catheterization, and are in the
form of loops corresponding to individual heartbeats. A typical example is illus-
trated in Fig. 1. The points represent the observed data for a single beat, and the
line gives the theoretical pressure curve. The latter cannot be observed directly
because in a typical ventricular contraction, the heart valves release before max-
imum pressure is attained and observed pressure drops accordingly. The labeled
quantity Pmax represents the maximum pressure that the ventricular contraction
can theoretically generate. The goal of the analysis is to fit a plausible model to
the observed data (typically using multiple beats for a given individual), and use it
to estimate Pmax. A model for pressure, P(t), as a function of time, t, has been
proposed by Takeuchi et al. (1991), which takes the following form:

PðtÞ ¼ 1=2Pmax½1� cosðotþ CÞ� þ EDP. (54)

Here, Pmax, o, and C represent the amplitude, angular frequency, and phase
shift angle of the theoretical pressure curve, respectively. EDP refers to end-
diastolic ventricular pressure, which is defined as the distance from the lowest
point of the curve to the horizontal axis in the figure. The angular frequency
o ¼ 2p/T, where T is the duration of the approximated pressure curve. The
quantities o and EDP are typically obtained from separate measurements, leaving
C and Pmax as the primary unknown parameters to be estimated from the
observed pressure data.
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The model (55) can be viewed as a special case of the following general non-
linear regression model:

Y i ¼ f ðxi; hÞ þ �i i ¼ 1; . . . ;N, (55)

where f is a non-linear function of predictor variables x, h is a vector of param-
eters, and the errors e are typically assumed to be i.i.d. normally distributed.
Estimation is typically performed via non-linear least squares, where the estimate
ĥ is obtained as the minimizer of the following equation:

ĥ ¼ argmin
XN

i¼1

Y i � f ðxi; hÞð Þ
2 (56)

When the errors e are normally distributed this yields the maximum likelihood
estimate of h. Even in situations where this is not the case, estimation is typically
based on Eq. (56). For the data presented in Fig. 1, the estimates (approximate
standard errors) for Pmax and C were 337.2 (6.87) and �7.3 (0.007).

The asymptotic regression model, Eq. (57), provides another example of an
inherently non-linear model:

Y i ¼ b0 þ b2e
b2xi (57)

For negative values of b2, Y reaches the asymptote b0 as x increases. This model is
commonly applied in analyses of growth curves.

Additional examples arise in a number of applications where models of
biological phenomena exist. For instance, studies of pharmacokinetic properties
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Fig. 1. Ventricular pressure data for a single heart beat.
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of drugs often focus on quantities such as the rate of drug metabolism as a
function of applied dose. This relationship can frequently be described using
simple differential equation models, the parameters of which are useful in sum-
marizing characteristics of the drug. The Michaelis–Menten model is an example
(Pinheiro and Bates, 2000). Other examples include models of carcinogenesis
(Day, 1990) and of infectious disease spread (Becker, 1989). Techniques for
estimation and inference for such models are reviewed in a number of books,
including Seber and Wild (2003) and Bates and Watts (1988).

4. Special topics

4.1. Causal models

Regression models used to isolate the effect of a predictor or understand multiple
predictors often have the implicit goal of assessing possible causal relationships
with the outcome. The difficulties of achieving this goal are clearly recognized in
epidemiology as in other fields relying on observational data: in particular the
requirement that all confounders must have been measured and adequately
adjusted for in the model. The superiority of experiments, including clinical trials,
for determining causation stems from random assignment to treatment or
experimental condition, more or less ensuring that all other determinants of the
outcome are balanced across the treatment groups, and thus could not confound
treatment assignment. In contrast, treatment actually received could be con-
founded; estimating the causal effect of treatment in trials with poor adherence
poses problems similar to those posed by inherently observational data.

Propensity scores (Rosenbaum and Rubin, 1983) attempt to avoid potential
difficulties in adequately adjusting for all confounders of a non-randomized
treatment by adjusting instead for an estimate of the probability of receiving the
treatment, given the full range of confounders (that is, the propensity score);
related strategies are to stratify by or match on the scores (D’Agostino, 1998).
Closely related inverse probability of treatment weighted (IPTW) models weight
observations in inverse proportion to the estimated probability of the treatment
actually received (Hernan et al., 2001; Robins et al., 2000). Propensity scores are
most clearly an improvement over conventional regression adjustment when the
outcome is binary and rare, limiting our ability to adjust adequately, but treat-
ment is relatively common, so that the propensity score is relatively easy to model.
However, this approach does not avoid the crucial requirement that all con-
founders are measured. Moreover, variability in the effect of treatment across
levels of the propensity score, as well as gross dissimilarity between the treated
and untreated subsamples, can invalidate the analysis (Kurth et al., 2005).

Instrumental variables are an alternative method for estimating causal effects
from observational data (Greenland, 2000). An instrumental variable is associ-
ated with the treatment received, but uncorrelated with the outcome after con-
trolling for treatment received. Because treatment assignment meets these criteria,
instrumental variable arguments can be used to motivate a well-known estimator
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of the causal effect of treatment in trials with all-or-nothing adherence in which
the observed treatment–control difference in the mean value of the outcome is
inflated by the inverse of the proportion adherent. In observational settings,
identification and validation of the instrumental variable is of course crucial.
Chapter 2 by Rubin on causal effects provides a complete discussion of these
issues.

4.2. Measurement error and misclassification

Data collected in many experimental and observational studies in epidemiology
and medicine are based on measurements subject to error. Errors may occur in
both the outcome and predictors of regression models, and may arise from a
number of sources, including laboratory instruments and assays, medical devices
and monitors, and from participant responses to survey questions. The presence
of measurement error raises a legitimate concern that estimates from fitted
regression models may be biased, and that associated inferences may be incorrect.

There is a wealth of published research on the impacts of measurement error in
predictors in the context of linear models (Fuller, 1987). Most of this relies on the
classical error model, in which the observed (and error prone) predictor W is
related to the actual predictor X via the additive model

W ¼ X þU , (58)

in which U is a random variable with conditional (given X and other predictors
measured without error) mean zero and variance s2u: In the linear regression
model (8) with a single predictor X, regression of the outcome Y on the error-
contaminated W in Eq. (58) yields an attenuated estimate b� of the true coefficient
b; defined as E½Y jX ¼ xþ 1� � E½Y jX ¼ x�: The degree of attenuation is
described by the multiplicative factor

s2�
s2� þ s2u

o1. (59)

An additional impact of this type of measurement error is inflation of the residual
variance of the outcome, resulting in reduced precision of estimates. In practice,
the impact of measurement error in this context depends on a number of factors,
including the nature of the assumed measurement error model, presence of
additional predictors, and bias in W as an estimate of X.

In the case of non-linear models (e.g., generalized linear models with links
other than the identity), the effects of measurement error are more complex than
in the situation just described. Although these are usually manifested as atten-
uation in estimated coefficients and inflation of associated variances, the nature of
the bias depends on the model, the type of parameter, and the assumed error
model. The book by Carroll et al. (2006) provides broad coverage of this topic for
non-linear models.

Measurement error can also occur in the outcome variable Y. In the case of
linear models, this is generally handled via modifications of the conditional error
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distribution. Approaches for non-linear models are discussed in Carroll et al.
(2006) and illustrated in Magder and Hughes (1997).

4.3. Missing data

For the medical services utilization example, consider a regression model for the
effect of depression on the cost of care. It is possible that some subjects may have
missing values for cost and/or depression, as measured by the BDI. The possible
causes for these missing values could be missed visits or declining to fill out a
sensitive item on a questionnaire. When the fact that the data are missing is
related to the outcomes of interest, loss of efficiency or serious distortion of
study results can occur. Therefore it is useful to classify the mechanism of missing
data to understand these relationships and to inform analytic approaches. An
exhaustive treatment is given by Little and Rubin (1986).

Denote the complete data as Yfull. In the example, this would be the values of
depression and cost of care on all subjects. The available values of cost and
depression are denoted by Yobs while the missing values are denoted as Ymiss. The
variable Ri indicates the pattern of missing data for subject i; in particular,
Ri ¼ (0,0) if both cost and BDI are available, (1, 0) if only cost is missing; (0, 1) if
only BDI is missing; and (1, 1) if both are missing. Let g(R;c) denote the
distribution of R.

Missing data fall into three broad classes. Data are said to be missing com-

pletely at random (MCAR) if the distribution of R depends on neither Ymiss nor
Yobs: that is, g(R|Ymiss, Yobs; c) ¼ g(R;c). If the data are missing at random

(MAR) the distribution of R does not depend on Ymiss after conditioning on Yobs.
Formally, this implies that g(R|Ymiss, Yobs; c) ¼ g(R|Yobs; c). Both of these are
ignorable missing data mechanisms, in the sense, explained in more detail below,
that we can consistently estimate the regression parameters of interest without
loss of efficiency while ignoring g(R|Yobs; c). Otherwise, the data are said to have
a non-ignorable missing data mechanism, or to be missing not at random
(MNAR).

It can be shown that if data are MCAR, then naive approaches which just
delete observations with missing values (so-called complete case analyses) will
yield unbiased estimates. However, this can be quite inefficient if the number of
omitted observations is large. Further, the MCAR assumption is not credible in
many practical situations. Fortunately, it can be shown that for data which are
MAR, likelihood-based methods will yield correct inferences. This is because the
likelihood

f ðYobs; hÞ ¼

Z
f ðYobs;Ymiss; hÞdYmiss (60)

is proportional to the full data log-likelihood

f ðR;Yobs; hÞ ¼

Z
f Yobs;Ymiss; hð Þg RjY;Yobs;Ymiss; cð ÞdYmiss (61)

which under the MAR mechanism is then
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Z
f Yobs;Ymiss; hð ÞgðRjYobs; cÞdYmiss (62)

which simplifies to the observed data likelihood

f Yobs; hð Þg RjYobs; cð Þ (63)

Provided there are no common elements in the parameter vectors h and c, we can
safely maximize Eq. (60) while ignoring g(R|Yobs; c). Many statistical approaches
are likelihood-based and thus can easily handle MAR data without modeling the
missing data mechanism.

In some cases, it is difficult to calculate or maximize the likelihood for the
observed data; however, it would be easy to calculate the likelihood estimates for
the complete data. In such cases, the EM algorithm (Dempster et al., 1977) is a
useful approach to ML estimation. The EM algorithm alternates between an E
(expectation) step and an M (maximization) step. In the E-step, we calculate the
expected values of the sufficient statistics (i.e., the data or data summaries) of the
complete data log-likelihood, conditional on the observed data and current
parameter estimates. Then in the M-step the parameters of the complete data
log-likelihood are maximized, using the expected values from the E-step. The
algorithm is iterated to convergence and produces parameter estimates which can
be shown to maximize the observed data log-likelihood.

To see how the EM algorithm might work, consider the exponential AFT
model for censored survival times presented in Section 3.2. When the survival
times are censored, the observed data consist of (Y, D, X), where Yi ¼ Ti, the
actual survival time, only for uncensored subjects (i.e. Di ¼ 1), and X is
the familiar matrix of predictors. In contrast, the full data are just (T, X). The
log-likelihood for the full data isXn

i¼1

log lþ x0ib� lTi expðx
0
ibÞ (64)

The more complicated log-likelihood for the observed data, Eq. (46), could
be maximized by repeated maximization of Eq. (64) using the EM algorithm.

In the pth iteration of the E-step, we calculate eTðpÞ; the expected value of T,

given the observed data and the current parameter estimates ðl̂
ðpÞ
; b̂
ðpÞ
Þ: Under the

exponential AFT,

~T
ðpÞ

i ¼ E TijY i;Di;xi;l̂
ðpÞ
; b̂
ðpÞ

� �
¼

Y i Di ¼ 1

Y i þ exp �x0ib̂
ðpÞ

� �
=l̂
ðpÞ

Di ¼ 0

8<: ð65Þ

In the pth iteration of the M-step, updated parameter estimates ðl̂
ðpþ1Þ

; b̂
ðpþ1Þ
Þ

are obtained by maximizing Eq. (64) over the parameters, using eTðpÞ in place of T.
The two-step algorithm is iterated to convergence, yielding estimates ðl̂em; b̂emÞ

that maximize Eq. (46).
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An alternative approach is to augment the data by multiple imputation (Rubin,
1987; Schafer, 1999). In this method, we sample the missing values from
f{Yfull|Yobs}, resulting in several ‘‘completed’’ datasets, each of which is analyzed
using complete-data methods. Summary parameter estimates are found by aver-
aging over the estimates from each of the imputations; in addition, the averaged
standard errors are inflated by a function of the between-imputation variability in
the parameter estimates, to reflect that fact that some of the data are imputed, not
observed, and thus only known approximately. This approach can be used in
settings where the E-step is difficult to calculate analytically, as well as in MNAR
problems where the missingness mechanism can be specified.

Many techniques discussed in this chapter (e.g., generalized estimating equa-
tions) are not likelihood based. Robins et al. (1994) proposed an approach in
which an explicit model for the missingness is postulated. Weights inversely pro-
portional to the estimated probability that each subject is observed are then
incorporated explicitly in the analysis. This approach is adapted from classic
methods for survey sampling developed by Horvitz and Thompson (1952). By
incorporating the inverse weights, non-likelihood based methods such as GEE are
valid for MAR data.

Analysis of MNAR data requires detailed specification of the missing data
mechanism. Two alternative approaches stem from different decompositions of
the full-data likelihood. The decomposition Eq. (61) represents a so-called selec-
tion model (Little, 1995), because the missingness or selection mechanism is
specified by g(R|Yobs,Ymiss;c); results are known to be sensitive to this specifica-
tion (Kenward, 1998). Under the alternative pattern mixture model, the complete
data likelihood is decomposed as

f R;Yobs; hð Þ ¼

Z
f � Yobs;YmissjR; h

�
ð Þg� R; c�ð ÞdYmiss (66)

(Little, 1993). In this case summary parameter estimates are weighted averages
over the various missing data patterns. The two strategies are closely related but
pattern mixture models typically are more computationally feasible (Schafer and
Graham, 2002).

As an example of the pattern mixture model, consider a randomized placebo-
controlled trial of clopidogrel, an antiplatelet agent, administered in the first
24 hours following a mild stroke. One objective of the trial is to assess the effect of
clopidogrel on cognitive function, as measured by the Digit Symbols Substitution
Test (DSST). The DSST will be administered at enrollment, 1 month, and
3 months. Denote the DSST values for subject i by Y0i ¼ ðY 0i;Y 1i;Y 2iÞ: Pattern
mixture models specify the distribution of Y conditional on the pattern of missing
data. Nearly all subjects will have a baseline DSST, so missing data will involve
missing values of Y1 and Y2. We again denote patterns of missing data by Ri, the
vector of missing data indicators, with values (0, 1, 0), (0, 0, 1), or (0, 1, 1), when
the second, third, or both follow-up DSST values are missing, respectively. We
index those three patterns of missing data as M ¼ 1, 2, 3, respectively; subjects
with complete data (i.e., R ¼ (0, 0, 0)) are indexed as pattern M ¼ 0.
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Then the pattern mixture model is the product of a multinomial model for M

and a model for f(Y|M). One possibility might be to estimate m ¼ E(Y) and
R ¼ cov(Y), the mean and variance of Y, the first of which can be expressed as

m ¼
X3
m¼0

mðmÞPðM ¼ mÞ: (67)

where l(m)
¼ E(Y|M ¼ m). The pattern mixture approach obtains MLEs of l

through likelihood-based estimates of the parameters of the mixture model (68).
The MLEs of P(M ¼ m) are just the observed frequencies of the missing

data patterns. However, the parameters l(m) are under-identified by this model.
For instance, there are no data on Y2 in the subsample with M ¼ 2, so
mð2Þ2 ¼ E(Y2|M ¼ 2) cannot be estimated. To estimate all parameters, identifying

restrictions must be imposed. For example, we might assume that the trend over
time is the same for M ¼ 2 as for M ¼ 1. Other potential restrictions encompass
the familiar MCAR and MAR assumptions; if the data are MCAR, the param-
eterization is simplified because l(m) and R(m) are identical for all patterns. It is
also possible to specify pattern mixture models which allow for more general
ignorable and non-ignorable missingness mechanisms (Little, 1993). An impor-
tant advantage of these models, especially compared with selection models, is the
fact that the identifying restrictions are explicitly specified. Furthermore, the
likelihoods for these models are straightforward to maximize as compared to
those for selection models.

The weighting approach described earlier can also be applied to MNAR data;
see Bang and Robins (2005) for a review. This approach is related to selection
models, but handles missingness using a weighted analysis. As before, data points
are weighted in inverse proportion to the estimated probability of being observed.
Approaches such as these are discussed more fully in Chapter 2 of this volume,
which deals with causal inference.

4.4. Computing

Regression problems have been one of the major driving forces in many of the
recent advances in numerical computing. Books by Gentle (2005), Monahan
(2001), and Thisted (1988) cover many of these, and provide details on compu-
tational techniques used in many of the methods covered here.

The continued expansion in the number of software tools to perform statistical
analyses coupled with increases in the processing speed and capacity of modern
computer hardware has made what were once considered insurmountable tasks
practical even for many desktop machines. Major commercial statistical software
packages with extensive facilities for many of the regression methods described
here include SAS (SAS Institute Inc., 2005), Stata (StataCorp LP., 2005), SPSS
(SPSS Inc., 2006), and S-PLUS (Insightful Corporation, 2006). The R statistical
programming language (R Development Core Team, 2005) is public domain
software most similar to S-PLUS. Despite substantial overlap in regression-
oriented features, these packages are quite different in terms of programming
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style and user interface. SAS, SPSS, and Stata have generally more developed and
‘‘user friendly’’ interfaces, while S-PLUS and R are more akin to interpreted
programming languages that provide many ‘‘canned’’ procedures, but also allow
great flexibility in user-defined functions (including support for linking with
external routines written in compiled languages such as C and FORTRAN).

Table 1 summarizes capabilities for many of the methods covered here.
Although all offer similar features for standard regression methods and gener-
alized linear models, the depth of coverage of more specialized techniques varies
considerably. In the area of mixed-effects regression, the MIXED and NLMIXED

procedures in SAS are more fully featured than competitors. Stata is distin-
guished by the implementation of generalized estimating equation and robust
variance methods as an option with most of the included regression commands.
In addition, methods for bootstrap, jackknife, and permutation testing are
implemented in a very accessible way. Because of their extensibility and the
availability of a large range of procedures written by researchers, S-PLUS and R
tend to have more functionality in the areas of non-parametric regression,
smoothing methods, alternative variable selection procedures, and approaches for
dealing with missing data and measurement error.

In addition to the major packages covered here, there are a number of
specialized software offerings that target particular regression methods or related
numerical computations. These include CART (Steinberg and Colla, 1995) soft-
ware for classification and regression tree methods and the LogXact (Mehta and
Patel, 1996) program for exact logistic regression. Additional packages that focus
more generally on numerical computation, but that also provide more limited
regression capabilities (and also support user-defined regression functions)
include Matlab (MathWorks, 2006), Mathematica (Wolfram Research Inc.,
2005), and Maple (Maplesoft, 2003).
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Logistic Regression

Edward L. Spitznagel Jr.

Abstract

This chapter provides an introduction to logistic regression, which is a powerful

modeling tool paralleling ordinary least squares (OLS) regression. The differ-

ence between the two is that logistic regression models categorical rather than

numeric outcomes. First, the case of a binary or dichotomous outcome will be

considered. Then the cases of unordered and ordered outcomes with more than

two categories will be covered. In all three cases, the method of maximum

likelihood replaces the method of least squares as the criterion by which the

models are fitted to the data. Additional topics include the method of exact

logistic regression for the case in which the maximum likelihood method does

not converge, probit regression, and the use of logistic regression for analysis of

case–control data.

1. Introduction

Logistic regression is a modeling tool in which the dependent variable is cate-
gorical. In most applications, the dependent variable is binary. However, it can
have three or more categories, which can be ordered or unordered. Except for the
nature of the dependent variable, logistic regression closely resembles ordinary
least squares (OLS) regression.

A comparison with OLS regression can lead to a better understanding of
logistic regression. In both types of regression, the fitted models consist of
intercept and slope coefficients. In OLS regression, the fitting criterion is the
principle of least squares. In least squares, the intercept and slope coefficients are
chosen to minimize the sum of squared deviations of the dependent variable’s
values from the values given by the regression equation. In logistic regression, the
fitting criterion is the principle of maximum likelihood. In maximum likelihood,
the intercept and slope coefficients are chosen to maximize the probability of
obtaining the observed data. For OLS regression, the principles of maximum
likelihood and least squares coincide if the assumptions of normality, equal
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variance, and independence are satisfied. Therefore, the use of maximum like-
lihood for logistic regression can be regarded as a natural extension of the fitting
method used in OLS regression.

In OLS regression, the model coefficients can be estimated by solving a system
of linear equations, called the normal equations. In logistic regression, there is no
counterpart to the normal equations. Model coefficients are estimated by search-
ing iteratively for the values that maximize the likelihood. Modern software
usually finds the maximum in less than a half dozen iterative steps.

In OLS regression, hypotheses about coefficients are tested by using sums of
squared deviations to compute test statistics known as F ratios. In logistic re-
gression, hypotheses about coefficients are tested by using likelihoods to compute
test statistics known as likelihood ratio w2.

In both OLS and logistic regression, every coefficient estimate has an asso-
ciated standard error. In the case of OLS regression, these standard errors can be
used to perform Student’s t-tests on the coefficients and to compute t-based
confidence intervals. In logistic regression, these standard errors can be used
to perform approximate Z (or w2) tests on the coefficients and to compute
approximate Z-based confidence intervals.

2. Estimation of a simple logistic regression model

The example below illustrates how these ideas are used in logistic regression.
Consider an experiment in which disease-vector mosquitoes are exposed to 9
different levels of insecticide, 50 mosquitoes per dose level, with the results shown
in Table 1.

In Fig. 1, the vertical axis shows the number killed at each dose level, from 1 at
the lowest level to 50 at the highest level. Owing to the curvature at the low and
high levels of insecticide, a straight line produced by a linear function will not give
an adequate fit to this data. In fact, a straight line would imply that for very low
doses of insecticide, the number of kills would be less than 0, and for very high
doses of insecticide, the number of kills would be larger than the number of
mosquitoes exposed to the dose.

The natural bounds on the probability of kill, 0 and 1, constrain the model so
that no linear function can adequately describe the probability. However, we can
solve this problem by replacing probability with a function that has no lower
or upper bounds. First, if we replace probability with odds ( ¼ p/(1�p)), we
open up the range on the upper end to+N. The lower end remains at 0, and

Table 1

Relationship between insecticide dose and number of mosquitoes killed

Dosage 1 2 3 4 5 6 7 8 9

Mosquitoes 50 50 50 50 50 50 50 50 50

Killed 1 2 4 17 26 39 42 48 50
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probability ¼ 1/2 corresponds to odds of 1. To open up the range on the lower
end and symmetrize it at the same time, we can take the natural logarithm of
odds, known as the logit function, ln(p/(1�p)). When p ranges from 0 to 1, the
logit function ranges from �N to +N, in symmetric fashion. The logit of 1/2 is
equal to 0. The logits of complementary probabilities, such as 1/3 and 2/3, have
the same size but opposite signs: 7ln(2) ¼70.693.

Using the SAS LOGISTIC procedure (SAS Institute Inc., 2004), we obtain the
following output estimating the logit as a linear function of dose:

Parameter df Estimate Standard Error w2 Pr4w2

Intercept 1 �5.0870 0.4708 116.7367 o0.0001
Dose 1 1.0343 0.0909 129.3662 o0.0001

The estimated log-odds of death is

logit ¼ �5:0870þ 1:0343� dose.

From this formula we can estimate the probability of mosquito death for
any dose level, including but not limited to the actual doses in the experiment.
Suppose, for example, that we would like to know the probability ( ¼ expected
fraction) of insect kill with 6.5 units of insecticide. The estimated logit is
�5.0870+1.0343� 6.5 ¼ 1.636. To convert into probability, we reverse the two
steps that took us from probability to the logit. First, we exponentiate base-e to
convert to odds: exp(1.636) ¼ 5.135. Second, we convert odds to probability by
the formula p ¼ odds/(odds+1): 5.135/6.135 ¼ 0.8346. Thus, with a 6.5 unit
dose, we expect 83.46% of insects to be killed. Figure 2 demonstrates the
close agreement between actual numbers killed and the computed probabilities
multiplied by 50.
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Fig. 1. Graph of proportion killed as a function of insecticide dose.
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The coefficient of dose, 1.0343, estimates the increase in log-odds per unit of
dose. The exponential of this number, exp(1.0343) ¼ 2.813, estimates the mul-
tiplicative increase in odds of insect death per unit of dose. This value is called the
odds ratio. It is the most commonly used number in logistic regression results,
usually reported along with approximate 95% confidence limits. These limits can
be obtained by adding and subtracting 1.96 standard errors from the slope
estimate, then exponentiating: exp(1.034371.96� 0.0909) ¼ (2.354, 3.362). Most
statistics packages will compute both odds ratios and confidence limits, either
automatically or as options.

If we divide the coefficient 1.0343 by its standard error, 0.0909, we obtain
the value of an asymptotically standard normal test statistic Z ¼ 1.0343/
0.0909 ¼ 11.38 for testing the null hypothesis that the true value of the slope is
equal to 0. Some statistics packages report the square of this statistic,
11.382 ¼ 129.4 in the table above, which has an asymptotic w2 distribution
with 1 df, and is called a Wald w2. The p-value will be the same, whichever statistic
is used.

As we discussed earlier, estimation of a logistic regression model is achieved
through the principle of maximum likelihood, which can be thought of as a
generalization of the least squares principle of linear regression. In maximum
likelihood estimation, we search over all values of intercept and slope until we
reach the point where the likelihood of obtaining the observed data is largest.
This occurs when the intercept is �5.0870 and the slope is 1.0343. This maximized
likelihood is very small, 3.188� 10�67. Such small values are typical in maximum
likelihood calculations. Accordingly, in lieu of the likelihood itself, most statis-
tical software reports the natural logarithm of the likelihood, which in our case is
ln(3.188� 10�67) ¼ �153.114.

Besides being the means of estimating the logistic regression coefficients, the
likelihood also furnishes us a means of testing hypotheses about the model. If we
wish to test the null hypothesis of no relationship between dose and insect
mortality, we re-fit the model with the slope coefficient constrained equal to 0.
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Fig. 2. Logistic regression curve fitted to insecticide lethality data.
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Doing so produces an intercept estimate of 0.0356 and the smaller log-likelihood
of �311.845. To compare the two models, we multiply the difference in log-
likelihoods by 2, 2� (�153.114 � (�311.845)) ¼ 2� 158.731 ¼ 317.462. If the
null hypothesis being tested is true, we would have an asymptotic w2 distribution
with degrees of freedom equal to the number of coefficient constraints, which in
this case equals 1. This is known as a likelihood ratio w2, as it is equal to twice the
log of the ratio of the two likelihoods, unconstrained to constrained.

Taking advantage of the analogy with OLS, the likelihood ratio w2 value of
317.462 is the counterpart of the F-ratio obtained by computing sums of squares
with and without constraints, whereas the earlier values of Z ¼ 11.38 and the
Wald w2 Z2

¼ 129.4, are the counterparts of Student’s t and its square, computed
by comparing a coefficient estimate with its standard error. In the case of OLS,
the two different computations give identical and exact results. In the case of
maximum likelihood, the two different computations give different, and asymp-
totic, rather than exact results. Ordinarily, we would expect the two different w2 to
be approximately equal. The primary reason for the large difference between
them is the strength of the dose–mortality relationship. Should it ever happen
that the likelihood ratio and Wald w2 lead to opposite conclusions in a hypothesis
test, the likelihood ratio w2 is usually preferred.

3. Two measures of model fit

In our example, both w2 test statistics provide strong evidence of the relationship
between dose and mortality, but they do not provide an estimate of how strong
the relationship is. The reason is that test statistics in general depend on sample
size (if the null hypothesis of no relationship is false). In OLS regression, the
coefficient of determination, R2, is the most commonly used measure of the
strength of relationship. For maximum likelihood estimation, Cox and Snell
(1989) proposed an analog of R2 computed from the likelihood ratio w2:

Cox2Snell R2 ¼ 1� expð�w2=nÞ ¼ 1� expð�317:462=450Þ ¼ 0:5061.

Nagelkerke (1991) pointed out that, in the case of discrete models such as
logistic regression, the maximum value possible with this definition will be less
than 1. He proposed that the Cox–Snell R2 be divided by its maximum possible
value, to produce a closer analog of the R2 of least-squares regression. In our
example, the Nagelkerke R2

¼ 0.6749. Both Cox–Snell and Nagelkerke R2 values
are readily available in most statistics packages.

Logistic regression also has a direct and natural measure of relationship
strength called the coefficient of concordance C. It stems from the purpose of
logistic regression, to estimate probabilities of an outcome from one or more
independent variables. The coefficient of concordance measures the fraction of
pairs with different outcomes in which the predicted probabilities are consistent
with the outcomes. For a pair of mosquitoes, one dead and the other alive, if the
calculated probability of death for the dead mosquito is greater than the
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calculated probability of death for the live one, those probabilities would be
consistent with the outcomes in that pair.

In our example, of 450 mosquitoes, 221 survived and 229 died. We thus have
221� 229 ¼ 50,609 pairs with different outcomes. The great majority of these
pairs, 45,717, were concordant, with the dead mosquito having the higher prob-
ability of death. A much smaller number, 2,517, were discordant, with the live
mosquito having the higher probability of death. There were also 2,375 ties, in
which the dead and live mosquitoes had exactly the same probability of death.
The ties are counted as half concordant and half discordant, and so the coefficient
of concordance is C ¼ (45,717+2,375/2)/50,609 ¼ 0.927.

Like R2, the coefficient of concordance has range 0–1, but, unlike R2, its
expected value under the null hypothesis of no relationship is 0.5 rather than 0.
When logistic regression is used in medical diagnosis, a graph called the
receiver operating characteristic (ROC) curve is used to portray the effectiveness
of the regression model. This graph, in Fig. 3, shows the tradeoff in the pro-
portion of true positives (sensitivity) versus the proportion of false positives
( ¼ 1�specificity). The area beneath this curve is equal to C. A value of C close to
1 means the diagnosis can have simultaneously high sensitivity and high
specificity. Further information regarding the use of ROC curves can be found
in Chapter 5 of Hosmer and Lemeshow (2000) and in McNeil et al. (1975).

4. Multiple logistic regression

As with OLS regression, logistic regression is frequently used with multiple
independent variables. Suppose in our example we had treated 25 male
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Fig. 3. Interpretation of logistic regression in terms of a receiver-operating characteristic curve.
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and 25 female mosquitoes at each dose level, with the results shown in
Table 2.

Within each group, there is a dose–response relation between insecticide and
mosquito deaths, with more deaths among the males than among the females at
almost every dosage level. Using the SAS LOGISTIC procedure, we obtain the
following output estimating the logit as a linear function of dose and sex:

Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 326.8997 2 o0.0001

Parameter df Estimate Standard Error w2 Pr4w2

Intercept 1 �5.7186 0.5465 109.4883 o0.0001
Dose 1 1.0698 0.0950 126.8817 o0.0001
Male 1 0.9132 0.3044 9.0004 0.0027

The sex of the insect was coded as 0 ¼ female, 1 ¼ male. Hence, the choice of
variable name ‘‘male.’’ In terms of the probabilities estimated from the model,
it does not matter whether the sex variable is coded 1 for being male or 1 for
being female. The coefficients will change so that the logits and the probabilities
come out the same. Also, the w2 values will come out the same, except for that
of the intercept term. (Testing the intercept coefficient being equal to 0 is not
particularly meaningful, in any event.)

Since the coefficient for male is positive, males are more susceptible to the
insecticide than females are throughout the dose range. For example, at a dose
of five units, the logit of a male mosquito dying is �5.7816+1.0698�
5+0.9132 ¼ 0.4806. This corresponds to an odds of 1.6170 and a probability
of 0.6179. At a dose of five units, the logit of a female dying is �5.7816+
1.0698� 5 ¼ �0.4326. This corresponds to odds of 0.6488 and probability of
0.3935. Figure 4 shows the estimated probabilities of death for males and females
over the entire dose range. Across the entire range of dosing, the ratio of male
odds to female odds is exp(0.9132) ¼ 2.492. (Verifying at dose ¼ 5 units, we have
explicitly 1.6179/0.6488 ¼ 2.494.)

Table 2

Differential lethality of insecticide for males and females

Dosage 1 2 3 4 5 6 7 8 9

Males killed 1 1 3 11 16 21 22 25 25

Females killed 0 1 1 6 10 18 20 23 25
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5. Testing for interaction

The fitted model above is an additive, or non-interactive, model. It assumes that if
we graph the logit versus dose separately for males and females, we get parallel
lines. To test the possibility that the two lines are not parallel, we can include
an interaction term obtained by multiplying dose by male, and rerunning the
regression with that term included:

Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 326.9221 3 o0.0001

Parameter df Estimate Standard Error w2 Pr4w2

Intercept 1 �5.6444 0.7322 59.4229 o0.0001
Dose 1 1.0559 0.1321 63.9266 o0.0001
Male 1 0.7735 0.9816 0.6209 0.4307
Interaction 1 0.0284 0.1900 0.0224 0.8812

By two different but related criteria, there is no evidence for the existence of
an interaction. First, we have the Wald w2 value 0.0224 (and P-value ¼ 0.8812)
for testing the hypothesis that the interaction is equal to 0. Second, we can
‘‘partition’’ the likelihood ratio w2 in the same fashion as calculating partial sums
of squares in OLS regression: 326.9221 � 326.8995 ¼ 0.0226. This difference has
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Fig. 4. Logistic regression curves fitted to males and females separately, with curve for males above
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degrees of freedom 3 � 2 ¼ 1. The conclusion again is that there is no evidence for
an interaction.

In the above model, the coefficient and standard error for the variable male
have changed dramatically from what they were in the earlier additive model,
leading to a non-significant w2 value for the sex effect. This is typical in testing for
interactions using simple product terms, which are usually highly correlated with
one or both variables they are generated from. Since we have concluded that we
should return to the additive model, there is no problem for us. Had the inter-
action been statistically significant, meaning we need to use the more complex
model, we could redefine our variables by shifting them to have means of zero,
which reduces the correlation between them and their product, the interaction.
This yields a model whose coefficients are simpler to interpret.

6. Testing goodness of fit: Two measures for lack of fit

In OLS regression, there are two aspects to assessing the fit of a model. The first
is the fraction of variation explained by the model, denoted by R2. Section 3
above described the logistic regression counterpart of R2, as well as the coefficient
of concordance (which is not a counterpart to anything in OLS regression).
The larger these measures, the better the fit. However, even a very large value is
not a guarantee that a modification of the existing model may not produce even
a better fit.

The second aspect of assessing model fit speaks to the possibility that the
existing model might not be the best available. The goodness of fit of an OLS
regression model can be based on examination of residuals. By plotting residuals
against expected values, deviations from the assumptions of independence and
identical distribution (IID) can easily be detected. In logistic regression, the
goodness of fit can be assessed in two ways, the first based on contingency tables,
the second based on a cumulative plot of the number of positives versus the sum
of predicted probabilities.

The approach based on contingency tables is called the Hosmer–Lemeshow
test (Hosmer and Lemeshow, 1980). The data are first sorted by predicted prob-
abilities and then divided into 10 (or possibly fewer) groups of approximately
equal size. Within each group, the numbers of dead and alive (‘‘observed fre-
quencies’’) are compared with the sums of the probabilities of dead and alive
(‘‘expected frequencies’’). The usual w2 test for goodness of fit is then calculated.
Its degrees of freedom are equal to the number of groups minus two. Using the
logistic regression of insects killed on dose and sex, the observed and expected
frequencies are given in Table 3.

The value of w2 is 4.3001 with 9� 2 ¼ 7 degrees of freedom and
p-value ¼ 0.7446. Therefore, there is no evidence that the model can be
improved using the existing two independent variables, dose and sex. Note that
the software generated nine rather than ten groups. This is due to the tabular
nature of the data, which resulted in large numbers of ties. Normally there will
be 10 groups, with 10 � 2 ¼ 8 degrees of freedom.
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An alternative to the Hosmer–Lemeshow test is a graphical procedure that
plots the cumulative number of positives versus the sum of predicted probabil-
ities. The diagonal straight line plot in Fig. 5 indicates that no improvement in the
model is possible using existing variables. This diagnostic plot is in the same spirit
as residual plots in OLS regression and therefore may be preferred by those who
are accustomed to reading residual plots. Using cumulatives smooth the plot,
making it easier to read.

7. Exact logistic regression

On occasion, the method of maximum likelihood may fail to converge, or it may
yield coefficient estimates that are totally unrealistic. This is usually the result
of some combination of independent variables being associated with only one
category of response. The simplest example occurs in a 2� 2 table containing a
cell with a frequency of 0, as in Table 4.

Table 3

Details of the Hosmer–Lemeshow test for goodness of fit

Group 1 2 3 4 5 6 7 8 9

Observed dead 1 2 4 17 26 39 42 48 50

Observed alive 49 48 46 33 24 11 8 2 0

Expected dead 0.82 2.30 6.09 14.08 26.03 37.55 44.76 48.05 49.31

Expected alive 49.18 47.70 43.91 35.92 23.97 12.45 5.24 1.95 0.69
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Fig. 5. Graphic assessment of goodness of fit.
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If we code Dead as 0 and Alive as 1, and code Treatments A and B as 0 and 1
respectively, we can attempt to fit a logistic regression model to predict survival
status from treatment. The odds ratio from this table is (20/0)/(16/4) ¼N. Since
the slope coefficient in logistic regression is the log of the odds ratio, the cor-
responding logistic regression model should be non-estimable, and the software
will warn us of this.

Model Convergence Status
Quasi-complete separation of data points detected

Warning: The maximum likelihood estimate may not exist

Warning The LOGISTIC procedure continues in spite of the above warning.
Results shown are based on the last maximum likelihood iteration.
Validity of the model fit is questionable

Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 5.9905 1 0.0144

Analysis of Maximum Likelihood Estimates

Parameter df Estimate Standard Error w2 Pr4w2

Intercept 1 1.3863 0.5590 6.1498 0.0131
X 1 11.9790 178.5 0.0045 0.9465

Warning: The validity of the model fit is questionable

There are in fact three distinct warnings. The term ‘‘quasi-complete separa-
tion’’ in the first warning refers to the fact that in our sample, all subjects who
received Treatment B are alive. That is, the lower left frequency in the table,
representing deaths among subjects receiving Treatment B, is 0. (If the upper
right cell also were 0, we would have the even more extreme case of ‘‘complete
separation.’’)

Table 4

Example of quasi-complete separation

Survival Dead Alive

Treatment A 4 16

Treatment B 0 20
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In categorical data, there are two distinct kinds of zero frequencies. One is
called a structural zero. Structural zeros are zero frequencies that by logic cannot
possibly be non-zero. For example, if we were to crosstabulate gender by common
surgical procedures, the cell for male hysterectomies would of necessity be 0, as
would the cell for female prostatectomies. (These cells are logically zero because
males do not have uteruses, and females do not have prostates.)

The other type of zero is a sampling zero, which we could argue is the kind
of zero frequency that occurred in our example. While Treatment B has an
impressive success rate, 20 alive out of 20 trials, we have no doubt that in further
trials, some deaths must surely occur. Therefore, we are convinced that the true
odds ratio cannot be infinite, and we would like to use the information from our
data to estimate it.

A similar situation can happen with estimating a binomial success probability.
Suppose, for example, that out of 20 independent trials there are 20 successes and
no failures. The maximum likelihood estimate would be 1, and the estimate of its
standard error would be 0. The conventional confidence interval (of any degree
of confidence) is the totally uninformative interval 170 ¼ (1,1). An alternative
approach to calculating a confidence interval in this case is to base it on the
value(s) pL and pU of the success probability, obtained from the binomial
distribution, that form the boundary between accepting and rejecting the
null hypotheses H0 : p ¼ pL and H0 : p ¼ pU. The lower 95% confidence limit
for the success probability is pL ¼ 0.8315, and the upper confidence limit pU is
taken to be equal to 1 (since no value, no matter how close to 1, can lead
to rejection of H0). Technically, this makes the interval have 97.5% confidence,
but in all cases where the sample proportion is close to 1, both limits will
exist and yield 95% confidence. For example, if out of 20 trials there are
19 successes and one failure, we would find pL ¼ 0.7513, and pU ¼ 0.9987.
This confidence interval is more satisfying than the standard-error based interval,
as the latter has upper limit 1.0455, which is substantially larger than 1. Thus,
exact methods are appropriate not just for the case of zero frequencies,
but whenever sample sizes and frequencies are too small for asymptotic
methods to work.

Exact logistic regression is based on similar logic: Although the odds ratio
from the sample may involve a division by zero and therefore be ‘‘infinite,’’ the
observed data are consistent with a range of odds ratios extending to infinity.
This is a generalization of the well-known Fisher exact test, which we consider
first. Under the fixed marginals of 20, 20, 36, and 4, the probability of obtaining
the table we have observed is the hypergeometric, (20! 20! 36! 4!)/(40! 4! 16! 0!
20!) ¼ 0.0530. The null hypothesis for the Fisher exact test corresponds to a
population odds ratio of 1. Calculating an exact lower 95% (or technically
97.5%) confidence limit for the population odds ratio entails finding a value
for the odds ratio for which a calculation similar to the above hypergeometric
probability (but incorporating an arbitrary odds ratio) becomes equal to
0.025. The upper confidence limit is equal to infinity, analogous to the case
where 20 successes out of 20 trials has upper confidence limit for proportion
pU ¼ 1.
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The results obtained from adding an exact option to our logistic regression are
as follows:

Exact Parameter Estimates

Parameter Estimate 95% Confidence Limits p-value

Intercept 1.3863 0.2549 2.7999 0.0118
X 1.8027* �0.3480 Infinity 0.1060

Exact Odds Ratios

Parameter Estimate 95% Confidence Limits p-value

Intercept 4.000 1.290 16.442 0.0118
X 6.066* 0.706 Infinity 0.1060

� Indicates a median unbiased estimate.

The 95% (actually 97.5%) confidence interval for the true odds ratio is
reported as (0.706, N). The number 0.706 was obtained by searching for the odds
ratio that made the probability of the crosstable equal to 0.025. The ‘‘median
unbiased estimate’’ of 6.066 was obtained by searching for the value of the odds
ratio that made the probability of the crosstable equal to 0.5. The p-value
reported is the same as the p-value from the two-sided ‘‘Fisher Exact Test,’’ which
is the test customarily used when expected frequencies are too small to justify
using a w2 test. Thus, although our point estimate of the odds ratio, 6.066, is
much larger than 1, both the lower confidence limit for the odds ratio and the
hypothesis test indicate that we cannot reject the null hypothesis that the odds
ratio is equal to 1.

The point estimate of the log-odds ratio b is reported as 1.8027, and the
confidence interval for b is reported as (�0.3480, N). These values are the
logarithms of the estimate and confidence limits for the odds ratio.

The intercept estimates are based on the odds of success for Treatment A,
16/4 ¼ 4, and the corresponding confidence intervals are exact intervals
based on the binomial distribution. Thus, our estimated logistic regression
model is:

log-odds of survival ¼ 1:3863þ 1:8027

� ð0 for Treatment A; 1 for Treatment BÞ.

Exact logistic regression is valuable even beyond the extreme case of
quasi-complete separation. For small sample sizes and/or rare events, maximum
likelihood methods may not exhibit the asymptotic behavior guaranteed by
theory. Suppose, for example, we have the 2� 2 crosstabulation seen in Table 5,
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in which two cells have low frequencies, particularly one cell containing a single
observation.

The marginal frequencies are the same as before, but now there is no cell
containing 0. Two cells have very small expected frequencies, each equal to 2.
These are too small for the method of maximum likelihood to give good
estimates, and too small to justify using a w2 test. Below is the result of the exact
logistic regression, and, for comparison purposes, below it is the result of the
maximum likelihood logistic regression.

Exact Logistic Regression:

Exact Parameter Estimates

Parameter Estimate 95% Confidence Limits p-value

Intercept 1.7346 0.4941 3.4072 0.0026
X 1.1814 �1.4453 5.2209 0.6050

Exact Odds Ratios

Parameter Estimate 95% Confidence Limits p-value

Intercept 5.667 1.639 30.181 0.0026
X 3.259 0.236 185.105 0.6050

Maximum Likelihood Logistic Regression:

Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 1.1577 1 0.2820

Parameter df Estimate Standard Error Wald w2 Pr4w2

Intercept 1 1.7346 0.6262 7.6725 0.0056
X 1 1.2097 1.2020 1.0130 0.3142

Table 5

Example of small cell frequencies

Survival Dead Alive

Treatment A 3 17

Treatment B 1 19
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Odds Ratio Estimates

Effect Point Estimate 95% Wald Confidence Limits

X 3.353 0.318 35.358

The two estimates of the odds ratio, 3.259 and 3.353, are very similar. How-
ever, the two confidence intervals are very different, with the length of the exact
interval being much larger. Consistent with the differing lengths of the confidence
intervals, the p-values for testing the null hypothesis that the odds ratio is equal to
1 are quite different, 0.6050 from the exact logistic regression, and 0.2820 (LR w2)
and 0.3142 (Wald w2) from the maximum likelihood logistic regression. As with
the earlier exact logistic regression, the p-value 0.6050 is the same as the p-value
from the Fisher exact test.

8. Ordinal logistic regression

Although the dependent variable is usually binary, logistic regression has the
capability to handle dependent variables with more than two categories. If the
categories have a natural ordering, such as levels ‘‘none,’’ ‘‘mild,’’ ‘‘moderate,’’ and
‘‘severe,’’ the natural first step in building a model is to see if an ordinal logistic
regression model fits the data. In an ordinal logistic regression model, there is one
set of slope coefficients but multiple intercepts. The number of intercepts is always
one less than the number of categories. In conjunction with the slopes, the intercepts
determine the probabilities of an observation being in the various categorical levels.

As an example, we will use a measure of drinking constructed in the 2001
College Alcohol Study, (Wechsler, 2001), called DRINKCAT. This variable has
four levels: 0 ¼ Abstainer or no drinking within the last year, 1 ¼ Drinking
within the last year but no binge drinking in the previous two weeks, 2 ¼ Binge
drinking once or twice within the last two weeks, 3 ¼ Binge drinking more than
twice within the last two weeks.

We will use three binary variables as independent variables: A2 ¼ male gender,
A5 ¼ sorority/fraternity membership, B8 ¼ living in ‘‘alcohol-free’’ housing.
There is an interaction between A2 and A5, which we will omit in order to
make the example simpler. For further simplicity, we will also omit effects due to
weighting and to clustering by institution.

Following is the result of fitting an ordinal logistic regression model to this data:

Response Profile

Ordered Value DRINKCAT Total Frequency

1 3.00 2365
2 2.00 2258
3 1.00 4009
4 0.00 2039

Probabilities modeled are cumulated over the lower ordered values
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Score Test for the Proportional Odds Assumption

w2 df Pr4w2

80.4140 6 o0.0001

Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 336.6806 3 o0.0001

Analysis of maximum likelihood estimates

Parameter df Estimate Standard Error Wald w2 Pr4w2

Intercept 3.00 1 �1.3848 0.0292 2250.9331 o0.0001
Intercept 2.00 1 �0.3718 0.0257 209.2745 o0.0001
Intercept 1.00 1 1.3749 0.0294 2185.4249 o0.0001
A2 1 0.1365 0.0366 13.9106 0.0002
A5 1 0.8936 0.0540 274.3205 o0.0001
B8 1 �0.3886 0.0486 64.0554 o0.0001

Odds Ratio Estimates

Effect Point Estimate 95% Wald Confidence Limits

A2 1.146 1.067 1.231
A5 2.444 2.199 2.716
B8 0.678 0.616 0.746

The first test labeled, ‘‘Score Test for the Proportional Odds Assumption,’’ is a
check on the validity of the ordinal logistic model. This test is statistically sig-
nificant, which means that there is a better-fitting model, namely, the multinomial
logistic regression model discussed below. We will, however, study the additional
output from this ordinal logistic model in order to compare results with those
from the more appropriate multinomial logistic.

The likelihood ratio w2 for testing the overall model is 336.6806 with 3 degrees
of freedom and p-value less than 0.0001. This tells us that the overall model fits
better than we would expect by chance alone. We can then proceed to the
assessment of the three variables A2 (male gender), A5 (Greek membership), and
B8 (alcohol-free housing). All three are statistically significant, with A2 and A5
being risk factors and B8 being protective.
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Because there is only one set of slope coefficients (rather than 3) for A2, A5,
and B8, it is necessary to compute all probabilities using this single set of slope
coefficients combined with the three different intercept estimates. The three
intercept estimates yield the estimated log odds, odds and probabilities that:
DRINKCAT ¼ 3 (from the first intercept, �1.3848), DRINKCATZ2 (from the
second intercept, �0.3718), and DRINKCATZ1 (from the third intercept,
1.3749). Once these estimated probabilities have been determined, the probabil-
ities that DRINKCAT is equal to 0, 1, or 2 can be obtained by subtractions.

Suppose we have a subject who is at highest risk of heavy drinking. That would
be a male who is a member of a Greek organization and who does not live in
alcohol-free housing. For that person, we have:

log-oddsðDRINKCAT ¼ 3Þ ¼ � 1:3848þ 0:1365� 1þ 0:8936

� 1� 0:3886� 0 ¼ �0:3547

log-oddsðDRINKCAT 
 2Þ ¼ � 0:3718þ 0:1365� 1þ 0:8936

� 1� 0:3886� 0 ¼ 0:6583

log-oddsðDRINKCAT 
 1Þ ¼ 1:3749þ 0:1365� 1þ 0:8936

� 1� 0:3886� 0 ¼ 2:4050

oddsðDRINKCAT ¼ 3Þ ¼ expð�0:3547Þ ¼ 0:7014;

PðDRINKCAT ¼ 3Þ ¼ 0:7014=1:7014 ¼ 0:4122

oddsðDRINKCAT 
 2Þ ¼ expð0:6583Þ ¼ 1:9315;

PðDRINKCAT 
 2Þ ¼ 1:9315=2:9315 ¼ 0:6589

oddsðDRINKCAT 
 1Þ ¼ expð2:4050Þ ¼ 11:0784;

PðDRINKCAT 
 1Þ ¼ 11:0784=12:0784 ¼ 0:9172.

Finally we obtain the individual probabilities by subtractions:

PðDRINKCAT ¼ 0Þ ¼ 1� 0:9172 ¼ 0:0828

PðDRINKCAT ¼ 1Þ ¼ 0:9172� 0:6589 ¼ 0:2583

PðDRINKCAT ¼ 2Þ ¼ 0:6589� 0:4122 ¼ 0:2467

PðDRINKCAT ¼ 3Þ ¼ 0:4122

By contrast, the four probabilities for a person with the lowest risk of heavy
drinking – a female who is not a sorority member and lives in alcohol-free
housing – are:

PðDRINKCAT ¼ 0Þ ¼ 0:2716
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PðDRINKCAT ¼ 1Þ ¼ 0:4098

PðDRINKCAT ¼ 2Þ ¼ 0:1734

PðDRINKCAT ¼ 3Þ ¼ 0:1451

9. Multinomial logistic regression

If the categories of the dependent variable do not have a natural ordering, the
single set of slopes of ordinal logistic regression must be replaced with multiple
sets of slopes, producing what is called a multinomial logistic regression model.
The number of slopes for each independent variable will always be one less than
the number of categories of the dependent variable, matching the number of
intercepts. In effect, a multinomial logistic regression model looks like a set of
binary logistic regressions. The advantages of fitting one multinomial model over
fitting several binary models are that there is one likelihood ratio w2 for the fit of
the entire model, and there is opportunity to test hypotheses about equality of
slopes.

Even if the categories of the dependent variable are ordered, a multi-
nomial model may be necessary to provide a better fit to the data than the
ordinal logistic regression may afford. One way to investigate this possibility
is to fit both ordered logistic and multinomial logistic models and calculate
the difference in the likelihood ratio w2. Another way is to look for a test
of the ‘‘proportional odds assumption’’ in the ordinal logistic regression. If
the w2 statistic from that test is significant, there is evidence that one set of
slopes is insufficient, and the correct model is multinomial rather than
ordinal.

In the ordinal logistic regression above, we remarked that the test for the
proportional odds assumption had quite a large w2. Its value was 80.4140 with
6 degrees of freedom and p-value less than 0.0001. This is evidence that we will
obtain a better-fitting model by using multinomial logistic regression, even
though the categories of DRINKCAT are naturally ordered.

Following is the result of running a multinomial logistic regression on the
Harvard College Drinking Study data:

Response Profile

Ordered Value DRINKCAT Total Frequency

1 0.00 2039
2 1.00 4009
3 2.00 2258
4 3.00 2365

Logits modeled use DRINKCAT ¼ 0.00 as the reference category
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Testing Global Null Hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood Ratio 415.5538 9o0.0001

Type 3 Analysis of Effects

Effect df Wald w2 Pr4w2

A2 3 68.8958 o0.0001
A5 3 266.3693 o0.0001
B8 3 87.2105 o0.0001

Analysis of Maximum Likelihood Estimates

Parameter DRINKCAT df Estimate Standard Error Wald w2 Pr4w2

Intercept 1.00 1 0.8503 0.0373 519.4807 o0.0001
Intercept 2.00 1 0.0800 0.0430 3.4632 0.0627
Intercept 3.00 1 0.0731 0.0430 2.8970 0.0887
A2 1.00 1 �0.3120 0.0572 29.7276 o0.0001
A2 2.00 1 0.0514 0.0632 0.6597 0.4167
A2 3.00 1 0.0609 0.0629 0.9353 0.3335
A5 1.00 1 0.3462 0.1049 10.8943 0.0010
A5 2.00 1 0.9812 0.1064 85.0242 o0.0001
A5 3.00 1 1.3407 0.1027 170.4737 o0.0001
B8 1.00 1 �0.5220 0.0702 55.2565 o0.0001
B8 2.00 1 �0.5646 0.0811 48.5013 o0.0001
B8 3.00 1 �0.6699 0.0819 66.9267 o0.0001

Odds Ratio Estimates

Effect DRINKCAT Point Estimate 95% Wald Confidence Limits

A2 1.00 0.732 0.654 0.819
A2 2.00 1.053 0.930 1.192
A2 3.00 1.063 0.939 1.202
A5 1.00 1.414 1.151 1.736
A5 2.00 2.668 2.165 3.286
A5 3.00 3.822 3.125 4.674
B8 1.00 0.593 0.517 0.681
B8 2.00 0.569 0.485 0.666
B8 3.00 0.512 0.436 0.601
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The likelihood ratio w2 for this model is 415.5583 with 9 degrees of freedom. We
can compare this value with the w2 value of 336.6806 with 3 degrees of freedom for
the ordinal logistic regression model. Their difference, 415.5583�336.6806 ¼
78.8732 has degrees of freedom 9 � 3 ¼ 6, in close agreement with the w2 80.4140
with 6 df that tested the proportional odds assumption in the ordinal logistic
regression. Thus, from two different perspectives, we are led to the conclusion that
multinomial logistic regression is more appropriate for our data.

Interpreting the model coefficients is best done by thinking of the multinomial
model as a collection of three binomial models. Each binomial model estimates
probabilities of the DRINKCAT values 1, 2, and 3 relative to value 0. For example,
consider the three log-odds ratio coefficients �0.5220, �0.5646, and �0.6699 for
the variable B8, living in alcohol-free housing. These correspond to odds ratios of
0.593, 0.569, and 0.512, meaning that for those living in alcohol-free housing the
odds of being in any of the positive drinking categories (DRINKCAT ¼ 1, 2, or 3)
are about 40�50% less than being in the non-drinking category. The big drop in
risk, of about 40%, occurs between DRINKCAT ¼ 0 and DRINKCAT ¼ 1, with
small further drops in risk of being in DRINKCAT ¼ 2 and DRINKCAT ¼ 3. A
formal test of the hypothesis that the three slopes are equal is not statistically
significant, leading us to conclude that alcohol-free housing has ‘‘threshold’’ pro-
tective effect of reducing the risk of all three levels of drinking by the same amount.

By contrast, the three log-odds coefficients for the variable A5 show a large
monotone increasing pattern, from 0.3462 to 0.9812, and finally to 1.3407, mean-
ing that fraternity or sorority membership shows a pattern of increasing risks of
the more severe drinking behaviors. A formal test of the null hypothesis that the
three slopes are equal to each other rejects the null hypothesis. Based on the final
odds ratio of exp(1.3407) ¼ 3.822, members of Greek organizations have almost
four times the risk of extreme binge drinking than do non-members.

Finally, the coefficients for the variable A2 show that males have reduced odds
of moderate drinking, and somewhat greater odds of each level of binge drinking.
A formal test of the null hypothesis that the three slopes are equal rejects the null
hypothesis.

10. Probit regression

Earlier we introduced the logit function as a means of ‘‘opening up’’ the probability
range of [0,1] to (�N, +N). This can also be done by using the inverse standard
normal function. Although the logit and the inverse normal (sometimes called
normit or probit) have very different behavior in the extreme tails, in actual practice,
they yield nearly the same predicted probabilities. If we use the inverse standard
normal function in place of the logit for our insecticide data, the result is:

Testing global null hypothesis (Beta ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 327.4488 2 o0.0001
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Parameter df Estimate Standard Error w2 Pr4w2

Intercept 1 �3.2286 0.2759 136.9310 o0.0001
Dose 1 0.6037 0.0471 164.6159 o0.0001
Male 1 0.5126 0.1686 9.2450 0.0024

The likelihood ratio w2 is very close to that from the additive logit model,
326.8997, but the estimated model coefficients are very different. This difference is
due to the fact that the standard normal density function has standard deviation
equal to 1, whereas the logit density function has standard deviation equal to
p/O3 ¼ 1.8138. Despite the differences in model coefficients, probabilities
estimated from the two models come out nearly the same.

For example, in the logit model, we found that at a dose of five units, the logit
of a male mosquito dying is �5.7816+1.0698� 5+0.9132 ¼ 0.4806. This corre-
sponded to a probability of 0.6179. From our current model, at a dose of five
units, the Z-score, or probit, of a mosquito dying is �3.2286+0.6037� 5+
0.5126 ¼ 0.3025. This corresponds to a probability of 0.6189, almost identical
with 0.6179.

The Hosmer–Lemeshow goodness of fit test yields a value of w2 is 4.1243 with
7 degrees of freedom and p-value ¼ 0.7654. Not only is the test non-significant,
the w2 value itself is virtually identical with the Hosmer–Lemeshow w2 4.3001 that
we calculated from the logistic regression model.

Given that in most cases there is little difference between the probability
estimates from logit and probit models; most users of logistic regression prefer the
logit model as simpler to understand. Its coefficients can be directly interpreted in
terms of odds ratios, and the odds ratios can be multiplied to estimate overall risk.

Most statistical software provides a third link function option called the
complementary log–log function (or ‘‘Gompertz’’ function). This also opens up
the probability range of [0,1] to (�N,+N), but it does so in a non-symmetric
fashion. It is useful for special purposes but should not be considered a natural
alternative to logit and probit models. In particular, it does not fit our example
data as well as the logit and probit models do.

11. Logistic regression in case–control studies

Risk factors for rare disorders are frequently determined through case–control
studies. For example, there is considerable literature on the interrelationship of
asbestos exposure, smoking, and lung cancer. Since the prevalence of lung cancer
is relatively low, most studies have compared lung cancer patients with compa-
rable cancer-free control subjects. Many of these studies have involved shipyard
workers because of asbestos exposure in shipbuilding. Smoking was fairly com-
mon among these blue-collar employees, so smoking was investigated along with
asbestos exposure as another risk factor.
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Since odds ratios are marginal-independent, they do not change if a factor is
over or under represented. Thus, we can use ‘‘caseness’’ as a response variable in
logistic regression without introducing bias in our estimates of the logistic
regression slope coefficients. The only coefficient that is biased is the intercept
term, and we ordinarily are not interested in estimating it anyway.

Table 6 contains data from Blot et al. (1978), as reproduced in Lee (2001).
A full logistic regression model would attempt to predict lung cancer (caseness)

from asbestos exposure, smoking, and the interaction between asbestos and
smoking. In this full model, the interaction term is not statistically significant, and
the final model is the additive model estimated in the following output:

Testing global null hypothesis (BETA ¼ 0)

Test w2 df Pr4w2

Likelihood ratio 118.2789 2 o0.0001

Analysis of maximum likelihood estimates

Parameter df Estimate Standard Error Wald w2 Pr4w2

Intercept 1 �1.4335 0.1476 94.3817 o0.0001
Smoke 1 1.5902 0.1626 95.6905 o0.0001
Asbestos 1 0.4239 0.1769 5.7437 0.0165

Odds ratio estimates

Effect Point Estimate 95% Wald Confidence Limits

Smoke 4.904 3.566 6.745
Asbestos 1.528 1.080 2.161

We conclude that smoking is by far the more potent risk factor, increasing risk
of lung cancer, in the sense of odds, almost five-fold. Asbestos exposure is also
a statistically significant risk factor, but it increases risk by 53%. Furthermore,
the number 1.528 is a point estimate of the odds ratio, but the 95% confidence

Table 6

Case–control data showing the relationship of asbestos exposure and smoking with lung cancer

Exposure(s) A–S– A+S– A–S+ A+S+

Cases 50 11 313 84

Controls 203 35 270 45
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interval for the true asbestos-exposure odds ratio ranges from a low of 1.08 to a
high of 2.16.

Case–control studies are normally performed for disorders that are rare in the
general population. For rare disorders, the odds ratio is a good approximation
(a slight overestimate, always) to relative risk. Therefore, in these settings, it is
very common to treat the odds ratio as being a surrogate for relative risk. For
example, suppose a disease has a base prevalence of exactly 1%, and a certain
risk factor changes its prevalence to 2%. By definition, the relative risk is exactly
equal to 2. The odds ratio is (0.02/0.98)/(0.01/0.99) ¼ 2.02 and therefore serves as
an excellent approximation to relative risk.

More complex case–control designs involve matching individual cases with
controls, either on a one-to-one basis or even a one-to-many basis. Logistic
regression can also be used to analyze these more complicated designs. Chapters 6
and 7 of Hosmer and Lemeshow (2000) contain a wealth of information regarding
the use of logistic regression in case–control studies.
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Count Response Regression Models

Joseph M. Hilbe and William H. Greene

Abstract

Count response regression models refer to regression models having a count as

the response; e.g., hospital length of stay, number of bacterial pneumonia cases

per zip code in Arizona from 2000 to 2005. Poisson regression is the basic

model of this class. Having an assumption of the equality of the distributional

mean and variance, Poisson models are inappropriate for many count-modeling

situations. Overdispersion occurs when the variance exceeds the nominal mean.

The negative binomial (NB2) is commonly employed to model overdispersed

Poisson data, but NB models can themselves be overdispersed. A wide variety of

alternative count models have been designed to accommodate overdispersion in

both Poisson and NB models; e.g., zero-inflated, zero-truncated, hurdle,

and sample selection models. Data can also be censored and truncated; spe-

cialized count models have been designed for these situations as well. In ad-

dition, the wide range of Poisson and NB panel and mixed models has been

developed. In the chapter we provide an overview of the above varieties of count

response models, and discuss available software that can be used for their

estimation.

1. Introduction

Modeling counts of events can be found in all areas of statistics, econometrics,
and throughout the social and physical sciences. Some familiar applications in-
clude:

� the incidence of diseases in specific populations,
� numbers of patents applied for,
� numbers of regime changes in political units,
� numbers of financial ‘incidents’ such as defaults or bankruptcies,
� numbers of doctor visits,
� numbers of incidents of drug or alcohol abuse, and so on.
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The literatures in all these fields and many more are replete with applications of
models for counts. The signature feature of all of these is that familiar linear
regression techniques that would relate the measured outcomes to appropriate
covariates – smoking and disease or research and development to patents for
examples – would not be applicable because the response variable is discrete, not
continuous. Nonetheless, a related counterpart to the familiar regression model is
a natural departure point. The Poisson regression model has been used through-
out the research landscape to model counts in applications such as these. The
Poisson model is a nonlinear, albeit straightforward and popular modeling tool.
It is ubiquitous enough that estimation routines are built into all well-known
contemporary computer programs. This chapter will survey models and methods
for analyzing counts, beginning with this basic tool.

The Poisson model provides the platform for modeling count data. Practical
issues in ‘real’ data have compelled researchers to extend the model in several
directions. The most fundamental extension involves augmenting the model to
allow a more realistic treatment of variation of the responses variable. The
Poisson model, at its heart, describes the mean of the response. A consequence
of the specification is that it implies a wholly unsatisfactory model for the
variance of the response variable. Models such as the NB model are designed
to accommodate a more complete description of the distribution of observed out-
comes. Observed data often present other forms of ‘nonPoissonness.’ An
important example is the ‘excess zeros’ case. Survey data often contain more
zero responses (or more of some other responses) than would be predicted by a
Poisson or a NB model. For example, the incidence of hypertension in school age
children, or credit card default, are relatively rare events. The count response is
amenable to modeling in this framework; however, an unmodified Poisson model
will underpredict the zero outcome. In another interesting application, Poisson-like
models are often used to model family size; however, family size data in Western
societies will often display excess twos in the number of children, where, once again,
by ‘excess’ we mean in excess of what would typically be predicted by a Poisson
model. Finally, other data and situation-driven applications will call for more than
one equation in the count model. For example, in modeling health care system
utilization, researchers often profitably employ ‘two part models’ in which one part
describes a decision to use the health care system and a second equation describes
the intensity of system utilization given the decision to use the system at all.

This chapter will survey these count models. The analysis will proceed as
follows: Section 2 details the fundamental results for the Poisson regression
model. Section 3 discusses the most familiar extension of models for counts, the
NB model. Section 4 considers the types of broad model extensions suggested
above including the important extensions to longitudinal (panel) data. Section 5
presents several additional more specialized model extensions. Section 5 describes
some of the available software tools for estimation. Rather than collecting an
extended example in one place at the end of the survey, we will develop some
applications as part of the ongoing presentations. Our analyses are done with
LIMDEP statistical software. Section 5 describes this and a few other packages in
some more detail. Section 6 concludes.
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2. The Poisson regression model

The Poisson model derives from a description of how often events occur per unit
of time. Consider, for example, a service window at a bank, or an observer
watching a population for the outbreak of diseases. The ‘interarrival time’ is the
amount of time that elapses between events, for example, the duration between
arrivals of customers at the teller window or the amount of time that passes
between ‘arrivals’ of cases of a particular disease. If the interarrival time is such
that the probability that a new incident will occur in the next instant of time is
independent of how much time has passed since the last one, then the process is
said to be ‘memoryless.’ The exponential distribution is used to describe such
processes. Now, consider not the interarrival time, but the number of arrivals that
occur in a fixed length interval of time. Under the assumptions already made, if
the length of time is short, then the ‘Poisson’ distribution will be an appropriate
distribution to use to model the number of arrivals that occur during a fixed time
interval.1

More formally, suppose the process is such that the expected interarrival time
does not vary over time. Say y is this value. Then, the number of arrivals that can
be expected to arrive per unit of time is l ¼ 1/y. The distribution of the number of
arrivals, Y, in a fixed interval is the Poisson distribution

f ðY Þ ¼ Prob½Y ¼ y� ¼
expð�lÞly

y!
; y ¼ 0; 1; . . . ; l40. (1)

The Poisson model describes the number of arrivals per single unit of time.
Suppose that the observer observes T consecutive intervals. Then, the expected
number of arrivals would naturally be lT. Assuming the process is not changing
from one interval to the next, the appropriate distribution to model a window of
length T, rather than 1, would be

f ðY Þ ¼ Prob½Y ¼ y� ¼
expð�lTÞðlTÞy

y!
; y ¼ 0; 1; . . . ; l40. (2)

One can imagine a sampling process such that successive observers watched
the population or process for different amounts of time. The appropriate model
for the number of observed events in such a sample would necessarily have to
account for the different lengths of time. A sample of observations would be
(y1,T1),y (yN,TN). The joint observations would consist of an observed count
variable and an observed ‘exposure’ variable. (For reasons that are far from
obvious, such a variable is often called an ‘offset’ variable – see, e.g., the
documentation for Stata or SAS.) An analogous process would follow if the

1 Another way to develop the Poisson model from first principles is to consider a Bernoulli sampling

process in which the success probability, p, becomes small while the number of trials, T, becomes large

such that pT is constant. The limiting process of this binomial sampling scheme is the Poisson model.

By treating the ‘draws’ as specific short intervals of time, we can view this as an alternative view of the

exponential model suggested earlier.
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observation were designed so that each observation was based on a count
of occurrences in a group of size Ti, where Ti is allowed to differ from one obser-
vation to another. Larger groups would tend to produce larger counts, not because
the process had changed, but because of the increased ‘exposure’ to the same
process.

The Poisson random variable has mean

E½Y � ¼ lT (3)

and variance

Var½Y � ¼ lT . (4)

These are derived for the case T ¼ 1 in any basic statistics book. For conve-
nience at this point, we will focus on that case as well. Where necessary, we will
reinstate the exposure as part of the model for a particular sampling process.
Note, in particular, that the variance equals the mean, a fact that will become
important in the next section of this survey.

To extend this model to a regression context, consider once again the health
application. For any group observed at random in a population in a given
time interval, suppose the Poisson model, is appropriate. To consider a con-
crete example, suppose we observe new cancer cases per unit of time or per
group. The overall average number of cases observed per unit of time may be
well described with a fixed mean, l. However, for the assumed case, three sig-
nificant comorbidity factors, age, weight, and smoking, stand out as possible
explanatory variables. For researchers observing different populations in different
places, one might surmise that the parameter, l, which is the mean number of
new cases per unit of time, would vary substantively with these covariates. This
brings us to the point of ‘model’ building, and, in particular, since we have sur-
mised that the mean of the distribution is a function of the covariates, regression
modeling.

Precisely, how the covariates in the model should enter the mean is an impor-
tant question. Suppose we denote average age, average weight, and percent
who smoke in the different observed groups suggested by the example, for
convenience, as (x1,x2,x3), it would be tempting to write the mean of the random
variable as

l ¼ b0 þ b1x1 þ b2x2 þ b3x3. (5)

However, a crucial feature of the model emerges immediately. Note in (1), and
for obvious reasons, l40. This is the mean of a nonnegative random variable. It
would not be possible to insure that the function in (5) is positive for all values of
the parameters and any data. The constraint is more important yet in view of (4).
The commonly accepted solution, and the conventional approach in modeling
count data, is to use

l ¼ expðb0xÞ, (6)
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where the vector notation is used for convenience, and b and x are assumed to
include a constant term.2

To summarize, then, the Poisson regression model that is typically used to
model count data is

f ðY jxÞ ¼ Prob½Y ¼ y� ¼
expð�lTÞðlTÞy

y!
; y ¼ 0; 1; . . . ;

l ¼ expðb0xÞ40. ð7Þ

This is a nonlinear regression which has conditional mean function

E½Y jx� ¼ l ¼ expðb0xÞ (8)

and heteroskedastic conditional variance

Var½Y jx� ¼ l. (9)

2.1. Estimation of the Poisson model

The parameters of the nonlinear Poisson regression model, b, can, in principle, be
estimated by nonlinear least squares by minimizing the conventional sum of
squares. With a sample of N observations, (y1,x1),y, (yN,xN), we would minimize

SSðbÞ ¼
XN

i¼1

½yi � expðb0xi þ log TiÞ�
2. (10)

However, maximum likelihood estimation is the method of most common choice
for this model. The log-likelihood function for a sample of N observations may be
characterized as

log LðbÞ
XN

i¼1

yiðb
0xi þ log TiÞ � expðb0xi þ log TiÞ � logðyi!Þ. (11)

Note how the exposure variable enters the model, as if it were a covariate having a
coefficient of one. As such, accommodating data sets that are heterogeneous in
this respect does not require any substantial modification of the model or the
estimator. For convenience in what follows, we will assume that each observation
is made in an interval of one period (or one observation unit; Ti ¼ 1; lnTi ¼ 0).
As noted earlier, this is a particularly straightforward model to estimate, and it is
available as a built-in option in all modern software.

2 This implies that the model is a ‘log-linear’ model in the development of McCullagh and Nelder

(1983) – indeed, in the history of log-linear modeling, the Poisson model might reasonably be regarded

as the log-linear model. The Poisson model plays a central role in the development of the theory. As we

will not be exploring this aspect of the model in any depth in this review, we note this feature of the

model at this point only in passing.
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The conditional mean function for the Poisson model is nonlinear

E½yjx� ¼ expðb0xÞ. (12)

For inference purposes, e.g., testing for the significance of average weight in the
incidence of disease, the coefficients, b, provide the appropriate metric. For anal-
ysis of the behavior of the response variable, however, one typically examines the
partial effects

dðxÞ ¼
@E½yjx�

@x
¼ expðb0xÞ � b: (13)

As in any regression model, this measure is a function of the data point at which it
is evaluated. For analysis of the Poisson model, researchers typically use one of the
two approaches: The marginal effects, computed at the mean, or the center of the
data are

dðx̄Þ ¼
@E½yjx̄�

@x̄
¼ expðb0x̄Þ � b, (14)

where x̄ ¼ ð1=NÞSN
i¼1xi is the sample mean of the data. An alternative, commonly

used measure is the set of average partial effects,

d̄ðXÞ ¼
1

N

XN

i¼1

@E½yjxi�

@xi

¼
1

N

XN

i¼1

expðb0xiÞ � b. (15)

Although the two measures will generally not differ by very much in a practical
setting, the two measures will not converge to the same value as the sample size
increases. The estimator in (15) will converge to that (13) plus a term that depends
on the higher order moments of the distribution of the covariates.

We note two aspects of the computation of partial effects that are occasionally
overlooked in applications. Most applications of count models involve individual
level data. The typical model will involve dummy variables, for example, sex, race,
education, marital status, working status, and so on. One cannot differentiate with
respect to a binary variable. The proper computation for the partial effect of a
binary variable, say zi is

DðziÞ ¼ E½yjx; z ¼ 1� � E½yjx; z ¼ 0�.

In practical terms, the computation of these finite differences will usually
produce results similar to those that use derivatives – the finite difference is a crude
derivative. Nonetheless, the finite difference presents the more accurate picture
of the desired result. Second, models often include nonlinear functions of the
independent variables. In our applications below, for example, we have a tezrm
b1AGE+b2AGE2. In this instance, neither coefficient, nor the associates marginal
effect, is useful by itself for measuring the impact of education. The appropriate
computation would be

dðAGEÞ ¼ expðb0xiÞ½b1 þ 2b2AGE�.
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2.2. Statistical inference

For basic inference about coefficients in the model, the standard trinity of like-
lihood-based tests, likelihood ratio, Wald and Lagrange multiplier (LM), are
easily computed.3 For testing a hypothesis, linear or nonlinear, of the form

H0 : cðbÞ ¼ 0, (16)

the likelihood-ratio statistic is the obvious choice. This requires estimation of b
subject to the restrictions of the null hypothesis, for example, subject to the
exclusions of a null hypothesis that states that certain variables should have zero
coefficients – that is, that they should not appear in the model. Then, the like-
lihood-ratio statistic is

w2½J� ¼ 2ðlog L� log L0Þ, (17)

where logL is the log-likelihood computed using the unrestricted estimator, logL0

the counterpart based on the restricted estimator and the degrees of freedom, J,
the number of restrictions (an example appears below).

Each predictor, including the constant, can have a calculated Wald statistic,
defined as [bj/SE(bj)]

2, which is distributed as w2. [bj/SE(bj)] defines both the t or z

statistic, respectively distributed as t or normal. For computation of Wald sta-
tistics, one needs an estimate of the asymptotic covariance matrix of the coeffi-
cients. The Hessian of the log-likelihood is

@2 logL

@b@b0
¼ �

XN

i¼1

lixix
0
i, (18)

where li ¼ exp(b0xi). Since this does not involve the random variable, yi, (18) also
gives the expected Hessian. The estimated asymptotic covariance matrix for the
maximum likelihood, based on the Hessian, is

VH ¼ Est:Asy:Var½b̂MLE� ¼
XN

i¼1

l̂ixix
0
i

" #�1
, (19)

where l̂i ¼ expðb̂
0
xiÞ: Although in practice, one normally uses the variance ma-

trices discussed in Section 2.4, a commonly used alternative estimator based on
the first derivatives is the BHHH, or outer products estimator,

VOPG ¼ Est:Asy:Var½b̂MLE� ¼
XN

i¼1

ðyi � l̂iÞ
2xix

0
i

" #�1
. (20)

Researchers often compute asymptotic standard errors for their estimates of
the marginal effects. This is a moderately complicated exercise in some cases. The

3 The presentation here is fairly terse. For more detailed derivations of these results, the reader may

refer many of the sources that develop this model in detail, including Hilbe (2007), Winkelmann

(2003), or Greene (2003, Chapter 21).
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most straightforward case is based on (14). To use the delta method to estimate the
asymptotic covariance matrix for d̂ðx̄Þ; we would require the Jacobian,

Ĝ ¼
@d̂ðx̄Þ

@b̂
¼ l̂ðx̄ÞðI þ b̂x̄0Þ. (21)

Then, the desired asymptotic covariance matrix is computed using

Est:Asy:Var½d̂ðx̄Þ� ¼ ĜVĜ
0
. (22)

The analogous computation can be done for the average partial effect in (15). To
do this, note that in the sample mean computed there, all N terms are based on the
same estimator of b. As such, the computation of an asymptotic analogous to (22)
must have N2 terms. The result will be

Est:Asy:Var½ ^̄dðXÞ� ¼
1

N2

XN

i¼1

XN

j¼1

ĜiVĜ
0

j. (23)

An alternative method of computing an asymptotic covariance matrix for such a
function of the estimated parameters suggested by Krinsky and Robb (1986) is to
sample from the estimated asymptotic variance distribution of and compute b̂ the
empirical variance of the observations on d̂ðx̄Þ: This method does not appear to be
widely employed in this setting.

To compute a LM statistic, also referred to as a score test, we note that the
bracketed matrix (uninverted) in either (18) or (19) is an estimator of the as-
ymptotic covariance matrix of the score vector

gðbÞ ¼
@ logL

@b
¼
XN

i¼1

eixi, (24)

where ei is the generalized (as well as the simple) residual, ei ¼ yi�exp(b0xi). The
LM statistics for tests of restrictions are computed using the w2 statistic

LM ¼ gðb̂0Þ
0
½V0�

�1gðb̂0Þ, (25)

where b̂0 is the estimator of b with the restrictions imposed, and V0 is either of the
matrices in (18) or (19) evaluated at b̂0 (not b). In view of (24), the LM statistic
based on (19) has an interesting form

LM ¼
XN

i¼1

eixi

 !0 XN

i¼1

e2i xix
0
i

 ! XN

i¼1

eixi

 !
¼ i0XnðXn0XnÞ

�1Xn0 i, ð26Þ

where i is a column of ones and X* a matrix of derivatives; each row is one of the
terms in the summation in (24). This is the NR2 in a linear regression of a column
of ones on the first derivatives, gi ¼ eixi.
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2.3. Fit and prediction in the Poisson model

Like any nonlinear model, the Poisson regression specification does not imply an
obvious counterpart to R2 for measuring the goodness of fit of the model to the
data. One measure that has become very popular is the

Pseudo� R2 ¼
1� logL0

logL
, (27)

where logL0 is the log-likelihood for a model that contains only a constant and
logL the log-likelihood for the model as a whole. Note that for this measure to
‘work,’ the latter must actually contain a constant term. As happens in the linear
model as well, if the regression does not contain a constant, then fit measures, such
as these, can be negative or larger than one, depending on how they are computed.
By construction, the pseudo�R2 is between zero and one, and increases toward
one as variables are added to a model. Beyond that, it is difficult to extend the
analogy to the R2 in a linear model, since the maximum likelihood estimation
(MLE) in the Poisson model is not computed so as to maximize the fit of the model
to the data, nor does it correspond to a proportion of variation explained. None-
theless, it is current practice to report this statistic with one’s other results.

Two other statistics related to the lack of fit of the model are often computed.
The deviance measure is

G2 ¼ 2
XN

i¼1

yi log
yi

l̂i

� �
(28)

(where it is understood that 0� log 0 ¼ 0). The Pearson goodness-of-fit statistic is

C2 ¼
XN

i¼1

ðyi � l̂iÞ
2

l̂i

: (29)

The second of these resembles the familiar fit measure in discrete response analysis

C2
� ¼

XN

i¼1

ðObservedi � ExpectediÞ
2

Expectedi

: (30)

Both of these statistics have limiting w2 distributions. They can be translated to
aggregate fit measures by dividing each by the counterpart measure that uses the
simple mean as the prediction. Thus,

R2
Deviance ¼ 1�

PN
i¼1

yi logðyi=l̂iÞ

PN
i¼1

yi logðyi=ȳÞ

(31)

and

R2
Pearson ¼ 1�

PN
i¼1

ðyi � l̂iÞ
2=l̂i

PN
i¼1

ðyi � ȳÞ2=ȳ

. (32)
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We note, although there is no obvious counterpart to R2 in the linear model,
with regard to ‘explained variation,’ one can compute the correlation between the
actual and fitted values in the Poisson model easily enough by using the condi-
tional mean function as the prediction. The statistic would be

r
y;l̂ ¼

PN
i¼1

ðyi � ȳÞðl̂i � ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðyi � ȳÞ2
PN
i¼1

ðl̂i � ȳÞ2

s (33)

(where we have made use of the first-order condition,
¯̂l ¼ ȳ).

The Wald, likelihood ratio and LM tests developed in Section 2.2 are used to
analyze the specification of the conditional mean function by testing restrictions
on the parameters. Nonnested (and nested) models are often compared on the
basis of the ‘information criteria’ statistics, which are, in the realm of maximum
likelihood estimation, rough counterparts to adjusted R2s. A frequently used
statistic is the Akaike information criterion (AIC),

AIC ¼
�2 logLþ 2K

N
, (34)

where K is the full number of parameters in the model (see Hardin and Hilbe,
2007; McCullagh and Nelder, 1989).

2.4. Specification testing and robust covariance matrix estimation

A crucial part of the specification of the Poisson model, the assumption that the
conditional mean and variance are equal (to li), cannot be tested in this fashion.
Nonetheless, this is generally viewed as the fundamental shortcoming of the
model, and is always subjected to close scrutiny. There are several ways of addres-
sing the question of over- (or under-) dispersion. Section 3 considers a direct
approach of specifying a more general model. Alternatively, one can begin the
analysis by examining the estimated Poisson model itself to ascertain whether it
satisfies the assumption. In the same manner that the squares of OLS regression
residuals can be examined for evidence of heteroskedasticity, the squared residuals
in the Poisson model can provide evidence of overdispersion. Cameron and
Trivedi (1990) suggested a pair of statistics to examine this relationship. In the
linear regression of zi ¼ ½ðyi � l̂iÞ

2
� yi�=l̂

ffiffiffi
2
p

on wi ¼ gðl̂iÞ=l̂i

ffiffiffi
2
p

; if the equidis-
persion assumption of the model is correct, then the coefficient on wi should be
close to zero, regardless of the choice of g(.). The authors suggest two candidates
for gðl̂iÞ; l̂i; and l̂

2

i : A simple t-test of the restriction that the coefficient is zero is
equivalent to a test of the equidispersion hypothesis. (The literature contains many
other suggested tests, most based on this idea. See Hilbe (2007) or Winkelmann
(2003) for discussion of some others.)

Another concern about the estimator of the model parameters is their robust-
ness to failures of the assumption of the model. Specifically, if the specification of
the Poisson model is incorrect, what useful information can be retained from the
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MLE? For a certain failure of the assumptions, namely the equidispersion restric-
tion, the Poisson maximum likelihood estimator remains consistent. However, the
estimated asymptotic covariance matrix based on (18) or (19) may miss-estimate
the appropriate matrix. An estimator based on both (18) and (19) – now colorfully
called the ‘sandwich estimator’ – solves the problem. The robust covariance matrix
based on this result is

Est:Asy:Var½b̂MLE� ¼
XN

i¼1

l̂ixix
0
i

" #�1 XN

i¼1

ðyi � l̂iÞ
2xix

0
i

" # XN

i¼1

l̂ixix
0
i

" #�1
.

(35)

We emphasize, this is not a cureall for all possible model misspecification, and if
we do use (35), then the likelihood-ratio and LM tests in Section 2.2 are no longer
valid. Some, such as endogeneity of the covariates, missing variables, and many
others, render the MLE inconsistent. In these cases, ‘robust’ covariance matrix is a
moot point.

A related issue that gets considerable attention in the current literature is the so-
called ‘cluster effects.’ Suppose observations in the sample of N are grouped in sets
of Ni in some fashion such that observations within a group are correlated with
each other. Once again, we have to assume that in spite of this, the (now, pseudo-)
MLE remains consistent. [‘pseudo-’ is used since the cluster nature of the data
violates the iid assumption of likelihood theory.] It will follow once again that the
estimated asymptotic covariance matrix is inaccurate. A commonly used alterna-
tive to (18) or (19) is related to (32). In the clustering case, the center matrix in (35)
is replaced with

C ¼
XG

r¼1

XNg

i¼1

ðgir � ḡrÞðgir � ḡrÞ
0

" #
(36)

where there are G groups or clusters, the number of observations in cluster ‘r’ is Nr,
gir ¼ eirxir, and ḡr ¼ ð1=NrÞ

PNr

i¼1gir:

2.5. An application

To illustrate this model (and several extensions), we will employ the data used in
the study by Ripahn et al. (2003). The raw data are published on the Journal of

Applied Econometrics data archive website, http://qed.econ.queensu.ca/jae/ 4 The
.zip file contains the single data file rwm.data.5 The data file contains raw data on
variables (original names) (Table 1).

4 The URL for the data file is http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/

This URL provides links to a text file which describes the data, http://qed.econ.queensu.ca/jae/2003-

v18.4/riphahn-wambach-million/readme.rwm.txt and the raw data, themselves, which are in text form,

zipped in the file http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/rwm-data.zip.
5 Data handling and aspects of software usage are discussed in Section 5.
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The data file contains 27,326 observations. They are an unbalanced panel, with
group sizes ranging from 1 to 7 with frequencies T: 1 ¼ 1525, 2 ¼ 2158, 3 ¼ 825,
4 ¼ 926, 5 ¼ 1051, 6 ¼ 1000, and 7 ¼ 987. Additional variables created in the
data set included year dummy variables, sex ¼ female+1, and age2/1000. For the
purpose of this illustration, we are interested in the count variable DOCVIS,
which is the number of doctor visits in the last three months. A histogram of this
variable appears in Fig. 1.

The model in Table 2 is based on the authors’ specification in the paper. The
estimator of the asymptotic covariance matrix is based on the second derivatives,
as in (18). The likelihood-ratio test of the hypothesis that all of the coefficients are
zero is computed using the log-likelihood for the full model, �89,431.01, and the
log-likelihood for the model that contains only the constant term, �108,662.1.
The w2 statistic of 38,462.26 is far larger than the 95% critical value for the w2

distribution with 16 degrees of freedom, 26.29. There are two alternative methods
of testing this hypothesis. The Wald statistic will be computed using

W ¼ ðb̂0 � 0Þ½Est:Asy: Varðb̂0 � 0Þ��1ðb̂0 � 0Þ, (37)

Table 1

Data used in applications

id person – identification number

female female ¼ 1; male ¼ 0

year calendar year of the observation

age age in years

hsat health satisfaction, coded 0 (low) – 10 (high)

handdum handicapped ¼ 1; otherwise ¼ 0

handper degree of handicap in percent (0–100)

hhninc household nominal monthly net income in German marks/

1000

hhkids children under age 16 in the household ¼ 1; otherwise ¼ 0

educ years of schooling

married married ¼ 1; otherwise ¼ 0

haupts highest schooling degree is high school; degree ¼ 1;

else ¼ 0

reals highest schooling degree is college degree ¼ 1; else ¼ 0

fachhs highest schooling degree is technical degree ¼ 1; else ¼ 0

abitur highest schooling degree is trade school ¼ 1; otherwise ¼ 0

univ highest schooling degree is university degree ¼ 1;

otherwise ¼ 0

working employed ¼ 1; otherwise ¼ 0

bluec blue collar employee ¼ 1; otherwise ¼ 0

whitec white collar employee ¼ 1; otherwise ¼ 0

self self employed ¼ 1; otherwise ¼ 0

beamt civil servant ¼ 1; otherwise ¼ 0

docvis number of doctor visits in last three months

hospvis number of hospital visits in last calendar year

public insured in public health insurance ¼ 1; otherwise ¼ 0

addon insured by add-on insurance ¼ 1; otherwise ¼ 0
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where b̂0 is all coefficients save the intercept (the latter 16 of them) and
Est:Asy:Varðb̂0 � 0Þ is the 16� 16 part of the estimated covariance matrix that
omits the constant term. The result is 41,853.37, again with 16 degrees of freedom.
As before, this is far larger than the critical value, so the hypothesis is rejected.
Finally, the LM statistic is computed according to (18) and (23), giving a value of
44,346.59. As is typical, the three statistics are reasonably close to one another.

The coefficient estimates are shown at the left of the table. Standard tests of the
hypothesis that each is zero are shown in the third column of results. Most of the
individual significance tests decisively reject the hypothesis that the coefficients
are zero, so the conclusions drawn above about the coefficient vector as a whole
are not surprising. The partial effects reported at the right of the table are average
partial effects, as defined in (15), with standard errors computed using (22). As
these are a straightforward multiple of the original coefficient vector, conclusions
drawn about the impacts of the variables on the response variable follow those
based on the estimate of b. The multiple, 3.1835 is, in fact, the sample mean of the
response variable. (This is straightforward to verify. The necessary condition for
maximization of logL in (24) implies that Siei ¼ Si(yi�li) ¼ 0 at the MLE. The
claimed result follows immediately. Note that this does not occur if the model does
not contain a constant term – the same result that occurs in a linear regression
setting.) As noted earlier, since AGE enters this model nonlinearly, neither the
coefficients nor the partial effects for AGE or AGESQ give the right measure for
the impact of AGE. The partial effects evaluated at the means would be

dðx̄;AGEÞ ¼ ðb3 þ 2b4AGE=1000Þ � expðb0x̄Þ, (37a)

which we compute at the mean of age of 43.5256898. The resulting estimate is
0.012924. In order to compute a standard error for this estimator, we would use the
delta method. The required derivatives are (g1, g2,y, g17), where all 17 components

Fig. 1. Histogram of doctor visits.
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equal dðx̄;AGEÞ times the corresponding element of x̄ save for the third and fourth
(corresponding to the coefficients on AGE and AGE2/1000, which are

g3 ¼ @dðx̄;AGEÞ=@b3 ¼ lðx̄;AGEÞ þ dðx̄;AGEÞ �AGE (37b)

g4 ¼ @dðx̄;AGEÞ@b4 ¼ lðx̄;AGEÞ þ 2AGE=1000

þ dðx̄;AGEÞ �AGE
2
=1000. ð37cÞ

The estimated standard error is 0.001114. (There is a large amount of variation
across computer packages in the ease with which this kind of secondary compu-
tation can be done using the results of estimation.)

These data are a panel, so, in fact, the motivation for the cluster robust covar-
iance matrix in (32) or (33) would apply here. These alternative estimates of the
standard errors of the Poisson regression coefficients are given in Table 2. As is

Table 2

Estimated Poisson regression model

Coeff. Std. Err. b/Std. Err. Robust SE Cluster SE Partial Effect SE Partiala

Constant 2.48612758 .06626647 37.517 .17631321 .21816313 0. 0.

FEMALE .28187106 .00774175 36.409 .02448327 .03106782 .89734351 .03529496**

AGE �.01835519 .00277022 �6.626 .00804534 .00983497 �.05843420 .01121654**

AGESQ .26778487 .03096216 8.649 .09134073 .11183550 .85249979 .12576669**

HSAT �.21345503 .00141482 �150.871 .00449869 .00497983 �.67953940 .01375581**

HANDDUM .09041129 .00963870 9.380 .02960213 .02873540 .28782659 .03917770**

HANDPER .00300153 .00017626 17.029 .00057489 .00073815 .00955544 .00073483**

MARRIED .03873812 .00881265 4.396 .02752875 .03325271 .12332377 .03558146**

EDUC �.00342252 .00187631 �1.824 .00489031 .00639244 �.01089568 .00756284

HHNINC �.16498398 .02291240 �7.201 .06072932 .07060708 �.52523061 .09283605**

HHKIDS �.09762798 .00862042 �11.325 .02555567 .03154185 �.31080111 .03519498**

SELF �.23243199 .01806908 �12.864 .05225385 .06470690 �.73995303 .07402117**

BEAMT .03640374 .01921475 1.895 .04994140 .06426340 .11589220 .07745533

BLUEC �.01916882 .01006783 �1.904 .02922716 .03577130 �.06102440 .04058392

WORKING .00041819 .00941149 .044 .02808178 .03266767 .00133132 .03792298

PUBLIC .14122076 .01565581 9.020 .03926803 .04593042 .44957981 .06360250**

ADDON .02584454 .02544319 1.016 .05875837 .06596606 .08227672 .10253177

a ** indicates the ratio of estimate to standard error as larger than 2.0.

Diagnostic Statistics for Poisson Regression

Number of observations 27,326

Log-likelihood function �89,431.01

Restricted log-likelihood �10,8662.1

w2 38,462.26

Akaike information criterion 6.54673

McFadden pseudo R2 .176981

w2 based on Pearson residuals 184,919.711

R2 based on Pearson residuals .3345

G2 based on deviance 25,823.429

R2 based on deviance .2341

Overdispersion test: g ¼ li 22.899

Overdispersion test: g ¼ l2i 23.487
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clearly evident, these are substantially larger than the ‘pooled’ counterparts. While
not a formal test, these results are strongly suggestive that the Poisson model as
examined so far should be extended to accommodate these data.

The two Cameron and Trivedi tests of overdispersion also strongly suggest that
the equidispersion assumption of the Poisson model is inconsistent with the data.
We will pursue this now, in the next section. Together, these results are convinc-
ing that the specification of the Poisson model is inadequate for these data. There
are two directions to be considered. The overdispersion tests suggest that a model
that relaxes this restriction, such as the NB model discussed below, should be
considered. The large increase in the standard errors implied by the cluster cor-
rected estimator would motivate this researcher to examine a formal panel data
specification, such as those detailed in Section 4.

3. Heterogeneity and overdispersion

The test results in the preceding example that suggest overdispersion in the Poisson
model are typical – indeed it is rare not to find evidence of over- (or under-)
dispersion in count data. The equidispersion assumption of the model is a fairly
serious shortcoming. One way to approach the issue directly is to allow the
Poisson mean to accommodate unmeasured heterogeneity in the regression func-
tion. The extended model appears

E½yjx; �� ¼ expðb0xþ �Þ; Cov½x; �� ¼ 0, (38)

where the unmeasured e plays the role of a regression disturbance. More to the
point here, it plays the role of the unmeasured heterogeneity in the Poisson model.
How the model evolves from here depends crucially on what is assumed about the
distribution of e. In the linear model, a normal distribution is typically assumed.
That is possible here as well (see ESI, 2007), however, most contemporary appli-
cations use the log-gamma density to produce an empirically manageable formu-
lation. With the log-gamma assumption, as we show below, the familiar NB model
emerges for the unconditional (on the unobserved e) distribution of the observed
variable, y. The NB model has become the standard device for accommodating
overdispersion in count data since its implementation into commercial software
beginning with LIMDEP (1987), Stata Corp. (1993), and SAS (1998).

3.1. The negative binomial model

The Poisson model with log-gamma heterogeneity may be written

f ðyijxi; uiÞ ¼ Prob½Y ¼ yijxi; ui�

¼
expð�liuiÞðliuiÞ

yi

yi!
; y ¼ 0; 1; . . . . ð39Þ

The log-gamma assumption for e implies that ui ¼ exp(ei) has a gamma dis-
tribution. The resulting distribution is a Poisson-gamma mixture model. The
gamma noise, which is mixed with the Poisson distribution, is constrained to have
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a mean of one. The conditional mean of yi in (38), given the gamma
heterogeneity, is therefore given as liui rather than the standard Poisson mean,
li. (We can thus see that this will preserve the Poisson mean, li, but induce
additional variation, which was the purpose.) In order to estimate the model
parameters (and use the model), it must be written in terms of the observable
variables (so that we can construct the likelihood function). The unconditional
distribution of yi is obtained by integrating ui out of the density. Thus,

f ðyijxiÞ ¼

Z
n

f ðyijxi; uiÞgðuiÞ dui

¼

Z
u

expð�liuiÞðliuiÞ
yi

yi!
gðuiÞ dui; yi ¼ 0; 1; . . . : ð40Þ

The gamma density is a two-parameter distribution; g(u) ¼ [yg/G(g)] exp(-yu)
ug�1. The mean is g/y, so to impose the restriction that the mean is equal to one, we
set g ¼ y. With this assumption, we find the unconditional distribution as

f ðyijxiÞ ¼

Z 1
0

expð�liuiÞðliuiÞ
yi

Gðyi þ 1Þ

yy

GðyÞ
expð�yuiÞu

y�1
i dui; yi ¼; 0; 1; . . . .

(41)

The variance of the gamma distribution is g/y2 ¼ 1/y, so the smaller is y, the
larger is the amount of overdispersion in the distribution. (Note we have used
the identity yi! ¼ G(yi+1).) Using properties of the gamma integral and a bit of
manipulation, we can write this as.

f ðyijxiÞ ¼
Gðyi þ yÞ

Gðyi þ 1ÞGðyÞ
y

li þ y

� �y li

li þ y

� �yi

; yi ¼ 0; 1; . . . . (42)

By dividing all terms by y, we obtain another convenient form,

f ðyijxiÞ ¼
Gðyi þ yÞ

Gðyi þ 1ÞGðyÞ
1

1þ ðli=yÞ

� �y

1�
1

1þ ðli=yÞ

� �yi

; y ¼ 0; 1; . . . .

(43)

By defining the dispersion parameter a ¼ 1/y so that there will be a direct
relationship between the model mean and a, we can obtain another convenient
form of the density,

f ðyijxiÞ ¼
Gðyi þ 1=aÞ

Gðyi þ 1ÞGð1=aÞ
1

1þ ali

� �1=a ali

1þ ali

� �yi

; y ¼ 0; 1; . . . .

(44)

One of the important features of the NB model is that the conditional mean
function is the same as in the Poisson model,

E½yijxi� ¼ li. (45)

The implication is that the partial effects are computed the same way.
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3.2. Estimation of the negative binomial model

Direct estimation of the NB model parameters (b,a) can be done easily with a few
modern software packages including LIMDEP, Stata, and SAS. The likelihood
equations for the algorithm are revealing

@ logL

@b
¼
XN

i¼1

ðyi � liÞ

1þ ali

� �
xi ¼ 0. (46)

We can see immediately, as might be expected, that these are not the same as for
the Poisson model, so the estimates will differ. On the other hand, note that as a
approaches zero, the condition approaches that for the Poisson model – a point
that will become important below. The other necessary condition for estimation is
the derivative with respect to a,

@ logL

@a
¼
XN

i¼1

1

a2
logð1þ aliÞ � log

Gðyi þ 1=aÞ
Gð1=aÞ

� �� �
�

yi � li

að1þ aliÞ

� �� �
.

(47)

Second derivatives or outer products of the first derivatives can be used to esti-
mate the asymptotic covariance matrix of the estimated parameters. An example
appears below.

3.3. Robust estimation of count models

The conditional mean in the mixture model is E[yi|xi,ui] ¼ liui. By a simple appli-
cation of the law of iterated expectations, we find E[yi|xi] ¼ Eu[liui|ui] ¼
liE[ui] ¼ li. (Since the terms are independent, the mean is just the product of
the means.) The fact that the conditional mean function in the NB model is the
same as in the Poisson model has an important and intriguing implication. It
follows from the result that the Poisson MLE is a generalized mixed models
(GMM) estimator for the NB model. In particular, the conditional mean result for
the NB model implies that the score function for the Poisson model,

g ¼
X

i
ðyi � liÞxi (48)

has mean zero even in the presence of the the overdispersion. The useful result for
current purposes is that as a consequence, the Poisson MLE of b is consistent even
in the presence of the overdispersion. (The result is akin to the consistency of
ordinary least squares in the presence of heteroskedastic errors in the linear model
for panel data.) The Poisson MLE is robust to this kind of model misspecification.
The asymptotic covariance matrix for the Poisson model is not appropriate,
however. This is one of those rare instances in which the increasingly popular
‘robust’ covariance matrix (see (35)) is actually robust to something specific that
we can identify. The upshot of this is that one can estimate the parameters, an
appropriate asymptotic covariance matrix, and appropriate partial effects for the
slope parameters of the NB model just by fitting the Poisson model and using (32).
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Why then would one want to go the extra distance and effort to fit the NB model?
One answer is that the NB estimator will be more efficient. Less obvious is that we
do not have a test with demonstrable power against the equidispersion hypothesis
in the Poisson model. With the NB model, we can begin to construct a test
statistic, though as shown below, new problems do arise.

3.4. Application and generalizations

Table 3 presents both Poisson and negative binomial estimates of the count model
for doctor visits. As anticipated, the estimates do differ noticeably. On the other
hand, we are using quite a large sample, and both sets of estimates are consistent.
The large differences might make one suspect that something else is amiss with the
model; perhaps a different specification is called for, and neither estimator is
consistent. Unfortunately, this cannot be discerned internally based on just these
estimates, and a more detailed analysis would be needed. In fact, the differences
persist in the partial effects – in some cases, these are quite large as well. We might
add here that there is an efficacy gain from the NB2 model since the standard
errors are roughly 25% less than the heteroskedasticity-robust standard errors for
the Poisson.

Testing for the specification of the NB model against that of the Poisson model
has a long and wide history in the relevant literature (see Anscombe, 1949; Blom,
1954). Unfortunately, none of the tests suggested, save for the Cameron and
Trivedi tests used earlier, are appropriate in this setting. These tests include the
LM tests against the negative binomial for overdispersed data, and against the
Katz system for underdispersed data. Hilbe (2007) discusses a generalized Poisson
which can also be used for underdispersed data. Regardless, the problem is that
the relevant parameter, a, is on the edge of the parameter space, not in its interior.
The test is directly analogous to a test for a zero variance. In practical terms, the
LM test cannot be computed because the covariance matrix of the derivatives is
singular at a ¼ 0. The Wald and likelihood-ratio tests can be computed, but again,
there is the issue of the appropriate distribution for the test statistic. It is not w2(1).
For better or worse, practitioners routinely compute these statistics in spite of the
ambiguity.6 It is certainly obvious that the hypothesis a ¼ 0 would be rejected by
either of these tests.

Table 3 also presents robust standard errors for the NB model. For the pooled
data case, these differ only slightly from the uncorrected standard errors. This is
to be expected, since the NB model already accounts for the specification failure
(heterogeneity) that would be accommodated by the robust standard errors. This
does call into question why one would compute a robust covariance matrix
for the NB model. Any remaining violation of the model assumptions is likely
to produce inconsistent parameter estimates, for which robust standard errors
provide dubious virtue.

6 Stata reports one half the standard w2[1] statistic. While this surely is not the appropriate test

statistic, one might surmise that it is a conservative result. If the hypothesis that a ¼ 0 is rejected by

this test, it seems extremely that it would not be rejected by the appropriate w2 test, whatever that is.
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Table 3

Poisson and negative binomial models

Poisson Negative Binomial Model (NB-2) Robust Standard Errors

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff. Robust SE Cluster SE

Constant 2.48612758 .06626647 0. 2.93815327 .14544040 0. .14550426 .17427529

FEMALE .28187106 .00774175 .89734351 .35108438 .01643537 1.14442153 .01680855 .02128039

AGE �.01835519 .00277022 �.05843420 �.03604169 .00610034 �.11748426 .00616981 .00737181

AGESQ .26778487 .03096216 .85249979 .46466762 .07006707 1.51466615 .07108961 .08528665

HSAT �.21345503 .00141482 �.67953940 �.22320535 .00339028 �.72757725 .00344216 .00387560

HANDDUM .09041129 .00963870 .28782659 .03863554 .02154854 .12593935 .02155752 .02070723

HANDPER .00300153 .00017626 .00955544 �.00598082 .00050291 .01949555 .00050309 .00064984

MARRIED .03873812 .00881265 .12332377 .05048344 .01856803 .16455967 .01857855 .02249464

EDUC �.00342252 .00187631 �.01089568 �.01126970 .00390703 �.03673558 .00393156 .00495663

HHNINC �.16498398 .02291240 �.52523061 �.01356497 .00472261 �.04421742 .00489946 .00556370

HHKIDS �.09762798 .00862042 �.31080111 �.09439713 .01724797 �.30770411 .01781272 .02144006

SELF �.23243199 .01806908 �.73995303 �.24001686 .03042783 �.78237732 .03128019 .03727414

BEAMT .03640374 .01921475 .11589220 .04321571 .03494549 .14086922 .03531910 .04368996

BLUEC �.01916882 .01006783 �.06102440 �.00355440 .02073448 �.01158621 .02083167 .02530838

WORKING .00041819 .00941149 .00133132 .02487987 .02060004 .08110034 .02086701 .02435497

PUBLIC .14122076 .01565581 .44957981 .11074510 .03041037 .36099319 .03066638 .03558399

ADDON .02584454 .02544319 .08227672 .03713781 .06968404 .12105726 .07002987 .07939311

a 0. 0. 0. 1.46273783 .01654079 0. .04080414 .04893952

logL �89,431.01 �57,982.79

NB Model Form a P logL

Negbin – 0 0.0000 0.0000 �89,431.01

(.00000) (0.0000)

Negbin – 1 4.8372 1.0000 �57,861.96

(.05306) (.00000)

Negbin – 2 1.4627 2.0000 �57,982.79

(.01654) (.00000)

Negbin – P 2.6380 1.4627 �57,652.60

(.05891) (.01663)
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The literature, mostly associating the result with Cameron and Trivedi’s (1986)
early work, defines two familiar forms of the NB model. Where

li ¼ expðb0xiÞ, (49)

the Negbin 2 or NB-2 form of the probability is the one we have examined thus far

ProbðY ¼ yijxiÞ ¼
Gðyþ yiÞ

GðyÞGðyi þ 1Þ
uy

i ð1� uiÞ
yi , (50)

where ui ¼ y/(y+li) and y ¼ 1/a. This is the default form of the model in most (if
not all) of the received statistics packages that provide an estimator for this
model. The signature feature of the model is the relationship between the mean
and the variance of the model,

Var½yijxi� ¼ li½1þ alP�1
i �. (51)

Thus, when a ¼ 0, we revert to the Poisson model. The model considered thus far
has P ¼ 2, hence the name NB-2. The Negbin 1 form of the model results if y in the
preceding is replaced with yi ¼ yli. Then, ui becomes u ¼ y/(1+y), and the density
becomes

ProbðY ¼ yijxiÞ ¼
Gðyli þ yiÞ

GðyliÞGðyi þ 1Þ
wyli ð1� wÞyi , (52)

where w ¼ y/(y+1). In this instance, P ¼ 1, and the model is one of a more pure
form of overdispersion,

Var½yijxi� ¼ li½1þ a�. (53)

Note that this is not a simple reparameterization of the model – it is a NB model of
a different form. The general Negbin P or NB-P model is obtained by allowing P

in (51) to be a free parameter. This can be accomplished by replacing y in (50) with
yl2�P. For convenience, let Q ¼ 2�P. Then, the density is

ProbðY ¼ yijxiÞ ¼
GðylQ

i þ yiÞ

GðylQ
i ÞGðyi þ 1Þ

ylQ
i

ylQ
i þ li

 !ylQ
i l

ylQ
i þ li

 !yi

.

(54)

(As of this writing, this model is only available in LIMDEP.) The table following
the parameter estimates shows this specification analysis for our application.
Though the NB-1 and NB-2 specifications cannot be tested against each other,
both are restricted cases of the NB-P model. The likelihood-ratio test is valid in
this instance, and it decisively rejects both models (see Hilbe, 1993; Hilbe, 1994;
Lawless, 1987; Long and Freese, 2006).
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4. Important extensions of the models for counts

The accommodation of overdispersion, perhaps induced by latent unobserved
heterogeneity, is arguably the most important extension of the Poisson model for
the applied researcher. But, other practicalities of ‘real’ data have motivated
analysts to consider many other varieties of the count models. We will consider
four broad areas here that are often encountered in received data: censoring and
truncation, zero inflation, two part models, and panel data applications. In this
section, we will turn to a sample of more exotic formulations that are part of the
(very large) ongoing frontier research.

4.1. Censoring and truncation

Censoring and truncation are generally features of data sets that are modified as
part of the sampling process. Data are censored when values in certain ranges of
the distribution of outcomes are collapsed into one (or fewer) values. For exam-
ple, we can see in Fig. 1 for the doctor visits data that the distribution of outcomes
has an extremely long (perhaps implausibly so) right tail. Perhaps if one were
skeptical of the data gathering process, or even if just to restrict the influence of
outliers, they might recode all values above a certain value, say 15 in those data,
down to some upper limit (such as 8). Values in a data set may be censored at
either or both tails, or even in ranges within the distribution (see, e.g., Greene’s
(2003, pp. 774–780) analysis of Fair’s (1978) data on extramarital affairs). The
most common applications of censoring in counts will, however, involve recoding
the upper tail of the distribution, as suggested in our example.

Truncation, in contrast, involves not masking a part of the distribution of
outcomes, but discarding it. Our health care data suggest two possibilities. The
number of zeros in our data is extremely large, perhaps larger than a Poisson
model could hope to predict. One (perhaps not very advisable, but we are speaking
theoretically here) modeling strategy might be simply to discard those zeros, as not
representative. The distribution that describes the remaining data is truncated – by
construction, only values greater than zero will be observed. In fact, in many quite
reasonable applications, this is how data are gathered. In environmental and rec-
reation applications, researchers are often interested in numbers of visits to sites.
Data are gathered on site, so, again, by construction, it is not possible to observe a
zero. The model, however, constructed, applies only to value 1,2, .... One might, as
well truncate a distribution at its upper tail. Thus, in our data set, again referring
to the histogram in Fig. 1, rather than censor the values larger than 15, we might
just discard them. The resulting distribution then applies to the values 0,1, ..., 15,
which is a truncated distribution.

Estimation of count models for censored or truncated distributions requires a
straightforward extension of the base model. We illustrate for the Poisson case,
but by a simple change of the function, the results can be extended to negative
binomial or, in fact, any other specification.

The applicable distribution for the random variable that is censored is formed
by using the laws of probability to produce a density that sums to one. For
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example, suppose the data are censored at an upper value, U. Thus, any actual
value that is U or larger is recorded as U. The probability distribution for this set
of outcomes is

f ðY jxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞl

y
i

y!
; y ¼ 0; 1; . . . ;U � 1;

Prob½Y ¼ U jxi� ¼
P1

u¼U

expð�liÞl
u
i

u!
; li ¼ expðb0xiÞ40:

(55)

The log-likelihood is formulated by using these probabilities for the observed
outcomes. Note that the upper tail involves an infinite number of terms. This is
transformed to a finite sum by noting that

Prob½Y ¼ U jxi� ¼ 1� Prob½YoU jxi�. (56)

(For a detailed development of this result, see Econometric Software, Inc.,
2007, Chapter 25). There are three important implications of this specification:

� Estimation of the model ignoring the censoring produces an inconsistent esti-
mator of b. The result is precisely analogous to ignoring censoring in the linear
regression model (see Greene, 2003, Chapter 22)
� Under this specification, the mean of Y is no longer li. It is easy to see based on
how the model is constructed that the mean must be less than li. Intuitively,
large values are being converted into small ones, so this must shrink the mean.
(The opposite would be true if the censoring were in the lower tail.)
� Because the conditional mean is affected by the censoring, the partial effects are
also. A full development of the appropriate partial effects is fairly complicated
(see, again, Econometric Software, Inc. (ESI), 2007). The end result is that the
censoring dampens the partial effects as well.

The analysis here parallels the development of the censored regression (Tobit)
model for continuous data. See Terza (1985) for extensive details. (An alternative
representation of censoring in count models in terms of discrete survival models
can be found in Hilbe (2007).)

The truncation case is handled similarly. In this case, the probability distribution
must be scaled so that the terms sum to one over the specified outcomes. Suppose,
for example, that the distribution is truncated at lower value L. This means that
only values L+1, L+2, ... appear in an observed sample. The appropriate prob-
ability model would be

f ðY jxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞl

y
i

 �
=y!

Prob½Y4L�
; y ¼ Lþ 1;Lþ 2; . . . ,

li ¼ expðb0xiÞ40. ð57Þ

Once again, we use complementary probabilities to turn infinite sums into finite
ones. For example, consider the common case of truncation at zero. The applicable

Count response regression models 231



distribution for the observed counts will be

f ðY jxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞl

y
i

 �
=y!

Prob½Y40�

¼
expð�liÞl

y
i

 �
=y!

1� Prob½Y ¼ 0�

¼
expð�liÞl

y
i

 �
=y!

1� expð�liÞ
; Y ¼ 1; 2; . . . . ð58Þ

As in the censoring case, truncation affects both the conditional mean and the
partial effects. (A detailed analysis appears in ESI, 2007.) Note, finally, these (and
the cases below) are among those noted earlier in which computing a ‘robust’
covariance matrix does not solve the problem of nonrobustness. The basic MLE
that ignores the censoring or truncation is inconsistent, so it is not helpful to
compute a robust covariance matrix.

To demonstrate these effects, we continue the earlier application of the Poisson
model. Table 4 shows the impact of censoring at 8 in the distribution. This masks
about 10% of the observations, which is fairly mild censoring. The first set of
results in the table at the left is based on the original uncensored data. The center
set of results is based on the censored data, but ignore the censoring. Thus, the
comparison to the first set shows the impact of ignoring the censoring. There is no
clear generality to be drawn in the table, because it is clear that some of the
changes in the coefficients are quite large, while others are quite small. The partial
effects, however, tell a somewhat different story. These change quite substantially.
Note, for example, that the estimated partial effect of income (HHNINC) falls by
80% while that of children (HHKIDS) falls by half. The third set of results in
Table 4 is based on the corrected likelihood function. In principle, these should
replicate the first set. We see, however, that for these data, the full MLEs for the
censored data model actually more closely resemble those for the estimator that
ignored the censoring. One might expect this when the censoring is only a small
part of the distribution. The impact of the censoring is likely to be more severe
when a larger proportion of the observations are censored.

Table 5 repeats the calculations for the truncation at zero case. The zeros are
37% of the sample (about 10,200), so we would expect a more noticeable impact.
Indeed, the effect of ignoring the truncation is quite substantial. Comparing the
left to the center set of estimates in Table 5, we see that some coefficients change
sign, while others change considerably. The third should replicate the first. How-
ever, truncating 37% of the distribution quite substantively changes the distribu-
tion, and the replication is not particularly good. One might suspect, as we explore
below, that the data process that is producing the zeros actually differs from that
underlying the rest of the distribution.

Hilbe (2007) developed a survival parameterization of the censored Poisson
and NB models. Rather than having cut points below or above which censored
observations fall, and observation in the data may be censored. Characterized
after traditional survival models such as the Cox proportional hazards model and
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Table 4

The effect of censoring on the Poisson model

Poisson Based on Uncensored Data Poisson Model Ignoring Censoring Censored Data (at 8) Poisson Model

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff.

Constant 2.48612758 .06626647 0. 2.14986800 .07524413 0. 2.25968677 .07596690 0.

FEMALE .28187106 .00774175 .89734351 .27709347 .00894003 .66233310 .29202937 .00904040 .66106102

AGE �.01835519 .00277022 �.05843420 �.03211408 .00318455 �.07676189 �.03403051 .00322451 �.07703417

AGESQ .26778487 .03096216 .85249979 .42280492 .03578592 1.01062538 .44605854 .03627228 1.00973377

HSAT �.21345503 .00141482 �.67953940 �.15716683 .00166910 �.37567393 �.16927552 .00171922 �.38318561

HANDDUM .09041129 .00963870 .28782659 .03913318 .01132602 .09353955 .04291882 .01147955 .09715448

HANDPER .00300153 .00017626 .00955544 .00308629 .00021489 .00737711 .00353402 .00022065 .00799989

MARRIED .03873812 .00881265 .12332377 .05122800 .01024523 .12244965 .05587384 .01038134 .12648049

EDUC �.00342252 .00187631 �.01089568 �.00021599 .00211001 �.00051628 .00072296 .00212106 .00163656

HHNINC �.16498398 .02291240 �.52523061 �.02645213 .02544113 �.06322820 �.03024873 .02566863 �.06847344

HHKIDS �.09762798 .00862042 �.31080111 �.06493632 .00985764 �.15521648 �.06795371 .00994926 �.15382544

SELF �.23243199 .01806908 �.73995303 �.24973460 .02038677 �.59693753 �.25682829 .02045212 �.58137705

BEAMT .03640374 .01921475 .11589220 �.00855232 .02140198 �.02044250 �.00464199 .02148378 �.01050797

BLUEC �.01916882 .01006783 �.06102440 �.03340251 .01151415 �.07984161 �.03558453 .01159109 �.08055198

WORKING .00041819 .00941149 .00133132 .03061167 .01080953 .07317070 .02669552 .01090431 .06043012

PUBLIC .14122076 .01565581 .44957981 .06153310 .01722210 .14708182 .06893203 .01729248 .15604004

ADDON .02584454 .02544319 .08227672 .08361017 .02824989 .19985236 .08126672 .02852185 .18396185
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Table 5

The effect of truncation on the Poisson model

Poisson Based on Original Data Poisson Model Ignoring Truncation Truncated (at 0) Poisson Model

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff.

Constant 2.48612758 .06626647 0. 2.25206660 .06654230 0. 2.24409704 .06888683 0.

FEMALE .28187106 .00774175 .89734351 .12026803 .00772833 .60860197 .12711629 .00795253 .54174405

AGE �.01835519 .00277022 �.05843420 .00595941 .00278220 .03015687 .00668132 .00286642 .02847444

AGESQ .26778487 .03096216 .85249979 �.04163927 .03115181 �.21071054 �.04695040 .03201880 �.20009316

HSAT �.21345503 .00141482 �.67953940 �.14637618 .00144060 �.74071918 �.15271640 .00148358 �.65084657

HANDDUM .09041129 .00963870 .28782659 .10255607 .00969572 .51897271 .10904012 .00990456 .46470706

HANDPER .00300153 .00017626 .00955544 .00153298 .00017760 .00775747 .00145161 .00017977 .00618647

MARRIED .03873812 .00881265 .12332377 �.01292896 .00882816 �.06542545 �.01233626 .00906142 �.05257467

EDUC �.00342252 .00187631 �.01089568 �.00555201 .00189701 �.02809531 �.00598173 .00197010 �.02549295

HHNINC �.16498398 .02291240 �.52523061 �.20206192 .02308216 �1.0225102 �.21657724 .02408796 �.92300865

HHKIDS �.09762798 .00862042 �.31080111 �.05706609 .00865236 �.28877613 �.06100208 .00893594 �.25997858

SELF �.23243199 .01806908 �.73995303 �.08128493 .01803489 �.41133269 �.08960050 .01886738 �.38185930

BEAMT .03640374 .01921475 .11589220 .06077767 .01916495 .30755811 .06449740 .01999381 .27487497

BLUEC �.01916882 .01006783 �.06102440 .00182451 .01002870 .00923271 .00230018 .01034645 .00980291

WORKING .00041819 .00941149 .00133132 �.02881502 .00936256 �.14581498 �.02827975 .00963105 �.12052261

PUBLIC .14122076 .01565581 .44957981 .11278164 .01557239 .57071800 .12294551 .01629795 .52396906

ADDON .02584454 .02544319 .08227672 �.09224023 .02542136 �.46677065 �.09827798 .02645306 �.41884099

Note: Where Q is the regime probability and P(0) the Poisson, negative binomial, or other probability.
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parametric survival models such as exponential, Weibull, gamma, log-logistic,
and so forth, the censored Poisson and censored NB response is parameterized in
terms of a discrete count. For example, a typical count response in health care
analysis is hospital length of stay data. The response we have been using for our
examples, number of patient visits to the hospital, is also appropriate for mode-
ling censored count models. If various counts are lost to a length of stay study
after reaching a certain time in the hospital, these counts may be considered as
right censored. In modeling LOS data, it is important to take into account the
days that were counted for particular patients, even though records are lost
thereafter.

Survival parameterized censored count models will differ from what has been
termed (Hilbe, 2007) the econometric parameterization as earlier discussed in that
the values of censored responses are not recast to the cut level. This method
changes the values of censored data. Table 6 shows the results of survival censored
Poisson and NB models using the same data as in Tables 4 and 5. Note the much
better fit using the censored negative binomial. The AIC and BIC statistics have
significantly lower values than the Poisson. Derivation of the respective likelihoods
as well as a discussion of both methods can be found in Hilbe (2007). Supporting
software is at http://ideas.repec.org/s/boc/bocode.html or at http://econpapers.
repec.org/software/bocbocode/.

4.2. Zero inflation

The pattern in Fig. 1 might suggest that there are more zeros in the data on
DOCVIS than would be predicted by a Poisson model. Behind the data, one
might, in turn, surmise that the data contain two kinds of respondents, those who
would never visit a doctor save for extreme circumstances, and those who regularly
(or even more often) visit the doctor. This produces a kind of ‘mixture’ process
generating the data. The data contain two kinds of zeros: a certain zero from
individuals who never visit the physician and an occasional zero from individuals
who for whatever reason, did not visit the doctor that period, but might in some
other. (The pioneering study of this kind of process is Lambert’s (1992) analysis of
process control in manufacturing – the sampling mechanism concerned the
number of defective items produced by a process that was either under control
(y always zero) or not under control (y sometimes zero).)

The probability distribution that describes the outcome variable in a zero-
inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB) model is built up
from first principles: The probability of observing a zero is equal to the probability
that the individual is in the always zero group plus the probability that the indi-
vidual is not in that group times the probability that the count process produces a
zero anyway. This would be

Prob½y ¼ 0� ¼ Qþ ½1�Q� � Pð0Þ, (59)

where Q is the regime probability and P(0) the Poisson, negative binomial, or
other probability for the zero outcome in the count process. The probability of a
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Table 6

Survival parameterization of censored Poisson and negative binomial

Docvis Censored at Value of 8 Number of obs ¼ 27,326

Censored Poisson Regression Wald w2(16) ¼ 41,967.07

Log-likelihood ¼ �87,520.01 Prob 4 w2 ¼ 0.0000

docvis Coeff. Std. Err. z P4|z| [95% CI]

female .2962892 .0078474 37.76 0.000 .2809086 .3116699

age �.0201931 .0028097 �7.19 0.000 �.0257001 �.0146861

agesq .2893301 .0314347 9.20 0.000 .2277191 .350941

hsat �.2245135 .0014598 �153.80 0.000 �.2273746 �.2216523

handdum .0935722 .0097864 9.56 0.000 .0743912 .1127532

handper .0034529 .000181 19.08 0.000 .0030981 .0038076

married .0464825 .0089499 5.19 0.000 .0289411 .0640239

educ �.0022596 .0018888 �1.20 0.232 �.0059617 .0014425

hhninc �.0163339 .0023175 �7.05 0.000 �.0208761 �.0117917

hhkids �.1008135 .008725 �11.55 0.000 �.1179143 �.0837128

self �.240174 .0181211 �13.25 0.000 �.2756908 �.2046572

beamt .0402636 .0192906 2.09 0.037 .0024547 .0780725

bluec �.0210752 .0101502 �2.08 0.038 �.0409693 �.0011812

working �.0064606 .0095068 �0.68 0.497 �.0250937 .0121725

public .1480981 .0157224 9.42 0.000 .1172827 .1789134

addon .0189115 .0256716 0.74 0.461 �.0314039 .0692269

_cons 2.578406 .0670071 38.48 0.000 2.447075 2.709738

AIC statistic ¼ 6.407 6 BIC statistic ¼ �103,937.

LM value ¼ 17,2762.665 LM w2(1) ¼ 0.000

Score test OD ¼ 428,288.802 Score w(1) ¼ 0.000
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Censored Negative Binomial Regression Number of obs ¼ 27,326

Wald w2(16) ¼ 3472.65

Log-likelihood ¼ �55,066.082 Prob 4 w2 ¼ 0.0000

docvis Coeff. Std. Err. z P4|z| [95% CI]

xb

female .2918081 .0244625 11.93 0.000 .2438626 .3397537

age .0037857 .0089505 0.42 0.672 �.0137569 .0213284

agesq �.0294051 .1015427 �0.29 0.772 �.2284252 .169615

hsat �.252314 .0052074 �48.45 0.000 �.2625204 �.2421077

handdum .0752106 .032167 2.34 0.019 .0121645 .1382567

handper .0065435 .0007127 9.18 0.000 .0051466 .0079404

married .0236717 .0276851 0.86 0.393 �.0305901 .0779335

educ �.0375634 .0058873 �6.38 0.000 �.0491023 �.0260244

hhninc �.0628296 .0066091 �9.51 0.000 �.0757832 �.049876

hhkids �.2249677 .0260514 �8.64 0.000 �.2760276 �.1739078

self �.0766637 .0518638 �1.48 0.139 �.1783148 .0249875

beamt .2819248 .0579536 4.86 0.000 .1683378 .3955118

bluec .1135119 .0302827 3.75 0.000 .0541589 .1728649

working �.1079542 .0284011 �3.80 0.000 �.1636193 �.052289

public .3378024 .0452985 7.46 0.000 .249019 .4265858

addon �.2807842 .0797627 �3.52 0.000 �.4371163 �.1244522

_cons 4.62027 .2161169 21.38 0.000 4.196689 5.043851

Inalpha

_cons 1.574162 .0117548 133.92 0.000 1.551123 1.597201

alpha 4.826693 .0567366 4.716763 4.939186

AIC statistic ¼ 4.032 BIC statistic ¼ �168,835.3

C
o

u
n

t
resp

o
n

se
reg

ressio
n

m
o

d
els

2
3
7



nonzero observation is, then

Prob½y ¼ j40� ¼ ½1�Q� � PðjÞ. (60)

It remains to specify Q, then we can construct the log-likelihood function. Various
candidates have been suggested (see ESI, 2007, Chapter 25); the most common is
the logistic binary choice model,

Qi ¼ Prob½Regime 0�

¼
expðc0ziÞ

1þ expðc0ziÞ
, ð61Þ

where zi is a set of covariates – possibly the same as xi that is believed to influence
the probability of the regime choice and c is a set of parameters to be estimated
with b.

The log-likelihood for this model based on the Poisson probabilities is

logL ¼
X
yi¼0

log
expðc0ziÞ

1þ expðc0ziÞ
þ

expð�liÞ

1þ expðc0ziÞ

� �

þ
X
yi40

log
expð�liÞl

yi

i

1þ expðc0ziÞ½ �yi!

� �
. ð62Þ

This formulation implies several new complications. First, its greater com-
plexity is apparent. This log-likelihood function is much more difficult to maxi-
mize than that for the Poisson model. Second, the conditional mean function in
this model is now

E½yjx; z� ¼ Qili ¼
expðc0ziÞ expðb

0xiÞ

1þ expðc0ziÞ
, (63)

which is much more involved than before, and involves both the original covari-
ates and the variables in the regime model. Partial effects are correspondingly
more involved;

@E½yjx; z�

@
x

z

� � ¼ liQi

b

Qið1�QiÞc

 !
. (64)

If there is any overlap between x and z, the partial effect of that variable is the
sum of the two effects shown.

The zero inflation model produces a substantial change in the specification of
the model. As such, one would want to test the specification if possible. There is no
counterpart to the LM test that would allow one to test the model without actually
estimating it. Moreover, the basic model is not a simple restricted version of the
ZIP (ZINB) model. Restricting g to equal zero in the model above, for example
produces Q ¼ 1/2, not Q ¼ 0, which is what one would hope for. Common prac-
tice is to use the Vuong (1989) test for these nonnested models. The statistic is
computed as follows, based on the log-likelihood functions for the two models. Let
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logLi0 be an individual contribution (observation) in the log-likelihood for the
basic Poisson model, and let logLi1 denote an individual contribution to the
log-likelihood function for the zero inflation model. Let mi ¼ (logLi1�logLi0).
The statistic is

Z ¼

ffiffiffiffiffi
N
p

m̄

sm

(65)

where m̄ ¼ ð1=NÞSimi and sm ¼ ð1=NÞSiðmi � m̄Þ2: In large samples, the statistic
converges to standard normal. Under the assumption of the base model, Z will be
large and negative, while under the assumption of the zero inflation model, Z will
be large and positive. Thus, large positive values (greater than 2.0) reject the
Poisson model in favor of the zero inflation model.

To illustrate the ZIP model, we extend the Poisson model estimated earlier
with a regime splitting equation

Qi ¼ Lðg1 þ g2FEMALEþ g3HHNINC þ g4EDUCþ g5ADDONÞ,

(66)

where L(t) is the logistic probability shown in (60). The estimated model is shown
in Table 7.

The log-likelihood for the ZIP model is �77,073.779 compared to �89,431.005
for the Poisson model, which implies a difference of well over 12,000. On this basis,
we would reject the Poisson model. However, as noted earlier, since the models are
not nested, this is not a valid test. The Vuong statistic is +39.08, which does
decisively reject the Poisson model. One can see some quite large changes in the
results, particularly in the marginal effects. These are different models. On the
specific point of the specification, the estimation results (using LIMDEP) indicate
that the data contain 10,135 zero observations. The Poisson model predicts 2013.6
zeros. This is computed by multiplying the average predicted probability of a zero
across all observations times the sample size. The zero inflation model predicts
9581.9 zeros, which is, as might be expected, much closer to the sample proportion.

4.3. Two part models

Two models that are related to the zero inflation model, hurdle models and
sample selection models play important roles in the contemporary literature. A
hurdle model (Mullahy, 1986) specifies the observed outcome as the result of two
decisions, a participation equation and a usage equation. This is a natural variant
of the ZIP model considered above, but its main difference is that the regime split
is not latent. The participation equation determines whether the count will be zero
or positive. The usage equation applies to the positive count outcomes. Thus, the
formal model determining the observed outcomes is

Probðy ¼ 0Þ ¼ Ri;

Probðy40Þ ¼ 1� Ri;

Prob½y ¼ jjy40�½1� Ri�PiðjÞ=½1� Pið0Þ�:

(67)
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Table 7

Estimated zero-inflated Poisson model

Base Poisson Model Poisson Count Model Zero Regime Equation Partial Effect

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Coeff. Std. Err.

Constant 2.48612758 .06626647 0. 2.27389204 .02824420 �.86356818 .07269384 0.

FEMALE .28187106 .00774175 .89734351 .14264681 .00289141 �.58033790 .02817964 .97216018

AGE �.01835519 .00277022 �.05843420 .00194385 .00110859 .0056986

AGESQ .26778487 .03096216 .85249979 .01169342 .01220742 .03428056

HSAT �.21345503 .00141482 �.67953940 �.15791310 .00053102 �.46293957

HANDDUM .09041129 .00963870 .28782659 .10648551 .00358290 .31217396

HANDPER .00300153 .00017626 .00955544 .00158480 .597360D�04 .00464603

MARRIED .03873812 .00881265 .12332377 �.00596092 .00334023 �.01747509

EDUC �.00342252 .00187631 �.01089568 �.00335247 .00084300 .04090428 .00614014 �.04887430

HHNINC �.16498398 .02291240 �.52523061 �.17752186 .01001860 .04894552 .08141084 �.56714692

HHKIDS �.09762798 .00862042 �.31080111 �.05709710 .00342170 �.16738641

SELF �.23243199 .01806908 �.73995303 �.12653617 .00764267 �.37095465

BEAMT .03640374 .01921475 .11589220 .06028953 .00831117 .17674537

BLUEC �.01916882 .01006783 �.06102440 .00195719 .00396727 .00573772

WORKING .00041819 .00941149 .00133132 �.01322419 .00359116 �.03876818

PUBLIC .14122076 .01565581 .44957981 .12484058 .00712261 .36598386

ADDON .02584454 .02544319 .08227672 �.09812657 .01187915 �.51567053 .11710229 .20457682
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The participation equation is a binary choice model, like the logit model used in
the previous section. The count equation is precisely the truncated at zero model
detailed in Section 4.1. This model uses components that have already appeared.
The log-likelihood function separates the probabilities into two simple parts:

logL ¼
X
y¼0

logRi

þ
X
y40

log½1� Ri� � log½1� Pið0Þ� þ logPiðjÞ. ð68Þ

The four terms of the log-likelihood partition into two log-likelihoods,

logL ¼
X
d¼0

logRi þ
X
d¼1

log½1� Ri�

þ
X
d¼1

logPiðjÞ � log½1� Pið0Þ�, ð69Þ

where the binary variable di equals zero if yi equals zero and one if yi is greater
than zero. Notice that the two equations can be estimated separately: a binary
choice model for di and a truncated at zero Poisson (or negative binomial) model
for the positive values of yi.

We shall illustrate this model with the same specification as the ZIP model. The
hurdle equation determines whether the individual will make any visits to the
doctor. Then, the usage equation is, as before, a count model for the number of
visits. This model differs from the ZIP model in that the main equation applies
only to the positive counts of doctor visits. Not surprisingly, the model results are
quite similar. The hurdle model and the zero inflation model are quite similar
both in the formulation and in how the models are interpreted (Table 8).

Models for sample selection differ considerably from the frameworks we have
considered so far. Loosely, while the two part models considered so far concern
the utilization decision, the sample selection models can be viewed as a two part
model in which the first involves a decision whether or not to be in the observed
sample. A second crucial aspect of the model is that the effects of the first step are
taken to operate on the unmeasured aspects of the usage equation, not directly in
the specified equations.

To put this in a context, suppose we hypothesize that in our health care data,
individuals who have insurance make their utilization decisions differently from
those who do not, in ways that are not completely accounted for in the observed
covariates. An appropriate model might appear as follows:

Insurance decision ð0=1Þ ¼ F ða0wi þ uiÞ, (70)

where wi is the set of measured covariates and ui is the unmeasured element of the
individual’s decision to have insurance. Then, the usage equation holds that

Doctor visits ðcountÞ ¼ Gðb0xi þ �iÞ, (71)

where ei accounts for those elements of the usage decision that are not directly
measured by the analyst. The second equation is motivated by the same
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Table 8

Estimated hurdle Poisson model

Base Poisson Model Poisson Count Model Participation Equation Partial Effect

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Coeff. Std. Err.

Constant 2.48612758 .06626647 0. 2.24409689 .02803268 .80374458 .06710834 0.

FEMALE .28187106 .00774175 .89734351 .12711631 .00274746 .59195506 .02599107 .95763200

AGE �.01835519 .00277022 �.05843420 .00668133 .00108985 .01821318

AGESQ .26778487 .03096216 .85249979 �.04695053 .01195589 �.12798632

HSAT �.21345503 .00141482 �.67953940 �.15271640 .00052262 �.41630224

HANDDUM .09041129 .00963870 .28782659 .10904010 .00345227 .29724142

HANDPER .00300153 .00017626 .00955544 .00145161 .586338D�04 .00395706

MARRIED .03873812 .00881265 .12332377 �.01233627 .00316579 �.03362846

EDUC �.00342252 .00187631 �.01089568 �.00598172 .00081933 �.04518713 .00566753 �.06295579

HHNINC �.16498398 .02291240 �.52523061 �.21657725 .00981680 �.11523583 .07381806 �.70935153

HHKIDS �.09762798 .00862042 �.31080111 �.06100214 .00326811 �.16629077

SELF �.23243199 .01806908 �.73995303 �.08960050 .00698770 �.24424941

BEAMT .03640374 .01921475 .11589220 .06449742 .00833036 .17581884

BLUEC �.01916882 .01006783 �.06102440 .00230015 .00387887 .00627017

WORKING .00041819 .00941149 .00133132 �.02827977 .00354930 �.07709015

PUBLIC .14122076 .01565581 .44957981 .12294552 .00715542 .33514735

ADDON .02584454 .02544319 .08227672 �.09827801 .01187417 .43208724 .10043663 .17816867
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considerations that underlie the overdispersion models, such as the NB model.
There can be unmeasured, latent elements in the usage equation that influence the
outcome, but are not observable by the analyst. In our earlier application, this
induced overdispersion, which was easily accommodated by extending the Poisson
model to the NB framework. The effect is more pernicious here. If our estimation
sample for the count variable contained only those individuals who have insurance,
and if the unmeasured effects in the two equations are correlated, then the sampling
mechanism becomes nonrandom. In effect, under these assumptions, the variables
wi will be acting in the background to influence the usage variable, and will distort
our estimates of b in that equation.7

It is a bit ambiguous how the unmeasured aspects of the usage decision should
enter the model for the count outcome. Note there is no ‘disturbance’ in (7)–(9). On
the other hand, the presence of the latent heterogeneity in the overdispersion models
in Section 3 provides a suitable approach. The following two part model for a count
variable embodies these ideas:

z�i ¼ a0wi þ ui,

zi ¼ 1 if z�i 40; 0 otherwise ða standard binary choice modelÞ ð72Þ

Prob½yi ¼ jjzi ¼ 1;xi; �i� ¼ Pðb0xi þ s�iÞ ðPoisson count modelÞ, (73)

where the data for the count model are only observed when zi ¼ 1, e.g., only for
the insured individuals in the larger sample. The first equation is the participation
equation. The second is the usage equation. The model is made operational by
formal distributional assumptions for the unobserved components; (ui,ei) are ass-
umed to be distributed as joint standard normal with correlation r. It is the
nonzero r that ultimately induces the complication of the selection effect.

Estimation of this model is considerably more involved than those considered
so far. The presence of the unobserved variable makes familiar maximum like-
lihood methods infeasible. The model can be estimated by maximum simulated
likelihood. (Development of the method is beyond the scope of our presentation
here. Readers may refer to Greene (1994, 2003 or 2006) or ESI (2007) for details.)
To illustrate the selection model, we have estimated a restricted version of the
count model used earlier for doctor visits; the participation equation for whether
or not the individual has PUBLIC health insurance is based on

w ¼ ðConstant;AGE;HHNINC;HHKIDS;EDUCÞ. (74)

The usage equation includes

x ¼ ðConstant;AGE;FEMALE;HHNINC;HHKIDS,

WORKING;BLUEC;SELF;BEAMTÞ: ð75Þ

7 In Greene (1994), this method is used to model counts of derogatory reports in credit files for a

sample of individuals who have, in an earlier screening, applied for a specific credit card. The second

step of the analysis is applied only to those individuals whose credit card application was approved.
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The estimates are given in Table 9. The leftmost estimates are obtained by the
Poisson regression model ignoring the selection issue. The point of comparison is the
second set of results for the Poisson model. (These are computed jointly with
the probit equation at the far right of the table.) It can be seen that the effect of the
selection correction is quite substantial; the apparently significant income effect in
the first equation disappears; the effect of kids in the household becomes consid-
erably greater; the positive and significant effect of BLUEC becomes negative and
significant; and the insignificant BEAMT coefficient changes sign and becomes
significant in the modified equation. Apparently, the latent effect of the insurance
decision is quite important in these data. The estimate of r is �.3928, with a
standard error of .0282. Based on a simple t-test, we would decisively reject the
hypothesis of no correlation, which reinforces our impression that the selection
effect in these data is indeed substantial. The fairly large negative estimate suggests
that the latent effects that act to increase the likelihood that the individual will have
insurance act in turn to reduce the number of doctor visits. A theory based on moral
hazard effects of insurance would have predicted a positive coefficient, instead.

4.4. Panel data

The health care data we have been using are a panel. Data sets such as this one are
becoming increasingly common in applications of count models. The main virtues
of panel data are that they allow a richer specification of the model that we have
been using so far, and they allow, under suitable assumptions, the researcher to
learn more about the latent sources of heterogeneity that are not captured by the
measured covariates already in the model. We shall examine the two most familiar
approaches here, fixed effects and random effects. A wider variety of panel models
is presented in Stata and ESI (2007). As suggested by the application, we assume
that the sample contains N individuals, indexed by i ¼ 1, ...,N. The number of
observations available for each individual is denoted Ti; this may vary across
individuals, as it does in our data set. [Note that Ti is used here differently than in
Section 2.1.]

In general terms, the availability of panel data allows the analyst to incorporate
individual heterogeneity in the model. For the fixed effects case, this takes the form
of an individual-specific intercept term.

log lit ¼ ai þ b0xitðþ�it for the negative binomial modelÞ. (76)

where ai can be interpreted as the coefficient on a binary variable, di, which in-
dicates membership in the ith group. A major difference between this and the linear
regression model is that this model cannot be fit by least squares using deviations
from group means – the transformation of the data to group mean form in this
context brings no benefits at all. Two approaches are used instead. One possibility
is to use a conditional maximum likelihood approach – the model conditioned on
the sum of the observations is free of the fixed effects and has a closed form that is a
function of b alone. This is provided for both Poisson and negative binomial (see
Hausman et al., 1984). A second approach is direct, brute force estimation of the
full model including the fixed effects. The unconditional estimator is obtained by a
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Table 9

Estimated sample selection model

Poisson Model; Subsample Poisson Model; Maximum Likelihood Probit Insurance Equation Reestimated Probit Insurance Equation

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Constant .62950929 .02172139 �.25578895 .03277438 3.62691256 .07326231 3.60039973 .07232337

AGE .01649406 .00035426 .01861389 .00052927 .00079753 .00104823 .00074654 .00108170

FEMALE .23541478 .00783352 .33195368 .01057008

HHNINC �.35832703 .02330320 .01529087 .03513743 �.98823990 .05500769 �.98247429 .04954413

HHKIDS �.16894816 .00843149 �.21559300 .01213431 �.07928466 .02276865 �.07028879 .02238365

WORKING �.19400071 .00918292 �.22010784 .01272314

BLUEC .02209633 .00974552 �.03595214 .01371389

SELF �.26437394 .01978391 �.36281283 .02770759

BEAMT .03168950 .02771184 �.12155827 .04288937

EDUC �.17148226 .00403598 �.16970876 .00402272

s 0. 0. 1.31093146 .00494213

r 0. 0. �.39283049 .02820212

logL �94,322.56 �62,584.14 �8320.77794

N 24,203 27,326 27,326
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direct maximization of the full log-likelihood function and estimating all para-
meters including the group-specific constants. A result that is quite rare in this
setting is that for the Poisson model (and few others), the conditional and uncon-
ditional estimators are numerically identical. The choice of approach can be based
on what feature is available in the computer package one is using. The matter is
more complicated in the NB case. The conditional estimator derived in HHG is not
the same as the brute force estimator. Moreover, the underlying specifications are
different. In HHGs specification, the fixed effect (dummy variable) coefficients
appear directly in the distribution of the latent heterogeneity variable, not in the
regression function as shown above. Overall, the fixed effects, negative binomial
(FENB) appears relatively infrequently in the count data literature. Where it does
occur, current practice appears to favor the HHG approach.

We note before turning to random effects models two important aspects of
fitting FE models. First, as in the linear regression case, variables in the equation
that do not differ across time become collinear with the individual-specific dummy
variables. Thus, FE models cannot be fit with time invariant variables. (There is
one surprising exception to this. The HHG FENB models can be fit with a full set
of individual dummy variable and an overall constant – a result which collides
with familiar wisdom. The result occurs because of the aforementioned peculiarity
of the specification of the latent heterogeneity.) The second aspect of this model is
relatively lightly documented phenomenon known as the incidental parameters
problem (see Greene, 1995). The full unconditional maximum likelihood estimator
of models that contain fixed effects is usually inconsistent – the estimator is con-
sistent in T (or Ti), but T is usually taken to be fixed and small. The Poisson model
is an exception to this rule, however. It is consistent even in the presence of
the fixed effects. (One could deduce this from the discussion already. The brute
force estimator would normally suffer from the incidental parameter problem.
But, since it is numerically identical to the conditional estimator, which does not,
the brute force estimator must be consistent as well.)

The random effects model is

log lit ¼ b0xit þ ui. (77)

Once again, the approach used for the linear model, in this case, two-step
generalized least squares, is not usable. The approach is to integrate out the ran-
dom effect and estimate by maximum likelihood the parameters of the resulting
distribution (which, it turns out, is the NB model when the kernel is Poisson and
the effect is log-gamma). The bulk of the received literature on random effects is
based on the Poisson model, though HHG and modern software (e.g., LIMDEP
and Stata) do provide estimators for NB models with random effects.

The random effects model for the count data framework is

log lit ¼ b0xit þ ui; i ¼ 1; . . . ;N; t ¼ 1; . . . ;Ti, (78)

where ui is a random effect for the ith group such that exp(ui) has a gamma dis-
tribution with parameters (y,y). Thus, E[exp(ui) has mean 1 and variance 1/y ¼ a.
This is the framework, which gave rise to the NB model earlier, so that, with minor
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modifications, this is the estimating framework for the Poisson model with random
effects.

For the NB model, Hausman et al. proposed the following approach: We begin
with the Poisson model with the random effects specification shown above. The
random term, ui is distributed as gamma with parameters (yi,yi), which produces
the NB model with a parameter that varies across groups. Then, it is assumed that
yi/(1+yi) is distributed as beta (an,bn), which layers the random group effect onto
the NB model. The random effect is added to the NB model by assuming that the
overdispersion parameter is randomly distributed across groups. The two random
effects models discussed above may be modified to use the normal distribution for
the random effect instead of the gamma, with ui	N[0,s2]. For the Poisson model,
this is an alternative to the log-gamma model which gives rise to the negative
binomial.

Table 10 displays estimates for fixed and random effects versions of the Poisson
model, with the original model based on the pooled data. Both effects models lead
to large changes in the coefficients and the partial effects. As usually occurs, the FE
model brings the larger impact. In most cases, the fit of the model will improve
dramatically – this occurs in linear models as well. The pooled model is a restriction
on either of the panel models. Note that the log-likelihood function has risen from
�89,431 in the pooled case to �45,480 for the FE model. The w2 statistic for testing
for the presence of the fixed effects is about 87,900 with 7292 degrees of freedom.
The 95% critical value is about 7500, so there is little question about rejecting the
null hypothesis of the pooled model. The same result applies to the random effects
model. The fixed effects and random effects are not nested, so one cannot use a
likelihood-ratio test to test for which model is preferred. However, the Poisson
model is an unusual nonlinear model in that the FE estimator is consistent – there
is no incidental parameters problem. As such, in the same fashion as in the linear
model, one can use a Hausman (1978) (see also Greene, 2003, Chapter 13) test to
test for fixed vs. random effects. The appropriate statistic is

H ¼ ðb̂FE � b̂REÞ
0
½Est:Varðb̂FEÞ � Est:Varðb̂REÞ�

�1ðb̂FE � b̂REÞ. (79)

(Note the constant term is removed from the random effects results.) Applying this
computation to the models in Table 10 produces a w2 statistic of 114.1628. The
critical value from the table, with 16 degrees of freedom is 26.296, so the hypothesis
of the random effects model is rejected in favor of the FE model.

Texts providing a thorough discussion of fixed and random effects models and
generalized estimating equations (GEE) with an emphasis in health analysis in-
clude Zeger et al. (1988), Hardin and Hilbe (2003), Twist (2003), and Hilbe (2007).
Texts discussing multilevel count models include Skrondal and Rabe-Hesketh
(2005). Hilbe (2007) is the only source discussing multilevel NB models.

5. Software

Count response regression models include Poisson and NB regression, and all of
the enhancements to each that are aimed to accommodate some violation in the
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Table 10

Poisson models with fixed and random effects

Pooled Poisson Model with No Effects Fixed Effects Poisson Model Random Effects Poisson Model

Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff. Coeff. Std. Err. Part. Eff.

Constant 2.48612758 .06626647 0. 2.24392235 .07371198

FEMALE .28187106 .00774175 .89734351 .51658559 .11586172 1.64456306 .30603129 .02119303 .97425823

AGE �.01835519 .00277022 �.05843420 �.00645204 .00660632 �.02054024 �.02242192 .00240763 �.07138075

AGESQ .26778487 .03096216 .85249979 .31095952 .06972973 .98994735 .39324433 .02574887 1.25190310

HSAT �.21345503 .00141482 �.67953940 �.14713933 .00222146 �.46842172 �.16059023 .00074867 �.51124299

HANDDUM .09041129 .00963870 .28782659 .05697301 .01101687 .18137500 .04903557 .00442617 .15610595

HANDPER .00300153 .00017626 .00955544 �.00123990 .00034541 �.00394724 .00058881 .00011537 .00187449

MARRIED .03873812 .00881265 .12332377 �.02568156 .02186501 �.08175789 �.02623233 .00773198 �.08351126

EDUC �.00342252 .00187631 �.01089568 �.03829432 .01670290 �.12191093 �.01343872 .00427488 �.04278251

HHNINC �.16498398 .02291240 �.52523061 �.12296257 .04266832 �.39145439 �.07074651 .01754451 �.22522326

HHKIDS �.09762798 .00862042 �.31080111 .00275859 .01602765 .00878203 �.02970393 .00580292 �.09456319

SELF �.23243199 .01806908 �.73995303 �.11580970 .03538353 �.36868304 �.16546368 .01330546 �.52675775

BEAMT .03640374 .01921475 .11589220 �.07260535 .05533064 �.23114092 �.01814889 .02270099 �.05777745

BLUEC �.01916882 .01006783 �.06102440 �.01636891 .01947144 �.05211084 �.01456716 .00775266 �.04637491

WORKING .00041819 .00941149 .00133132 �.05009017 .01635782 �.15946331 �.04212169 .00711048 �.13409546

PUBLIC .14122076 .01565581 .44957981 .09352915 .03072334 .29775238 .10688932 .01320990 .34028480

ADDON .02584454 .02544319 .08227672 �.07453049 .03631482 �.23726967 �.05483927 .01859563 �.17458217

a .87573201 .01570144

logL �89,431.01 �45,480.27 �68,720.91
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distributional assumptions of the respective models. The most commonly used
extended Poisson and NB models include zero-truncated, zero-inflated, and panel
data models. Hurdle, sample selection, and censored models are used less fre-
quently, and thus find less support in commercial software. The heterogeneous
NB regression is a commonly used extension that has no Poisson counterpart.
Other count model extensions that have been crafted have found support in
LIMDEP, which has far more count response models available to its users than
other commercial software.

LIMDEP and Stata are the only commercial statistical packages that provide
their respective users with the ability to model Poisson, negative binomial, as well
as their extensions. LIMDEP offers all of the enhanced models mentioned in this
chapter, while Stata offers most of the models, including both base models, NB-1,
zero-truncated and zero-inflated Poisson and negative binomial, a full suite of
count panel data models, mixed models, and heterogeneous negative binomial.
Stata users have written hurdle, censored, sample selection, and Poisson mixed
model procedures. Both software packages provide excellent free technical
support, have exceptional reference manual support with numerous interpreted
examples, and have frequent incremental upgrades.

Unfortunately, other commercial programs provide limited support for count
response models. SAS has Poisson and negative binomial as families within its
SAS/STAT GENMOD procedure, SAS’s generalized linear models (GLM) and
GEE facility. SAS also supports Poisson panel data models. SPSS provides no
support for count response regression models, but is expected to release a GLM
program in its next release, thereby providing the capability for Poisson regression.
GENSTAT supports Poisson and NB regression, together with a variety of Poisson
panel and mixed models.

R is a higher language statistical software environment that can be freely
downloaded from the web. It enjoys worldwide developmental and technical
support from members of academia as well as from statisticians at major research
institutions or agencies. R statistical procedures are authored by users; thus its
statistical capabilities depend entirely on the statistical procedures written and
filed in user-supported R libraries. Although R has a rather complete suite of
statistical procedures, it is at present rather weak in its support of count response
models. R has software support for Poisson and NB regression, but not for any of
the extensions we have discussed. A basic NB-2 model in R is provided as part of
the MASS software package, based on the work of Venables and Ripley (2002).
We expect, though, that this paucity of count response model offerings is only
temporary and that most if not all of the extensions mentioned in this chapter will
be available to users in the near future.

Other commercial statistical software either fails to support count response
models, or provides only the basic models, and perhaps a GEE or fixed/random
effects Poisson panel data module.

When evaluating software for its ability to model counts, care must be taken to
check if the model offered has associated goodness-of-fit statistics and if it allows
the user to generate appropriate residuals for model evaluation. Several of the
software packages referenced in the previous paragraph may offer Poisson or NB
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regression, yet fail to provide appropriate fit statistics in their output. A model
without fit analysis is statistically useless, and fosters poor statistical practice.

A caveat should be given regarding NB regression capability from within the
framework of GLM. Since GLMs are one-parameter models, and the negative
binomial has two parameters to estimate, the heterogeneity parameter, a, must be
entered into the GLM algorithm as a constant. If the software also has a full
maximum likelihood NB procedure, one may use it to obtain an estimate of a, and
then insert it into the GLM negative binomial algorithm as the heterogeneity
parameter constant. The value of adopting this two-stage procedure is that GLM
procedures typically have a variety of goodness-of-fit output and residual analysis
support associated with the procedure. Model evaluation may be enhanced. On
the other hand, software such as LIMDEP provides extensive fit and residual
support for all of its count regression models, thereby making the two-stage
modeling task unnecessary. We advise the user of statistical software to be aware
of the capability, as well as the limitations, of any software being used for mode-
ling purposes.

With the increased speed of computer chips and the availability of cheap
RAMs has made available the ability of statistical software to estimate highly
complex models based on permutations. Cytel Corp has recently offered users of
its LogXact program, the ability to model Poisson regression based on exact
statistics. That is, the procedure calculates parameter estimate standard errors,
and hence confidence intervals, based on exact calculations, not on traditional
asymptotics. This is a particularly valuable tool when modeling small or ill-
defined data sets. Software such as SAS, SPSS, Stata, and StatXact have exact
statistical capabilities for tables, but only LogXact and Stata (version 10) provide
exact statistical support for logistic and Poisson models. Cytel intends to extend
LogXact to provide exact NB regression, but as of this writing the research has
not yet been done to develop the requisite algorithms.

We have provided an overview of the count response regression capabilities
currently available in commercial statistical software. LIMDEP and Stata stand
far above other packages in the number of count models available, but also in
their quality; i.e., providing a full range of goodness-of-fit statistics and residuals.
As the years pass, other software vendors will likely expand their offerings to
include most of the count models discussed in this chapter. As we mentioned
before though, before using statistical software to model count responses, be
certain to evaluate its fit analysis capability as well as its range of offerings.

6. Summary and conclusions

We have surveyed the most commonly used models related to the regression of
count response data. The foundation for this class of models is Poisson regres-
sion. Though it has provided the fundamental underpinning for modeling counts,
the equidispersion assumption of the Poisson model is a severe limitation. This
shortcoming is generally overcome by the NB model, which can be construed as
the unconditional result of conditioning the Poisson regression on unobservable
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heterogeneity, or simply as a more general model for counts that is not limited
by the Poisson assumption on the variance of the response variable. We also
considered the most common extensions of these two basic count models: zero
inflation models, sample selection, two part (hurdle) models, and the most famil-
iar panel data applications. The applications presented above focused on the
Poisson model, though all of them have been extended to the NB model as well.
The basic models are available in most commercial software packages, such as
Stata, LIMDEP, GENSTAT, and SAS. The more involved extensions tend to be
in more limited availability, with the most complex count response models only
supported in LIMDEP and Stata.

The literature, both applied and theoretical, on this subject is vast. We have
omitted many of the useful extensions and theoretical frontiers on modeling
counts. (See, e.g., Winkelmann (2003), which documents these models in over 300
pages, Hilbe (2007), which provides detailed examples, most related to health data,
for each major count response model, particularly all of the varieties of NB re-
gression, or Cameron and Trivedi (1998), which has been a standard text on count
response models, but emphasizes economic application.) Recent developments
include many models for panel data, mixed models, latent class models, and a
variety of other approaches. Models for counts have provided a proving ground
for development of an array of new techniques as well, such as random parameters
models and Bayesian estimation methods.
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Mixed Models

Matthew J. Gurka and Lloyd J. Edwards

Abstract

This paper provides a general overview of the mixed model, a powerful tool for

analyzing correlated data. Numerous books and other sources exist that cover

the mixed model comprehensively. However, we aimed to provide a relatively

concise introduction to the mixed model and describe the primary motivations

behind its use. Recent developments of various aspects of this topic are dis-

cussed, including estimation and inference, model selection, diagnostics, missing

data, and power and sample size. We focus on describing the mixed model as it

is used for modeling normal outcome data linearly, but we also discuss its use in

other situations, such as with discrete outcome data. We point out various

software packages with the capability of fitting mixed models, and most im-

portantly, we highlight many important articles and books for those who wish to

pursue this topic further.

1. Introduction

1.1. The importance of mixed models

Why mixed models? Simply put, mixed models allow one to effectively model
data that are not independent. Of course, such a statement is quite general, and
the actual use of mixed models varies widely across fields of study. Data
suited for analysis via mixed models usually have some multilevel or hierarchical
organization (hence mixed models are often times referred to as multilevel or
hierarchical models). This usually means that this kind of data can be organized
into different levels, or clusters. Observations made within a cluster are usually
assumed to be dependent, whereas clusters themselves are assumed to be
independent of one another.

One may wonder what kind of data lend themselves to such a cluster
arrangement. The most convenient and common example of this sort of hierar-
chical organization is longitudinal data, in which observations are collected over
time on a subject. Obviously characteristics unique to that subject or individual
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dictate that multiple observations collected over time on that individual will be
correlated. Because of this, mixed models have become one common method for
analyzing many types of longitudinal data, particularly from medical research.

But, mixed model analysis is by no means limited to longitudinal studies.
Mixed models are often used in settings in which data are collected on families,
schools, or hospitals. In using the individuals that comprise those groups, it is
recommended that one take into account the natural correlation of those indi-
viduals from the same family, school, or hospital, depending on the motivation of
the analysis. Mixed models can accommodate data from such studies easily and in
a straightforward fashion that is easy to interpret.

Our aim for this chapter was to generally introduce the mixed model for the
reader who is not an expert on such an analysis tool. In doing so, we describe the
main aspects of the model, such as estimation and inference. We also discuss areas
of research within the mixed model that are ongoing, such as model selection and
power analysis. Our main goal was to provide a fairly comprehensive and current
reference to textbooks, journal articles, and other sources of information that give
details on more specific topics related to the mixed model for the reader who
wishes to learn more about this popular method of analyzing data.

1.2. ‘‘Mixed’’ models

In introducing mixed models, one should discuss what makes a model ‘‘mixed.’’ A
model is ‘‘mixed’’ because it contains different types of effects to be estimated:
namely, ‘‘fixed’’ effects and ‘‘random’’ effects. What sets apart a mixed model
from a typical univariate or multivariate model is the addition of the random
effects. While introducing the concept of linear mixed models, it is most straight-
forward to discuss with reference to linear models. However, mixed models can be
applied to nonlinear models as well, and this concept will be introduced later.

In the case of the univariate linear model, the following form is typically
observed:

y ¼ Xbþ �. (1)

Here, we are fitting a model to data from N sampling units (subjects), considered
to be independent of one another. In model (1), y is the (N� 1) vector of
responses from the N subjects, X the (N� p) design matrix of known variables,
b a (p� 1) vector of fixed, unknown parameters, and e the (N� 1) vector whose
rows represent unobservable random variables that capture the subject-specific
deviation from the expected value. So, each row of y, X, and e correspond to a
subject. Typically, the rows of e are assumed to be normally distributed with mean
0 and common variance s2; i.e., � 	Nð0;s2IÞ:

Now, the linear mixed model, in the common form developed by Laird and
Ware (1982) for longitudinal data analysis, is as follows:

yi ¼ X ibþ Z ibi þ ei. (2)

Here, iA{1,y,m}, where m is the number of independent sampling units
(subjects), yi an ni� 1 vector of observations on the ith subject; Xi an ni� p
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known, constant design matrix for the ith subject with rank p; b a p� 1 vector of
unknown, constant population parameters; Zi an ni� q known, constant design
matrix for the ith subject with rank q corresponding to bi, a q� 1 vector of
unknown, random individual-specific parameters (the ‘‘random effects’’); and ei

an ni� 1 vector of random ‘‘within-subject,’’ or ‘‘pure,’’ error terms.
Additionally, let eI ¼ Zibi+ei be the ‘‘total’’ error term of model (2). The

following distributional assumptions are usually held: bi is normally distributed
with mean vector 0 and covariance matrix D and bi independent of bj, i 6¼ j. Also,
ei is distributed normally with mean vector 0 and covariance matrix Ri, inde-
pendent of bi. The covariance matrices D and Ri are typically assumed to be
characterized by unique parameters contained in the k� 1 vector y. Often, a
‘‘conditionally independent’’ model is assumed; i.e., Ri ¼ s2Ini

: The total variance
for the response vector in (2) is varðyiÞ ¼ varð�iÞ ¼ SiðyÞ ¼ Z iDðyÞZ 0i þ RiðyÞ: It is
common to write Si ¼ SiðyÞ; D ¼ D (y), and Ri ¼ Ri(y) so that Si ¼ Z iDZ 0i þ Ri:

As alluded to in Section 1.1, the utility of the mixed model is primarily in its
applicability to non-independent data. So, the standard univariate linear model
(1) is valid when one observation each is collected on numerous ‘‘subjects’’ that
are independent of one another.

A subject here can be a person, a family, a hospital, or so on. When multiple
observations are collected on each person/family/hospital, independence of obser-
vations, at least taken from the same subject, can no longer be assumed. The
mixed model (2), then, with its additional source of variation represented by the
random effects (bi) can accommodate such data.

1.3. An example

The mixed model is especially useful when fitting longitudinal data. It allows an
analyst to not only make inferences about the population, but it also accommo-
dates estimation and inference about subject-specific level deviation from the
population estimates of typical interest. An especially useful property for the
mixed model, particularly in longitudinal data analysis, is the fact that it can
accommodate missing data. Missing data, usually in the form of withdrawals or
drop outs, are a common characteristic of most studies collecting information on
individuals over time. To be discussed later, depending on the nature of the
missingness, mixed models can allow for missing data.

To exemplify the use of the mixed model in a repeated measures setting, we
introduce an application to obesity research. In the United States, the prevalence
of obesity has reached epidemic levels (Flegal et al., 2002). Additionally, obesity is
a major risk factor for type 2 diabetes (Mokdad et al., 2001). Lifestyle treatment
with modest weight loss has been shown to prevent type 2 diabetes (Knowler
et al., 2002), and can thus be seen as a crucial element for diabetes control in
obese individuals.

Improving Control with Activity and Nutrition (ICAN) was a randomized
control trial designed to assess the efficacy of a modestly priced, registered
dietician (RD)-led case management (CM) approach to lifestyle change in
patients with type 2 diabetes (Wolf et al., 2004). The primary goal of the study
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was to compare the intervention to usual medical care with respect to weight loss
for obese patients with type 2 diabetes. Weight in kilograms and waist circum-
ference (cm) were recorded on 124 individuals at the beginning of the study, and
then at 4, 6, 8, and 12 months following baseline. A significant overall difference
was found in weight loss over the period of the trial favoring lifestyle CM over
usual care (UC).

The primary focus of the study and the subsequent analysis of the data were in
differences between the two groups, the lifestyle CM group and the UC group,
with respect to weight loss over time. To do this, one would estimate and make
inferences about the ‘‘fixed effects’’ portion of the model. One could with such a
model fit a linear trend over time for each group and then compare groups, or one
could examine polynomial effects over time.

It would also prove interesting to study the variation observed in the data as
well. Namely, we could examine whether the variability in weight loss over time
was different between the two groups. Such an examination would allow inves-
tigators to make decisions on the overall effectiveness of the CM intervention in
facilitating consistent weight loss. The mixed model allows for separate models of
the variation for the two intervention groups, and one could then make conclu-
sions based on the resulting estimates. Similarly, examination of outliers in both
groups using random effect estimates (i.e., subject-specific deviations from the
average trend over time for the group) could also be useful in helping to identify
underlying individual factors that may influence the response to such an
intervention.

In order to achieve such goals, a linear mixed model was fitted to the data.
Previous experience with the data coupled with careful model fitting strategies
resulted in the following model of interest:

yij ¼ b1ðBASELINE WEIGHTÞi þ b2ðBASELINE AGEÞi þ b3ðUCiÞ

þ b4ðCMiÞ þ ðb5UCi þ b6CMiÞtij þ b1iðUCiÞ þ b2iðCMiÞ þ eij . ð3Þ

Here, yij is the change from baseline weight (kg) observed for individual i at
month tij (tij ¼ 4,6,8,12). CMi and UCi are indicator variables for those subjects in
the CM and UC groups, respectively. The among-unit variation was modeled
separately for each group; i.e., varðb1iÞ ¼ s2b;UC for those individuals in the UC
group and varðb2iÞ ¼ s2b;CM for those individuals in the CM group. This variation,
stemming from the random intercept included in the model (b1i and b2i, depending
on the group assignment for subject i), represents the variation of the deviations
of each subject’s estimated intercept from the population intercepts (b3 and b4).
In this instance, we assumed a constant within-unit variation between the two
groups. Thus, varðeijÞ ¼ s2e :

In the majority of applications, as is the case here, primary interest lies in
inference about the fixed effects; namely, we wish to know if there is a difference
between the two groups with respect to weight loss over time. So, we wish to make
inferences about the intercept and time parameters for the two groups. With this
particular mixed model, we assume a linear change in weight loss over time for
both groups, on average. But, the mixed model allows for individual deviations
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from these population estimates. Here, we only allow for deviation from the
intercept; each individual has a random intercept estimate that will represent that
person’s deviation from the estimate of the average initial weight loss (intercept)
for that particular group. However, one could add a number of random effects to
account for multiple sources of variation that one believes can be modeled in such
a fashion. In this particular case, we could have included a random slope term
that represented the subject’s deviation from the population slope estimate. As we
will discuss later, there are methods to assess the necessity for including such
random effects. In doing so, we decided that a random intercept term was only
required, but we allowed for the random intercept’s variation to differ between
the two groups.

Figure 1 displays model-predicted weight loss at the mean values of age and
weight (50 years old and 105 kg, respectively) for both groups, as well as a ran-
dom sampling of individual profiles. These individual observations over time
allow for estimation of average changes over time per group as well as estimation
of variation from those average changes. The figure displays that in the UC
group, there is no discernable pattern of weight change over the span of the study,
as to be expected since this group of subjects did not receive any intervention
more than what is considered ‘‘usual care.’’ However, the subjects in the CM
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Fig. 1. Random sample of individual profiles of weight change from ICAN study along with estimated

average weight loss (based on mixed model (3), using the mean values of age and weight (50 years old

and 105 kg, respectively)).

Dashed lines represent observed weights for each individual over the span of the study. Solid lines

represent the model-estimated weight change from baseline for each group. The individual profiles seen

here represent only a random sampling of the entire set of subjects used to estimate the parameters of

model (3).
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group on average lost more weight than those in the UC group. The figure of the
individual profiles is extremely helpful in determining the appropriate model of
the data. As one can see, there is considerable variation of the measurements for
both groups over time, both among subjects as well as within-subjects.

Table 1 includes the estimates of the parameters in model (3). After using
inference techniques described later, we can conclude from this model that there is
a significantly greater initial amount of weight loss at four months in the CM
group, compared to the UC group. However, there is no significant difference in
the two population slopes, signifying that the two groups do not differ in weight
loss/gain over time after the initial weight change at four months. In fact, the
subjects in the CM group actually gained weight throughout the rest of the study
on average, while the patients in the UC group remained relatively stable in terms
of weight change throughout the year. Thus, we can conclude based on the fixed
effect estimates that the intervention to be tested is effective at initial weight loss
on average, but that those who received this intervention could not maintain this
weight loss over the span of the study. Additionally, we observe that the subjects
in the CM group experienced greater variation in their initial weight loss than
those in the UC group. We could then look at actual random intercept estimates
(not displayed) to determine those subjects who experienced the most weight loss.

1.4. Marginal versus hierarchical

To begin, it is worth writing the linear mixed model (2) again:

yi ¼ X ibþ Z ibi þ ei.

The motivation behind the analysis or scientific question of interest will drive the
interpretation of the estimates resulting from fitting model (2) to the data. As
alluded to in the discussion of the ICAN example, most often analysts are
interested in estimation and inference about the fixed effects parameters, b, and
possibly the ‘‘variance components,’’ the variance parameters of y. In this setting,
model (2) with ei ¼ Zibi+ei, i.e., yi ¼ Xib+ei, is often referred to as the marginal

Table 1

ICAN mixed model (3) parameter estimates

Effect Parameter Estimate Standard Error

Baseline weight b1 �0.008 0.013

Baseline age b2 �0.084 0.042

Intercepts

UC group b3 6.121 3.042

CM group b4 1.458 3.054

Month effect

UC group b5 �0.025 0.069

CM group b6 0.164 0.076

Var(b1i) s2b;UC 8.626 2.035

Var(b2i) s2b;CM 10.404 2.477

Var(eij) s2e 10.573 0.798
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model (Verbeke and Molenberghs, 2000), or the population-averaged model
(Zeger et al., 1988). Here, the following distributional assumptions are all that are
needed in making the conclusions necessary from the analysis of the data:

yi 	N X ib;Si ¼ Z iDZ 0i þ Ri

	 

. (4)

Use of the marginal model does not imply that random effects are unnecessary
for such an analysis. On the contrary, proper modeling of the random effects
provides for a typically intuitive way of modeling variation of complex data that
allows for accurate estimation and inference on the parameters of interest, b, and
sometimes h. Although not explicitly defined or needed in this case, random
effects make it convenient in modeling the variation of multilevel data.

But, many times it is also important for one to focus on the random effects
themselves. In this case, we should view (2) as a ‘‘hierarchical’’ model (Verbeke
and Molenberghs, 2000), or a ‘‘subject-specific’’ model (Vonesh and Chinchilli,
1997). Rather than explicitly ignore the random effects in the model, bi, we now
define the distributional assumptions of the model conditional on bi:

yijbi 	NðX ibþ Z ibi; RiÞ;

bi 	Nð0;DÞ. ð5Þ

Notice that here, yi 	NðX ib; SiÞ; which is the same distributional assumption of
the marginal model. However, the marginal model and the hierarchical model are
not equivalent, at least in terms of interpretation and utility of the models. When
we discuss the potential for using the mixed model, specifically the random effects
portion of it, to focus on individual-specific deviation from the mean profiles
(fixed effects), it is in the context of the hierarchical perspective. The hierarchical
model then accommodates analyses to identify outlying individuals and to make
predictions on the individual level.

Naturally, one may place certain restrictions on the structure and the number
of parameters of both covariance matrices, D and Ri. The structure of D is often
dictated by the number of random effects included in the model. For example, in
the context of longitudinal data, if one included only a random intercept, then
one only needs to estimate the variance of this random intercept term. However, if
one also includes a random slope as well, then one must decide whether or not to
allow the two random effects to covary. Most software can accommodate many
different specified parametric models of both covariance matrices of the mixed
model. For more detailed information, see Verbeke and Molenberghs (2000).

2. Estimation for the linear mixed model

Seminal papers by Harville (1976, 1977) developed the linear mixed model as is
written in (2), and Laird and Ware (1982) discussed its use for longitudinal data.
Harville (1976) extended the Gauss–Markov theorem to cover the random effects,
bi, in estimating linear combinations of b and bi. The prediction of bi is also
derived in an empirical Bayesian setting. Harville (1977) provided a review of the
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maximum likelihood (ML) approach to estimation in the linear mixed model. For
model (2), the maximum log-likelihood is written as

lMLðhÞ ¼ �
N

2
logð2pÞ �

1

2

Xm

i¼1

log Sij j

�
1

2

Xm

i¼1

ðyi � X ibÞ
0S�1i ðyi � X ibÞ. ð6Þ

Maximization of lMLðhÞ produces ML estimators (MLEs) of the unknown pa-
rameters b and h. When h is known, the MLE of b is given by

b̂ ¼
Xm

i¼1

X 0iS
�1
i X i

 !�1Xm

i¼1

X 0iS
�1
i yi. (7)

Kackar and Harville (1984) stated that the best linear unbiased estimators of the
fixed and random effects are available when the true value of the variance para-
meter, h, is known. In the usual case when h is unknown, Si is simply replaced
with its estimate, Ŝi: Kackar and Harville (1984) concluded that if h needs to be
estimated, the mean squared error of the estimates of b and bi becomes larger.
They also provided an approximation of this decrease in precision.

Harville (1974) also introduced the use of the restricted, or residual, maximum
likelihood (REML) developed by Patterson and Thompson (1971) in estimating
the covariance parameters of the linear mixed model. ML estimations of h are
biased downward since the loss of degrees of freedom resulting from the esti-
mation of the fixed effects is not taken into account. REML estimation
acknowledges this loss of degrees of freedom and hence leads to less biased
estimates. The REML estimator of h is calculated by maximizing the likelihood
function of a set of error contrasts of yi, u0yi; chosen so that Eðu0yiÞ ¼ 0: The
resulting function, not dependent on b, is based on a transformation of the
original observations that lead to a new set of N�p observations. Harville (1974)
showed that the restricted log-likelihood function can be written in the following
form based on the original observations:

lREMLðhÞ ¼ �
N � p

2
logð2pÞ þ

1

2
log

Xm

i¼1

X 0iX i

�����
������ 1

2

Xm

i¼1

log Sij j

�
1

2
log

Xm

i¼1

X 0iS
�1
i X i

�����
������ 1

2

Xm

i¼1

ðyi � X ib̂Þ
0S�1i ðyi � X ib̂Þ, ð8Þ

where b̂ is of the form given above (7).
Laird and Ware (1982) introduced the linear mixed model in a general setting

as it applies to longitudinal data, discussing how the model can be reduced to
both growth curve models and repeated measures models. This two-stage random
effects model is touted as being superior to ordinary multivariate models in its
fitting of longitudinal data since it can handle unbalanced situations that typically
arise when one gathers serial measurements on individuals. A unified approach to
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fitting the linear mixed model is the primary theme, comparing estimation of the
model parameters using ML as well as empirical Bayes methods.

Harville (1977) noted that estimating the parameters of the linear mixed
model via ML methods has computational disadvantages by requiring the
solution of a nonlinear problem, an issue that is not as detrimental today with
advances in computer technology that have dramatically increased the speed
of estimation algorithms. Laird and Ware (1982) discussed the use of the
Expectation-Maximization (EM) algorithm for estimation in the linear mixed
model for longitudinal data. The EM algorithm was originally introduced by
Dempster et al. (1977) as an iterative algorithm that can be used for computing
ML estimates in the presence of incomplete data. Laird et al. (1987) attempted
to improve the speed of convergence of the EM algorithm, noting the rate of
convergence is dependent on the data and the specified forms of the covariance
matrices, D and Ri.

Lindstrom and Bates (1988) proposed an efficient version of the Newton–
Raphson (NR) algorithm for estimating the parameters in the linear mixed model
via both ML and REML. They also developed computationally stable forms of
both the NR and EM algorithms and compared the two in terms of speed and
performance. While the NR algorithm is concluded to require fewer iterations to
achieve convergence, it is not guaranteed to converge, whereas the EM algorithm
will always converge to a local maximum of the likelihood. The faster conver-
gence time of the NR algorithm has made it the preferred estimation method of
choice for most mixed model fitting procedures.

3. Inference for the mixed model

3.1. Inference for the fixed effects

As stated previously, it is extremely common to be primarily interested in making
conclusions regarding the fixed effects of the model. Not surprisingly, then,
inference tools for the fixed effect parameters in the mixed model have received
most of the attention methodologically. Likelihood ratio tests (LRTs) can com-
pare two nested mixed models (Palta and Qu, 1995; Vonesh and Chinchilli, 1997;
Verbeke and Molenberghs, 2000) with ML estimation and are assumed to exhibit
a w2 distribution.

McCarroll and Helms (1987) evaluated a ‘‘conventional’’ LRT with a linear
covariance structure via simulation studies. They showed that the LRT inflates
Type I error rates. In addition, the LRT gave observed power values that
were usually higher than the hypothesized values. McCarroll and Helms (1987)
recommended using tests other than the LRT.

Use of the LRT based on the REML log-likelihood function is not valid when
interest lies in the comparison of models with different sets of fixed effects.
Welham and Thompson (1997) proposed adjusted LRTs for the fixed effects
using REML, while Zucker et al. (2000) developed what they termed ‘‘refined
likelihood ratio tests’’ in order to improve small sample inference. The adjusted
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tests of Welham and Thompson (1997) are reasonably well approximated by w2

variables. Zucker et al. (2000) found that an adjusted LRT based on the Cox–
Reid adjusted likelihood produced Type I error rates lower than nominal. Con-
sequently, a Bartlett correction greatly improved the Type I error rates of the
adjusted LRT. Though the techniques appear promising, new and extensive an-
alytic work seems required for each specific class of model.

Approximate Wald and F-statistics allow testing hypotheses regarding b.
However, Wald tests can underestimate the true variability in the estimated
fixed effects because they do not take into account the variability incurred by
estimating h (Dempster et al., 1981). The approximate F-test is more commonly
used. The null hypothesis H0: Cb ¼ 0, with C a a� p contrast matrix, can be
tested with

TF ¼ a�1ðC b̂Þ0 C
Xm

i¼1

X 0iŜ
�1

i X i

 !�1
C 0

24 35�1ðC b̂Þ. (9)

Under the null hypothesis, it is assumed that TF has an approximate F-distri-
bution with a numerator degrees of freedom, and n denominator degrees of free-
dom, denoted F(a,n). The denominator degrees of freedom, n, have to be
estimated from the data. Determining the denominator degrees of freedom has
been a source of research and debate for many years, with no clear consensus.
However, in the analysis of longitudinal data, Verbeke and Molenberghs (2000,
Section 6.2.2, p. 54) noted that ‘‘... different subjects contribute independent
information, which results in numbers of degrees of freedom which are typically
large enough, whatever estimation method is used, to lead to very similar
p-values.’’ Unfortunately, the approximate F-statistic is known to result in
inflated Type I errors and poor power approximations in small samples, even for
complete and balanced data (McCarroll and Helms, 1987; Catellier and Muller,
2000). Finally, Vonesh (2004) concluded that the denominator degrees of freedom
of the F-test in the linear mixed model should be the number of independent
sampling units minus ‘‘something’’ and we simply do not know what that
‘‘something’’ is.

Kenward and Roger (1997) presented a scaled Wald statistic with an approx-
imate F-distribution for testing fixed effects with REML estimation that performs
well, even in small samples. The Wald statistic uses an adjusted estimator of the
covariance matrix to reduce the small sample bias. A drawback occurs when the
variance components are constrained to be nonnegative and estimates fall on a
boundary. In such cases the Taylor series expansions underlying the approxima-
tions may not be accurate. In addition, the procedure can fail to behave well with
a nonlinear covariance structure. The technique has been implemented in popular
mixed model fitting procedures such as SAS PROC MIXED (SAS Institute,
2003b). However, even this inference technique is not ideal, as documented per-
formance of the Kenward–Roger F-statistic for some small sample cases has
revealed inflated Type I error rates with various covariance model selection
techniques (Gomez et al., 2005).
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3.2. Inference for the random effects

When one is interested in the random effects themselves in the mixed model, then
one needs to make inferences from the hierarchical model perspective. It is most
convenient to estimate the random effects using Bayesian techniques, resulting in
the following form of the estimates of bi, assuming h is known:

b̂i ¼ DZ 0iS
�1
i ðyi � X ibÞ. (10)

The variance of b̂i is then approximated by

nðb̂iÞ ¼ DZ 0i S�1i � S�1i X i

Xm

i¼1

X 0iS
�1
i X i

 !�1
X 0iS

�1
i

8<:
9=;Z iD. (11)

As noted by Laird and Ware (1982), (11) underestimates the variability in b̂i � bi

because it ignores the variation of bi. Consequently, inference about bi is typically
based on

nðb̂i � biÞ ¼ D� nðb̂iÞ. (12)

As with inference for the fixed effects, we typically do not know h beforehand.
And, in this particular setting, we most often do not know b. So, we usually
replace h and b with their ML or REML estimates in the above equations. In this
case, b̂i in (10) is known as the ‘‘empirical Bayes’’ estimate of bi. Again, as is the
case when making inference about the fixed effects, when we use ĥ in place of h,
we then underestimate the variability of b̂i: In this setting too, then, it is rec-
ommended that inference on the random effects be based on approximate F-tests
with specific procedures for the estimation of the denominator degrees of freedom
(Verbeke and Molenberghs, 2000).

3.3. Inference for the covariance parameters

Even though focus typically lies on the fixed effects, it is important to effectively
model the variation of the data via the variance parameters in such a model.
Making valid conclusions about the variability of the data are important infor-
mation in itself, but it also leads to proper inference about the fixed effects as well.
As discussed in Verbeke and Molenberghs (2000), likelihood theory allows for the
distribution of both the ML and REML estimators of h, ĥ; to be approximated by
a normal distribution with mean vector h and covariance matrix equaling the
inverse of the Fisher information matrix. Thus, techniques such as LRTs and
Wald tests can be used to make inferences about h. Of course, there are restric-
tions to the possible values of the parameters contained in h, most commonly that
variance components be strictly positive. To demonstrate, in the example model
(3), we assume varðb1iÞ ¼ s2b;UC40: Of course, in practice, when one fits the data
using a mixed model procedure in a software package, if a value of a variance
parameter is close to the boundary space (e.g., the variance is close to 0), this
indicates that the source of variation may not need to be modeled. In the case
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when a negative value of the variance component parameter is not allowed,
Verbeke and Molenberghs (2003) discuss the use of one-sided tests, in particular
the score test.

In the context of a generalized nonlinear mixed model (to be discussed),
Vonesh and Chinchilli (1997, Section 8.3.2) proposed a pseudo-likelihood ratio
test (PLRT) used by Vonesh et al. (1996) to assess goodness-of-fit of the modeled
covariance structure. The idea was to compare the robust ‘‘sandwich’’ estimator
of the fixed effects covariance matrix to the usual estimated covariance matrix.
The fixed effects covariance matrix is O ¼ nðb̂Þ: The usual estimate and the robust
‘‘sandwich’’ estimator of the fixed effects covariance matrix for (2) are given by

Ô ¼
Xm

i¼1

X 0iŜ
�1

i X i

 !�1
(13)

and

ÔR ¼ Ô
Xm

i¼1

X 0iŜ
�1

i ðyi � X ib̂Þðyi � X ib̂Þ
0Ŝ
�1

i X i

" #
Ô. (14)

By comparing the closeness of the estimators using a PLRT, one can evaluate the
goodness-of-fit of the modeled covariance matrix Si: Assuming that mÔR has an
approximate Wishart distribution, the PLRT is approximately distributed as a
chi-square with pðpþ 1Þ=2 degrees of freedom. One advantage of the technique is
that it does not require repeated fittings of models. The authors suggested that the
PLRT should not be used when the outcomes exhibit a non-normal distribution.
More work needs to be done to assess the performance of the PLRT for the mixed
model in general. For more details of the technique, the reader is directed to
Vonesh and Chinchilli (1997, Section 8.3.2).

4. Selecting the best mixed model

Discussion of estimation and inference on the parameters of the linear mixed
model naturally falls under the discussion of model selection. Often, we usually
perform hypothesis tests on model parameters to decide whether or not their
inclusion in the model is necessary. Inference tools discussed previously are useful
in linear mixed models when the parameters of note are nested. However, in the
context of mixed models, it is common to want to compare models that are not
nested, particularly when trying to determine the best model of the covariance.

4.1. Information criteria

Information theoretic criteria have played a prominent role in mixed model se-
lection due to their relative validity in comparing non-nested models. Most prac-
titioners use the Akaike Information Criterion (AIC, Akaike, 1974) and the
Bayesian Information Criterion (BIC, Schwarz, 1978). Many variations have
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been introduced, including the corrected AIC, or AICC (Hurvich and Tsai, 1989),
and the consistent AIC, or CAIC (Bozdogan, 1987). In their original forms, a
larger value of the criteria for a given model indicates a better fit of the data.
However, it is common to see them presented in a ‘‘smaller-is-better’’ form when
they are calculated directly from the �2� log-likelihood. Table 2 displays the
formulas for the AIC, AICC, CAIC, and BIC from both angles, based on
formulas familiar to readers of Vonesh and Chinchilli (1997).

Here, l is either lREML(h) or lML(h), s refers to the number of parameters of the
model, and N� is a function of the number of observations. When using ML
estimation, most often s ¼ p+k, the total number of parameters in the model. The
proper formulas and application of these formulas under REML is still debated;
see Gurka (2006) for a summary of the various viewpoints and forms specific to
REML model selection. The general consensus (Vonesh and Chinchilli, 1997) is
that under ML, N� ¼ N, the total number of observations, and under REML,
N� ¼ N�p, given that the restricted likelihood is based on N�p observations.
However, this recommendation has not been consistently employed and needs
further investigation (see Gurka, 2006 for more discussion). Shi and Tsai (2002)
noted that Akaike (1974) used the likelihood function as a basis for obtaining the
AIC, but just like the variance estimates of a linear mixed model when using the
unrestricted likelihood, the estimator used in the criterion is biased. They then
proposed a ‘‘residual information criterion’’ (RIC) that uses REML, applying it
to the classical regression setting. Extension of the RIC for use with the linear
mixed model is an area of future research.

When discussing model selection criteria, one should introduce the large-
sample notions of efficiency and consistency. Efficient criteria target the best
model of finite dimension when the ‘‘true model’’ (which is unknown) is of infinite
dimension. In contrast, consistent criteria choose the correct model with prob-
ability approaching 1 when a true model of finite dimension is assumed to exist.
Selection criteria usually fall into one of the two categories; for instance, the AIC
and AICC are efficient criteria, while the BIC and CAIC are considered to be
consistent criteria. Debate has ensued as to which characteristic is preferred, as
opinions are largely driven by the field of application in which one is interested in
applying model selection techniques. For further discussion, see Burnham and
Anderson (2002) or Shi and Tsai (2002).

Table 2

General formulas for commonly used information criteria in mixed model selection

Criteria Larger-is-Better Formula Smaller-is-Better Formula

AIC l�s �2l+2s

AICC l�s(N�/N��s�1) �2l+2s(N�/N��s�1)

CAIC l�s(logN�+1)/2 �2l+s(logN�+1)

BIC l�s(logN�)/2 �2l+s(logN�)

Note: Here, l is either lREML(h) or lML(h), s refers to the number of parameters of the model, and N� a
function of the number of observations.
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In Hjort and Claeskens (2003) and Claeskens and Hjort (2003), the authors
discuss model selection, inference after model selection, and both frequentist and
Bayesian model averaging. Claeskens and Hjort (2003) noted that traditional
information criteria aim to select a single model with overall good properties, but
do not provide insight into the actual use of the selected model. Claeskens and
Hjort (2003) proposed to focus on the parameter of interest to form the basis of
their model selection criterion, and introduce a selection criteria for this purpose
denoted as the focused information criterion (FIC). Discussions that follow the
article describe limitations of the frequentist model averaging estimator and the
FIC (Shen and Dougherty, 2003).

Jiang and Rao (2003) developed consistent procedures for selecting the fixed
and random effects in a linear mixed model. Jiang and Rao (2003) focused on two
types of linear mixed model selection problems: (a) selection of the fixed effects
while assuming the random effects have already been correctly chosen and (b)
selection of both the fixed effects and random effects. Their selection criteria are
similar to the generalized information criterion (GIC), with the main idea
centering on the appropriate selection of a penalty parameter to adjust squared
residuals. Owing to the inability to provide an optimal way of choosing the
best penalty parameter for a finite set of data, the methods require further
investigation before recommending its widespread use.

It is very common to see values for information criteria in standard output
of many mixed model fitting procedures, such as SAS PROC MIXED. The
applicability of information criteria for mixed model selection is apparent.
However, as one can observe by the above summary of this area of research,
much more work needs to be performed to consolidate the utility of information
criteria to mixed model selection. Thus, we must caution the analyst in using the
values of computed information criteria from standard procedures without a
through investigation of the research to date in this area.

4.2. Prediction

The introduction of cross-validation methods (Stone, 1974; Geisser, 1975) led to
ensuing research in model selection focused on the predictive ability of models
(Geisser and Eddy, 1979; Stone, 1977; Shao, 1993). The predictive approach
generally involves two steps. For a given number of independent sampling units,
m, the data are split into two parts, with m ¼ mc+mv. Sample size mc is used for
model construction and sample size mv is used for model validation.

For modeling repeated measures data with correlated errors, Liu et al. (1999)
generalized a cross-validation model selection method, the Predicted Residual
Sum of Squares (PRESS). Allen (1971) originally suggested PRESS as a model
selection criterion in the univariate linear model. PRESS is a weighted sum of
squared residuals in which the weights are related to the variance of the predicted
values. Though Liu et al. (1999) presented various definitions of PRESS, only
PRESS for the fixed effects was developed since it could be applied to unbalanced
designs and the distribution of the statistic yielded useful results. As a result, the
PRESS statistic should not be used for selecting random effects in the linear
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mixed model. No conclusive evidence exists of its performance against other
model selection criteria. As with the LRT and information criteria, PRESS

requires repeated fittings of mixed models and hence does not allow model
adequacy to be assessed using only the chosen model of interest.

Vonesh et al. (1996) proposed a weighted concordance correlation coefficient
as a measure of goodness-of-fit for repeated measurements. The concordance
correlation coefficient for the linear and nonlinear mixed effects model (Vonesh
and Chinchilli, 1997), denoted by rc, is a function of the observed outcomes, yi,
and the model-predicted outcomes, ŷi: The rc is a modification of Lin’s (1989)
proposed concordance correlation coefficient to assess the level of agreement
between two bivariate measurements. In general, �1rrcr1, with rc ¼ 1 being
a perfect fit and rcr0 being significant lack of fit. Unlike the LRT, information
criteria, or PRESS, rc does not require repeated fittings of mixed models to
evaluate adequacy of fit. However, rc can be used to differentiate between differ-
ent hypothesized models by choosing the model with the largest rc. It does not
appear that rc has been widely implemented in the literature for linear mixed
models, and its performance has not been assessed via any large-scale simulation
studies.

Vonesh and Chinchilli (1997) also presented a modification of the usual
R2-statistic from the univariate linear model that is interpreted as the explained
residual variation, or proportional decrease in residual variation. Unlike rc, the
R2-statistic requires specification of a hypothesized model and a null model (one
that is simple but consistent with the application). As with the rc, the lack of
evidence describing the performance of R2 strongly discourages its use in selecting
a linear mixed model. Vonesh and Chinchilli (1997) noted that rc may be pre-
ferred since it equals a concordance correlation between observed and predicted
values.

Xu (2003) and Gelman and Pardoe (2005) investigated measures to estimate
the proportion of explained variation under the linear mixed model. Xu (2003)
considered three types of measures and generalized the familiar R2-statistic from
the univariate linear model to the linear mixed model for nested models. In order
to measure explained variation, the method by Xu (2003) relies upon defining a
‘‘null’’ model such as a model with only a fixed effect and random effect intercept.
Gelman and Pardoe (2005) presented a Bayesian method of defining R2 for
each level of a multilevel (hierarchical) linear model, which includes the linear
mixed model. The method is based on comparing variances in a single-fitted
model rather than comparing to a null model. Xu’s (2003) simulation results
demonstrated that the R2 measure gives good estimates with reasonably large
cluster sizes, but overestimates the proportion of variation in y explained by the
covariates if the cluster sizes are too small. Gelman and Pardoe (2005) performed
no simulations to assess the performance of their R2 measure. More investigation
must be done.

Weiss et al. (1997) presented a Bayesian approach to model selection for
random effect models. In a data analysis example, Weiss et al. (1997) found
conflicting results, showing that the selected model was dependent on the chosen
priors and hyperparameter settings. In comparing their technique to the LRT,
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AIC, and BIC, the results were again mixed. There exists a lack of evidence that
the Bayesian approach performs well in model selection for linear mixed models,
since no in-depth simulation study or other additional comparative procedures
have been conducted.

In the univariate linear model, Mallows’ Cp criterion (Mallows, 1973) requires
a pool of candidate models which are each separately nested within a single full
model. It compares the mean square error (MSE) of each candidate model to the
MSE of the full model, which then allows comparing one candidate to another.
However, the MSE for the linear mixed model is not well defined since there are
two independent sources of variation, one due to deviations about the population
profile and one due to deviations about subject-specific profiles. Recently,
Cantoni et al. (2005) suggested a generalized version of Mallows’ Cp, denoted
GCp, for marginal longitudinal models. GCp provides an estimate of a measure of
adequacy of a model for prediction. Though the technique was developed for
models fitted using generalized estimating equations (GEE), there is potential for
considering the method in linear mixed model analysis.

The small sample characteristics of model selection methods based on predic-
tive approaches require further investigation. Furthermore, in some cases the
approach cannot be used. For example, in many small sample applications it is
unacceptable to split the sample for determining model construction and model
validation.

4.3. Graphical techniques

Graphical techniques have long been a component of model selection in both
univariate and multivariate settings. Plotting the estimated response function or
residuals against predicted values provides statisticians with visual aids that help
in model selection. Similarly, graphical techniques can help select a linear mixed
model. Plotting the estimated response function from the fixed effects and com-
paring it to a mean curve constructed using averages at selected time points
provides one useful aid. For longitudinal data, plotting the collection of estimated
individual response functions against the observed data can greatly help model
selection.

For simple examples and some small sample applications, graphical techniques
can work well, even though they are subjective aids. More complex scenarios
make using graphical techniques either very challenging or render graphical
techniques almost useless. In addition, due to the subjective nature of graphical
procedures, perhaps the techniques can never be considered as a primary means
of model selection. Grady and Helms (1995), Diggle et al. (2002) and Verbeke and
Molenberghs (2000) gave expanded discussions of the use of graphical techniques.

5. Diagnostics for the mixed model

As is the case with ordinary linear regression, the linear mixed model has dis-
tributional assumptions that may or may not be valid when used with applied
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data. Unlike univariate linear regression, however, diagnostics to assess these
assumptions, and consequent alternatives when violations of the assumptions are
suspected have not been developed fully for the linear mixed model, primarily due
to the relative youth of the analysis tool. An area that has received some attention
is the assumed normality of the random effects, bi. Lange and Ryan (1989) de-
scribed a method for assessing the distribution assumption of the random effects
that uses standardized empirical Bayes estimates of bi. The assumed linearity of
the covariance matrices of the observations, along with assuming Ri ¼ s2Ini

;
allows these standardized estimates to be independent across individuals. They
then used classical goodness-of-fit procedures, in particular a weighted normal
plot, to assess the normality of the random effects. Butler and Louis (1992)
demonstrated that the normality assumption of the random effects has little effect
on the estimates of the fixed effects; they did not investigate the effect on the
estimates of the random effects themselves. Verbeke and Lesaffre (1996) inves-
tigated the impact of assuming a Gaussian distribution for the random effects on
their estimates in the linear mixed model. They showed that if the distribution of
the random effects is a finite mixture of normal distributions, then the estimates of
bi may be poor if normality is assumed. Consequently, they argued it is beneficial
to assume a mixture of normal distributions and compare the fitted model to the
model fit when assuming a Gaussian distribution.

Verbeke and Lesaffre (1997) showed that the ML estimates for the fixed effects
as well as the variance parameters, h, obtained when assuming normality of the
random effects, are consistent and asymptotically normally distributed, even
when the random effects distribution is not normal. But, they claimed that a
sandwich-type correction to the inverse of the Fisher information matrix is
needed in order to obtain the correct asymptotic covariance matrix. They showed
through simulations that the obtained corrected standard errors are better than
the uncorrected ones in moderate to large samples, especially for the parameters
in D. Very little work has been done on the performance of the linear mixed
model in small sample settings when normality of the random effects is assumed
but not achieved.

Little attention has been given to the distribution assumption of the pure
errors, ei, in the linear mixed model. Often it is assumed that mixed models exhibit
conditional independence, i.e., Ri ¼ s2Ini

; as in some cases it is arguable that the
correlation exhibited between observations within an individual can be accounted
for fully by the random effects covariance structure. In certain instances this
assumption is included simply for computational convenience. Chi and Reinsel
(1989) developed a score test of the assumption of conditional independence
compared to a model that assumes auto-correlation in the within-individual
errors. They argued that assuming an auto-correlation structure for Ri can
actually reduce the number of required random effects needed in the final model.
One could note that not only does one assume independence when it is given that
Ri ¼ s2Ini

; but also that there is a constant within-unit error variance. Ahn (2000)
proposed a score test for assessing this homoskedasticity of the within-unit errors.

Transformations have also been utilized in mixed model settings. Lipsitz et al.
(2000) analyzed real longitudinal data by applying a Box–Cox transformation on
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the response of a marginal (population-averaged) model. Since the model did not
explicitly contain random effects, the authors assumed the transformation
achieved normality of the overall error term only. Gurka et al. (2006) discussed
details that follow when extending the Box–Cox transformation to the linear
mixed model. They showed that the success of a transformation may be judged
solely in terms of how closely the total error, ei, follows a Gaussian distribution.
Hence, the approach avoids the complexity of separately evaluating pure errors
and random effects when one’s primary interest lies in the marginal model. Oberg
and Davidian (2000) extended the method for estimating transformations to
nonlinear mixed effects models for repeated measurement data, employing the
transform-both-sides model proposed by Carroll and Ruppert (1984).

6. Outliers

Of course, mixed models are sensitive to outlying observations. However, the
multilevel structure of the mixed model allows for different definitions of outliers.
When viewed as a marginal model, yi � X ib̂ is one form of a residual that meas-
ures deviation from the overall population mean. Likewise, yi � X ib̂� Z ib̂i

measures the amount of difference from the observed value to a subject’s pre-
dicted regression. As defined earlier, the random effect estimate itself, b̂i; is also an
estimate of deviation; in the longitudinal setting, it is a measure of the subject-
specific deviation. As one can imagine, then, due to the many definitions of
residuals in the mixed model, diagnostic techniques regularly used for the
univariate linear model (leverage, Cook’s distance, etc.) do not extend to the
mixed model in a straightforward fashion. For a more detailed discussion of
influence for the linear mixed model, the reader is directed to Chapter 11 in
Verbeke and Molenberghs (2000).

As is the case in the univariate linear model, some researchers have examined
robust estimation and inference procedures that will not be greatly affected by
such influential observations for mixed models. But, since mixed models are a
relatively modern statistical technique, the literature on robust estimation for the
linear mixed model is sparse. Fellner (1986) proposed a method for limiting the
influence of outliers with respect to the random components in a simple variance
components model. A robust modification of restricted ML estimation, Fellner’s
method uses influence functions attributed to Huber (1981) without explicitly using
the likelihood function. Richardson and Welsh (1995) introduced the definitions of
robust ML and robust restricted ML in the context of mixed models that are also
based on bounding the influence. They applied the methods to data and performed
simulation studies to show the advantages of these robust procedures.

7. Missing data

As introduced previously, one common characteristic of study data, particularly
longitudinal data, is missing data. This is especially the case in biomedical studies
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of human beings over time, as it is impossible to ensure 100% compliance with
the study protocol. Subjects drop out of studies for many reasons, or may simply
miss a visit and continue the study.

The mixed model can accommodate missing data, thus making it an ideal tool
to analyze longitudinal data. Unlike other multivariate models, such as the gen-
eral linear multivariate model (Muller and Stewart, 2006), complete data are not
required when fitting a mixed model as long as the missing data are of a certain
type. However, the validity of the parameter estimates of the mixed model
depends on the nature of the missingness.

Standard classifications of missing data exist. For a more comprehensive look
at missing data, see Little and Rubin (1987). The ‘‘best’’ type of missing data is
data that are missing completely at random (MCAR). Simply put, with MCAR
the fact that the data are missing has nothing to do with any of the effects (e.g.,
the treatment to be studied) or outcomes of interest. Data in which MCAR is
present will not lead to biased estimates of the parameters of the mixed model.
The next classification of missingness, one that is also not ‘‘bad’’ from a validity
standpoint for the mixed model, is missing at random (MAR). For MAR, the
missingness depends on previous values of the outcome, but the missingness
is still independent of the model covariates of interest. Handling MAR data is
not as simple as MCAR, as careful strategies must be taken in order for valid
conclusions to be made from the fitted mixed model.

The type of missingness that results in biased estimates of the parameters of the
mixed model is generally referred to as non-ignorable missingness. Generally
speaking, missingness that is non-ignorable results when the pattern of missing-
ness is directly related to the covariates of interest. There is no way to accom-
modate this type of missingness while fitting standard mixed models.

It would be most helpful to give examples of each type of missingness in the
context of the ICAN study, where we are comparing two intervention groups with
respect to weight loss over time. If a few patients in each intervention group
dropped out of the study because they moved out of the area, this most likely
would be classified as MCAR. However, since the study participants were obese
type 2 diabetes patients, it is quite possible that some of the subjects were so
overweight and unhealthy that they could not continue to make their regularly
scheduled visits. This pattern of missingness is not directly related to the inter-
vention group in which they belong, but rather the outcome (their weight), and
hence most likely this would be classified most likely as MAR. Finally, if many of
the patients in the CM group, the intervention that was more intensive, dropped
out due to the intensity of this intervention, this type of missingness would be
non-ignorable.

To summarize, mixed models are extremely powerful in analyzing longitudinal
data in particular due to its ability to accommodate missing data. However, the
analyst must be careful in determining which pattern of missingness is present in
the data they wish to model. Analytical tools exist to model the incompleteness,
thus providing insight into the nature of the missingness. Additionally, imputa-
tion methods exist to ‘‘fill in the holes,’’ so to speak. As alluded to earlier, missing
data are an expansive area of research in itself, and the reader is referred to other
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articles and texts that deal exclusively with missing data issues. For an excellent
overview of missing data in the context of linear mixed models for longitudinal
data, see Verbeke and Molenberghs (2002). Also, Diggle et al. (2002) discuss
missing data in the longitudinal data setting.

8. Power and sample size

The research on power analysis for mixed models is sparse. Exact power calcu-
lations are not available for the mixed model simply because the exact distribu-
tions of the tests used in the mixed model are not known. That being said, all hope
is not lost in calculating power based on tests of the mixed model. To our
knowledge, research on power analysis for the linear mixed model has been lim-
ited to calculations based on tests of the fixed effects of the model. As previously
discussed, the test of the form (9) follows an approximate F-distribution under the
null hypothesis. Simulation results in Helms (1992) support the notion that (9)
follows an approximate non-central F-distribution under the alternative hypoth-
esis. We must point out again the uncertainty regarding the denominator degrees
of freedom of (9). We have no reason to believe that this uncertainty does not
carry over to its use when considering the power of the test. For additional
discussion regarding power and the mixed model in this setting, see Stroup (1999)
and Littell et al. (2006, Chapter 12).

Power analyses in general require many assumptions. For simple analyses such
as a t-test or a univariate linear model, one must have an estimate of the var-
iability of the data, and some idea of what is considered a meaningful effect size
before determining the appropriate sample size for a given power. As one can
imagine, in settings where the mixed model is ideal (e.g., longitudinal studies), the
amount of parameters to make assumptions is relatively large, and the required
assumptions become more complicated. For instance, one must make assump-
tions about the structure of the correlation of the data, and then determine
reasonable values to base the power analysis. Such a task is neither simple nor
straightforward. Unfortunately, little has been done in terms of laying out sound
strategies to perform power calculations for complicated settings such as repeated
measures studies.

Calculating sample size for the linear mixed model is directly related to com-
puting power analysis. As noted before, since little has been done to obtain sound
strategies for power analysis, the same is then true for computing sample size.
Sample size requirements for the linear mixed model, depending on the motiva-
tion behind the analysis, can be quite large. However, it is not clear what is
sufficiently large with regard to sample size in order to make valid inferences
about the model parameters. The primary application of mixed models, the
analysis of clustered or longitudinal data, makes this question even more chal-
lenging. Should one focus on obtaining more subjects or clusters, or should one
try to gather more measurements per subject, or individuals within a cluster?
We mentioned earlier that it is generally recognized that for valid inference about
the fixed effects, one should perhaps target a larger number of independent
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sampling units (Vonesh, 2004). However, this has not been proven definitively
beyond simulation studies. One useful discussion regarding sample size calcula-
tions for repeated measures designs can be found in Overall and Doyle (1994).

9. Generalized linear mixed models

The linear mixed model discussed thus far is primarily used to analyze outcome
data that are continuous in nature. One can see from the formulation of the
model (2) that the linear mixed model assumes that the outcome is normally
distributed. As mentioned previously, researchers have studied the utility of the
linear mixed model when the continuous outcome does not follow a Gaussian
distribution.

Often times, however, one is interested in modeling non-continuous outcome
data, such as binary data or count data. The generalized linear model is appro-
priate for modeling such data. The generalized linear model encompasses many
commonly used models, such as logistic regression, Poisson regression, and in fact
linear regression. For an introduction to the generalized linear model, see
McCullagh and Nelder (1989).

In the same way the linear mixed model builds on the capabilities of the linear
model by allowing for clustered or longitudinal data, the generalized linear mixed
model accommodates clustered or longitudinal data that are not continuous.
Similar to the linear mixed model, the generalized linear mixed model can be
viewed from a marginal or a hierarchical standpoint. Remember that in the hi-
erarchical case of the linear mixed model,

EðyijbiÞ ¼ X ibþ Z ibi.

Now, for the generalized linear mixed model (McCulloch and Searle, 2001), again
assuming bi 	Nð0;DÞ;

EðyijbiÞ ¼ f ðX ibþ Z ibiÞ, (15)

where f is a function of the fixed and random effects of the model. The inverse of
this function, say g, is typically called the ‘‘link’’ function. So, g EðyijbiÞ

� �
¼

X ibþ Z ibi: There are many common link functions, each usually corresponding
to an assumed distribution of yijbi: The simplest function is g EðyijbiÞ

� �
¼

EðyijbiÞ; the identity link, where yijbi is assumed to be normally distributed. This
simple case is the linear mixed model, a specific case of the generalized linear
mixed model. For logistic regression, the link function is called the logit link,
gðxÞ ¼ log x=ð1� xÞ

� �
; where x is assumed to follow a binary distribution.

Logistic regression is popular in many epidemiological and other biomedical
studies where the outcome has two options, e.g., disease or no disease, and inte-
rest lies in estimating the odds of developing the disease. For Poisson regression,
the link function is the log link, gðxÞ ¼ logðxÞ; where x is assumed to follow a
Poisson distribution. Poisson regression is often used to model count or rate data.

Mixed models 273



There are many other link functions and corresponding distributions used in the
case of generalized linear models, including generalized linear mixed models.

Again, the addition of the random effect term in this setting allows for clus-
tered or repeated data. For instance, one may be interested in estimating the odds
of developing a disease, but has data on multiple individuals from the same
families. In this case, it may be unreasonable to assume that these individuals are
independent of one another with respect to the risk of developing the disease.
Here, then, the generalized linear mixed model allows the analyst to accommo-
date this dependence.

The above formulation applies to the hierarchical view of the mixed model, but
the marginal view is applicable in this setting as well. In this case, we simply
assume EðyiÞ ¼ f ðX ibÞ: If one is simply interested in population estimates
(averages), then alternatives to the generalized linear mixed model exist, such as
GEE. See Diggle et al. (2002) for a discussion of GEE. Thus, most often when
generalized linear mixed models are used, the hierarchical standpoint is of
interest; here the random effects included in the model are of importance and not
just a nuisance.

Although at first glance the generalized linear mixed model, when using a link/
distribution other than the identity/normal, does not seem to be much more
complicated with respect to estimation and inference, the methodology involved
for this model is actually quite a bit more complex. When using a link function
other than the identity link, it is more difficult to express the likelihood of yi,
which now involves an integral with respect to bi. The difficulty with expressing
the likelihood, coupled with the lack of closed-form solutions, makes estimation
much more computationally intensive. Sophisticated numerical techniques are
necessary, and the body of literature in this area is relatively expansive. More
in-depth introductions and discussions of generalized linear mixed models, along
with estimation and inference about its parameters, can be found in many books
(McCulloch and Searle, 2001; Diggle et al., 2002; Agresti, 2002; Demidenko,
2004; Molenberghs and Verbeke, 2005).

10. Nonlinear mixed models

Another version of the mixed model is the nonlinear mixed model. The nonlinear
mixed model actually follows the same general form (15) as the generalized
linear mixed model. However, the function f for a nonlinear mixed model is
typically more complicated than the standard functions used for the generalized
linear mixed model. It is common to see applications in which the data are best
fitted by models that are nonlinear in the parameters of interest. As mentioned,
generalized linear mixed models are one form of nonlinear mixed models. More
complicated forms of nonlinear models are often used in pharmacokinetics and
biological and agricultural growth models. In most of these cases, there is a
known or suspected form, based on past experiences or theoretical knowledge, for
how the parameters enter the model in a nonlinear fashion.
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As an example of the applicability of the nonlinear mixed model in
pharmacokinetic settings, Pinheiro and Bates (1995) fit what is referred to as a
first-order compartment model to data on serum concentrations of the drug
theophylline from 12 subjects observed over a 25-h period. The nonlinear mixed
model in this case has the following form:

yit ¼
Dkei
� kai

Cliðkai
� kei
Þ

� �
� eð�kei

tÞ � eð�kai
tÞ

� �
þ eit. (16)

Here, yit is the observed serum concentration of the ith subject at time t, D the
dose of theophylline, kei

the elimination rate constant, kai
the absorption rate

constant, and Cli the clearance for subject i. Also, eit represents the error term that
is assumed to be normally distributed. The ‘‘mixed’’ model stems from the
following assumed forms of kei

; kai
; and Cli:

Cli ¼ eðb1þbi1Þ,

kei
¼ eðb2þbi2Þ;

kai
¼ eðb3þbi3Þ. ð17Þ

Similar to the preceding treatment of linear mixed models, here b1, b2, and b3 are
fixed effect parameters representing population averages, and bi1, bi2, and bi3 are
random effect parameters. As one can see, both the fixed effects and random
effects of model (16) enter the model in a nonlinear fashion. Additionally, it is
easy to imagine that estimating and inferring on the parameters of such a model is
quite difficult from a computational perspective. Discussion of estimation and
inference for the nonlinear mixed model is beyond the scope of this presentation
on mixed models. However, the interested reader is referred to numerous texts
that deal with the subject, including Davidian and Giltinan (1995), Vonesh and
Chinchilli (1997) and Demidenko (2004). For demonstration of the analysis of
data from this example, see Example 51.1 of the SAS online documentation (SAS
OnlineDoc 9.1, SAS Institute Inc., 2003a, 2003b).

11. Mixed models for survival data

Random effects can also be included in models of time-to-event data as well.
These types of models are often referred to as survival models, as one popular
‘‘event’’ of interest is death. The mixed model approach in estimating time to a
certain event has two main uses, depending on the nature of the event to be
modeled. When the event can only occur once, such as death, inclusion of random
effects can be helpful when correlation among subjects may exist. For instance,
subjects from the same hospital, nursing home, or even community may not be
independent of one another, and this dependence might need to be taken into
account depending on the motivation of the analysis. Mixed time-to-event
models may also be useful when the event occurs repeatedly on the same indi-
viduals, and thus we have repeated durations that should be modeled accordingly.
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For a detailed discussion of what is often referred to as ‘‘multilevel’’ survival data
models, see Goldstein (2003, Chapter 10).

12. Software

As alluded to often in this discussion, many computational techniques for fitting
mixed models exist. We wish not to create an exhaustive list, but rather highlight
some of the more popular tools.

Tools for fitting linear mixed models are the most readily available. PROC
MIXED in SAS (2003b), lme in S-PLUS (MathSoft, 2002) and R (R Develop-
ment Core Team, 2006), and xtmixed in STATA (StataCorp, 2005) are just a few
of the linear mixed model fitting procedures. Additionally, SPSS (2006) has the
ability to fit linear mixed models to data. Most of these procedures have similar
capabilities, with many distinctions between them too detailed to list here. Rest
assured that developers of most of these statistical software packages are kept
abreast of the current mixed model research, and these procedures are contin-
uously being updated and improved.

Tools exist for the analysis of generalized and nonlinear mixed models as well,
although one must be warned that due to the complicated nature of these mode-
ling scenarios, such procedures should not be used without substantial knowledge
of both the modeling process as well as the procedure itself. PROC GLIMMIX
and PROC NLMIXED are now available in SAS (2003) to fit generalized linear
mixed models and nonlinear mixed models, respectively. S-PLUS (MathSoft,
2002) and R (R Development Core Team, 2006) have the nlme function for
nonlinear mixed models. For an overview of fitting mixed models using S and
S-PLUS, see Pinheiro and Bates (2000). Again, we simply wanted to cite some of
the available options without trying to show favor to one particular software
package. There are almost assuredly other options available in other software
packages.

13. Conclusions

The powerful set of statistical analysis tools that collectively fit into the category
‘‘mixed models’’ is indeed quite large, and the capabilities of these tools continue
to grow. It is impossible to write a comprehensive exposition of the topic of mixed
models in a book, let alone a chapter of a book. We simply wished to introduce
the mixed model in general, providing details regarding its applicability and
utility. At the same time, we attempted to introduce some of the more recent areas
of research that have been performed on the mixed model. More importantly, we
aimed to provide references for areas of mixed model research for the reader
interested in more details.

The theory behind the mixed model has existed for decades; however, advances
in computing have made the mixed model a popular analytical tool only in the
past 10–15 years. Consequently, the availability of this powerful method of

M. J. Gurka and L. J. Edwards276



analysis has led to more sophisticated study designs which in turn has allowed for
answers to hypotheses previously too complicated to be addressed using standard
statistical techniques. For example, more and more studies involve repeated
measurements taken on subjects, as tools such as the mixed model can provide
valid analyses of such data. For someone familiar with univariate linear models
in a simple sense, mixed models are fairly intuitive and thus have great appeal
to data analysts working with researchers without an extensive background in
statistics.

The primary focus of this chapter is on the most straightforward form of the
mixed model, the linear mixed model for continuous outcome data. We also
introduce more general and complicated forms of the linear mixed model, the
generalized, and the nonlinear mixed models. Owing to the computational
intensity necessary for these more advanced types of mixed models, their use has
become more commonplace only recently. The relatively recent expanded use of
mixed models makes it necessary to continue methodological research on aspects
of these models. For example, much more study is required on power analysis for
the mixed model, and inference, particularly for small samples, needs to be
further refined. Model selection and diagnostic tools also should be addressed in
more detail. However, the practical utility of the mixed model in a variety of
applications coupled with its complexity makes the mixed model a very exciting
statistical analysis tool for future study.
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Survival Analysis

John P. Klein and Mei-Jie Zhang

Abstract

This paper presents an overview of statistical techniques for time-to-event data.

We consider both the case where a single event such as death is of interest and

the case of competing risks where a subject is at risk for a multiplicity of causes

of failure. We consider univariate methods to summarize the survival experi-

ence, techniques to compare the outcomes of two or more treatments and a

variety of models and methods to study the effects of covariates on outcome.

We illustrate the methods on several data sets.

1. Introduction

Problems in survival analysis arise in many areas of epidemiology and medicine.
The problems involve, for example, the time to death following diagnosis of a
disease, the time to a complete recovery following a treatment, the time to treat-
ment failure or simply the time to death. Analysis of this type of data is often
complicated by censoring and/or truncation.

Censoring occurs when only partial information is available on each subject.
Most common is right censoring where all that is known for some subjects is that
the event of interest has yet to occur. If we let T be the potential time to event if
there was no censoring and X the observed on study time, then for some cases all
we know is that T4X. Special types of right censoring are type I progressive

censoring where the on study time is fixed when the subject enters the study or
random censoring, where each subject has a potential random censoring time, C,
and we observe X ¼ min(T,C) and d ¼ 1 if X ¼ T (a death) or 0 if T4X ¼ C

(censored). Other censoring includes interval censoring where all that is known is
that the event occurred in some interval and left censoring where all that is known
is that the event occurred prior to some time.

Truncation, as opposed to censoring, arises when some intermediate event
must occur for the subject to come under observation. Most common is left
truncation where an event, V, must occur prior to the event time for the event to
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be observed. Subjects for whom the event V has not occurred prior to T are
not observable. Left truncation is also called delayed entry or time-dependent
stratification. An example of left truncation is the time to death after relapse
in patients treated for disease. If time is measured from diagnosis only those
patients who relapse are at risk for death and relapse is the truncating event.
Left-truncated data requires special analysis.

Another type of data found in medicine is competing risks data. Here a subject
is at risk of failure from J distinct causes. One observes for each subject an on
study time, X, and an indicator, e, which tells us which event was the cause of
failure. Examples of competing risks are causes of death or relapse and death in
remission in cancer studies. Since there is no way given data on X and e alone to
distinguish between independent and dependent competing risks, the marginal
distribution of the time to failure from each cause is most often not estimated (see
Basu and Klein, 1982). In the competing risks framework one typically summa-
rizes the survival experience by J cumulative incidence functions defined as the
chance a subject fails from a given cause in the presence of all other causes prior
to time t (cf. Gooley et al., 1999; Pepe and Mori, 1993).

2. Univariate analysis

In this section, we examine univariate techniques for summarizing time to event data
and competing risks data. We will discuss these methods in some detail for right-
censored data and indicate extensions to other censoring or truncation schemes. For
right-censored data we assume that the censoring mechanism is non-informative for
the event of interest. The non-informative assumption means that the only infor-
mation obtained from a censored observation is that the event time is larger than the
censoring time and is in most cases satisfied by independence of T and C. This
assumption is needed to ensure many of the properties of the estimators we shall
discuss. For a sample of size n from a right-censored sample we observe (Xi,di),
i ¼ 1,y, n. Let 0ot1ot2o � � �otD be the observed event times. At an event time,
ti, let di be the observed number of events and Yi be the number alive just prior to ti.

For a survival time T, two functions are typically used to summarize a subject’s
survival experience. The first is the survival function, S(t) ¼ P[T4t], the chance a
subject is alive at time t. The second is the hazard rate, l(t), which is the rate at
which subjects are dying. The hazard rate is defined as

lðtÞ ¼ lim
Dt!0

P½t � Totþ DtjT 
 t�

Dt
. (1)

For a continuous lifetime with a density f(t) the two functions are related by

lðtÞ ¼ f ðtÞ=SðtÞ ¼ �d ln½SðtÞ�=dt (2)

The quantity l(t)dt is the approximate probability that an individual of age t will
experience the event in the next instant. A related quantity is the cumulative
hazard rate, LðtÞ ¼

R t

0 lðuÞdu:
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The survival function is estimated by the Kaplan–Meier (1958) estimator,
which is also know as the product-limit estimator (PLE), and is defined by

ŜðtÞ ¼

1 if t � t1Q
ti�t 1� di

Y i

h i
if t1 � t

:

8<: (3)

The variance of the PLE is estimated by Greenwood’s (1926) formula given by

V̂ ½ŜðtÞ� ¼ ŜðtÞ2
X
ti�t

di

Y iðY i � diÞ
: (4)

This estimator is available in any package that allows for censored survival data.
The Kaplan–Meier estimator can be derived in a number of ways. It arises

naturally from the theory of counting processes (see Aalen, 1978 or Andersen
et al., 1993), by a self-consistency argument (see Efron, 1967) and via a redis-
tribute to the right algorithm (see Efron, 1967). Under some regularity conditions
it can be shown that the estimator is a non-parametric maximum likelihood
estimator and that the estimator converges weakly to a Gaussian process. Small
sample properties are studied, for example, in Guerts (1987) and Klein (1991).

While the logarithm of the PLE provides an estimator of the cumulative
hazard rate, L(), a better estimator is the Nelson (1972)–Aalen (1978) estimator
defined by

~LðtÞ ¼
0 if t � t1P

ti�t

di

Y i
if t1 � t

8<: , (5)

which has a variance estimated by

V̂ ½ ~LðtÞ� ¼
X
ti�t

di

Y 2
i

. (6)

The estimator ~SðtÞ ¼ exp½� ~LðtÞ� provides an alternative estimator of S(t).
To illustrate these methods we consider a set of patients with cancers of the

mouth (Sickle-Santanello et al., 1988). The outcome is the time from diagnosis to
death in weeks. In this study, 52 patients had an aneuploid (abnormal) and 28
patients a diploid (normal) DNA profile for their tumor based on flow cytometry.
There were 31 deaths in the aneuploid group and 22 in the diploid group. The
data can be found on the website http://www.biostat.mcw.edu/homepgs/klein/
tongue.html. Figure 1 shows both the product-limit and Nelson–Aalen estimates
of survival for the two groups. Note that the PLE gives slightly lower estimates of
survival.

Using either the PLE or the Nelson–Aalen estimators one can construct
pointwise confidence intervals for the survival function or confidence bands
for the entire curve. Borgan and Liestøl (1990) show that better coverage prob-
abilities are obtained for the pointwise intervals if a variance-stabilizing trans-
formation is made. Three forms are suggested for a (1�a)100% confidence
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interval for S(t0):

Naive : Ŝðt0Þ � Za=2ssðt0ÞŜðt0Þ; Ŝðt0Þ þ Za=2ssðt0ÞŜðt0Þ
h i

; (7)

Log2log transformed : Ŝðt0Þ
1=y; Ŝðt0Þ

y
h i

; where y ¼ exp
Za=2ssðt0Þ

ln Ŝðt0Þ
h i

8<:
9=; (8)

and

Arc sine-square root :

sin2 max 0; arcsin Ŝðt0Þ
1=2

� �
� 0:5Za=2ssðt0Þ

Ŝðt0Þ

1�Ŝðt0Þ

h i1=2� �� �
� Sðt0Þ �

sin2 max 0; arsin Ŝðt0Þ
1=2

� �
þ 0:5Za=2sSðt0Þ

Ŝðt0Þ

1�Ŝðt0Þ

h i1=2� �� � . (9)

Fig. 1. Estimates of survival for patients with cancer of the mouth.
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Here Za/2 is the upper a/2th percentile of the standard normal distribution and
ssðtÞ ¼ V̂ ðŜðtÞÞ1=2=ŜðtÞ: Both the arc sine-square root interval and the log–log
transformed interval give about the correct coverage probabilities for samples
as small as 25, while the naı̈ve interval requires much larger sample sizes. These
confidence intervals are available in SAS, STATA, SPlus and R.

Two formulations are used to construct confidence bands for the survival
function. The first, suggested by Nair (1984) provides confidence bands parallel
to the pointwise confidence intervals discussed above. The confidence band over
the range TL–TU is constructed by replacing Za/2 by ca(aL,aU) in (7)–(9), where
aM ¼ ns2s ðTMÞ=½1þ ns2s ðTMÞ�; M ¼ L, U and ca(aL,aU) is the ath fractile of the
random variable U ¼ sup{|W0(x)[x(1�x)]�1/2|, aL � x � aU g; where W0() is a
standard Brownian bridge.

The second interval is due to Hall and Wellner (1980). These intervals are
constructed by replacing Za/2ss(t0) by kaðaL; aU Þ½1þ ns2s ðtÞ�=n1=2: Here kaðaL; aU Þ

is the upper ath fractile of a Brownian bridge over the range aL � x � aU (see
Chung, 1986).

Both confidence bands are available in SAS. Confidence coefficients for
both approaches are tabulated in Klein and Moeschberger (2003). Borgan
and Liestøl (1990) show that the naı̈ve form of Nair’s band requires a large
sample size of at least 200 to ensure proper coverage probabilities. For the other
forms of the bands, the coverage probability is correct for samples with as few as
20 events.

Figure 2 depicts the two confidence bands and a set of pointwise con-
fidence intervals based on the arc sine-square root transformation for the
aneuploid mouth cancer group. These were construct using Version 9 of SAS
Proc Lifetest. Here we see clearly that the pointwise confidence interval, if
taken as a confidence band, is too narrow and should not be used. The two
confidence bands are quite close with the Hall–Wellner band being wider in
either tail.

The PLE can also be used to obtain estimators of the mean survival times.
For survival data the mean time to event is the area under the survival curve.
With censored data the area under the estimated survival function provides
an estimator of the mean survival time. When the largest on study time is
censored then the PLE does not drop to zero and the area under the curve
is not well defined. One approach is to complete the tail by some type of
parametric curve (see Moeschberger and Klein, 1985). More often the inference
is made to a restricted mean defined as the area under the survival function
up to some time. This approach is taken in SAS, SPlus and R for example.
With this approach one needs to be careful in that the default maximum
time may change depending on what package is used to compute the mean.
For example, SAS uses the largest death as a cut-off point, while STATA and
SPlus use the largest on study time. The restricted mean up to time t is then
defined by

m̂t ¼
Z t

0

ŜðuÞdu; (10)
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which has an estimated variance of

V̂ ½m̂t� ¼
XD

i¼1

Z t

ti

ŜðuÞdu

� �2
di

Y iðY i � diÞ
. (11)

For large samples m̂t has an approximate normal distribution so that confidence
intervals can be constructed by standard methods.

For the cancer of the mouth data the mean time to death from diagnosis
restricted to the largest on study time in each group is 146.5 weeks (SE 28.1
weeks) in the aneuploid group and 86.8 weeks (SE 24.6 weeks) in the diploid
group.

Estimators of survival can be found for other censoring schemes. For right-
censored data with left truncation a simple modification of Yi to be the number
alive and entered into the study just prior to ti is all that is needed to construct the
PLE. Here the PLE estimates the conditional probability of death given a subject

Fig. 2. Confidence intervals and bands for Aneuploid data. Kaplan-Meier estimate (—), 95% point-

wise confidence interval (—�—�), 95% Nair’s confidence band (—��—��), 95% Hall-Wellner con-

fidence band (- - - -).
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that has experienced the truncating event. There can be some problems for small t

where the number at risk is small and Lai and Ying (1991) provide a possible
modification to the PLE.

For interval censoring and/or mixes of right and left censoring an estimator
can be constructed by using a self-consistency argument (see Turnbull, 1976,
1974). These estimators are available in SPlus and R. A more complete discus-
sion and an example can be found in Chapter 5 of Klein and Moeschberger
(2003).

For competing risks data we observe for each person the on study time Ti, the
censoring indicator di, and for those subjects observed to fail (di ¼ 1) the cause of
failure ei. To construct the estimators, let t1ot2o � � �otD be the distinct event
times. We wish to summarize the survival experience for a particular cause of
failure. At time ti, let ri be the number of subjects with an occurrence of the event
of interest; qi the number with an occurrence of any other competing risk and Yi

the number at risk just prior to time ti. Subjects who are censored are counted in
Yi but not in ri and qi. If we assume that cause 1 is the cause of interest, the
population cumulative incidence function (CIF) is given by

CI1ðtÞ ¼ P½X � t; � ¼ 1�. (12)

This can be estimated by

ĈI1ðtÞ ¼

0 if t � t1P
ti�t

Ŝðti�Þ
ri

Y i

if t1 � t :

8<: (13)

The variance of this estimator can be estimated by

V̂ ½CI1ðtÞ� ¼
X
ti�t

Ŝðti � Þ
2 ^½CI1ðtÞ � ĈI1ðtiÞ�

2 ri þ qi

Y 2
i

(

þ½1� 2ðĈI1ðtÞ � ĈI1ðtiÞÞ�
ri

Y i

�
. ð14Þ

Here ŜðÞ is the PLE obtained ignoring the cause (i.e. based on T and d).
The CIF estimate can be obtained in a number of ways. The first derivation

relies on the representation of the CIF in terms of the so-called crude hazard
functions. Consider two competing risks and a time to event X. We define the
crude hazard rate for cause j as the rate of occurrence of cause j among subjects at
risk for either cause of failure. That is

ljðtÞ ¼ lim
Dt!0

P½t � Xotþ Dt; � ¼ jjX 
 t�

Dt
. (15)

The CIF for cause j is related to the crude hazard rates of both risks by

CIjðtÞ ¼

Z t

0

ljðuÞ exp �

Z u

0

l1ðvÞ þ l2ðvÞ½ �dv

� �
du: (16)
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The crude hazard rates for causes 1 and 2 can be estimated at time ti by ri/Yi and
qi/Yi, respectively. Plugging these values into (16) and replacing the exponential
integral with a product integral yield the estimator (13).

An alternative derivation of the estimated CIF is by the use of the method of
inverse probability of censoring weighting (IPCW). This general technique, first
proposed by Robins and Rotnizky (1992), is increasingly being used to develop
estimators for censored data. Basically, this approach starts with a complete
sample estimator of the quantity of interest. Censoring is adjusted for by
reweighing the events to account for censoring. In the competing risk problem
note that if we had a sample with no censoring then the cumulative incidence
function for cause 1 is simply the fraction of the sample who fail from cause 1
prior to time t. That is

ĈI1ðtÞ ¼

Pn
i¼1

I ½Ti � t; �i ¼ 1�

n
. (17)

For right-censored data the IPCW technique estimator is given by

ĈI1ðtÞ ¼
1

n

� �Xn

i¼1

diI ½X i � t; �i ¼ 1�

ĜðX iÞ
; (18)

where ĜðtÞ is the Kaplan–Meier estimator of the censoring distribution. This
estimator can be shown to be equivalent to the usual estimator of the cumulative
incidence (13) (see Gooley et al., 1999).

To illustrate competing risk analysis we consider a data set of leukemia pa-
tients reported in Szydlo et al. (1997). The data set consists of 1225 HLA-identical
sibling patients, 383 HLA-matched unrelated and 108 HLA-mismatched unre-
lated bone marrow transplant patients. The study has two competing risks:
treatment-related death defined as death in complete remission, n ¼ 557/1716
cases and relapse defined as recurrence of the primary disease, n ¼ 311/1716
cases. We will focus on the HLA-matched sibling and unrelated samples.
Figures 3a and 3b show the estimated cumulative incidence functions for relapse
(3a) and death in remission (3b). Here we see clearly that the sibling donor cohort
has slightly more relapse than the unrelated donor cohort but this is offset by
much higher death in remission probabilities in the unrelated donor group.

3. Hypothesis testing

In this section, we shall investigate techniques for comparing two or more treat-
ments. We will look at methods for right-censored survival data and for com-
peting risks data.

We will discuss statistics used to test the equality of survival distributions
between K-samples (treatment groups). The available data used to compare the K

groups is from independent right-censored and possibly left-truncated samples.
We shall focus on independent right-censored data in this article. The methods
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and results discussed here can be easily generalized to left-truncated data by
adjusting the risk sets (Andersen et al., 1993).

The weighted log-rank test is the most commonly used testing procedure for
analyzing time-to-event data. It is based on comparing differences in the hazard
rates between groups. The hypothesis of interest is

H0 : l1ðtÞ ¼ � � � ¼ lK ðtÞ; for all t � t; versus

HA : at least one of lkðtÞ is different for some t � t;
(19)

where lk(.) is the hazard function of kth sample and t the largest on study time.
Let t1ot2o � � �otD be the distinct failure times in the pooled sample. At each

Fig. 3a. Cumulative incidence function for relapse.

Fig. 3b. Cumulative incidence function for death in remission.
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failure time ti, let di,k be the observed number of events and Yi,k be the number
alive just prior to ti in the kth sample. The weighted log-rank test statistic is

Zk ¼
XD

i¼1

wkðtiÞ
di;k

Y i;k
�

di

Y i

� �
; k ¼ 1; . . . ;K ; (20)

where di ¼
PK

k¼1di;k; Y i ¼
PK

k¼1Y i;k and wkðtiÞ is a predicable non-negative
weight function. Commonly we take wkðtiÞ ¼ Y i;kwðtiÞ; where w() is a common
weight function for all groups. Hence,

Zk ¼
XD

i¼1

wðtiÞ di;k � Y i;k
di

Y i

� �� �
; k ¼ 1; . . . ;K : (21)

Aalen (1978) and Gill (1980) studied large sample properties of the weighted log-
rank tests. Under independent censoring and the null hypothesis, the variance of
Zk and the covariance of Zk, Zl can be consistently estimated by

ŝkk ¼
XD

i¼1

wðtiÞ
2 Y i;k

Y i

1�
Y i;k

Y i

� �
Y i � di

Y i � 1

� �
di; k ¼ 1; . . . ;K

ŝkl ¼ �
XD

i¼1

wðtiÞ
2 Y i;k

Y i

Y i;l

Y i

Y i � di

Y i � 1

� �
di; kal: ð22Þ

Note that ðY i � diÞ=ðY i � 1Þ is a correction for ties, and is equal to 1 when no two
events occurred at the same time. Since

PK
k¼1Zk ¼ 0; the log-rank test statistic

can be constructed by selecting any K�1 of the Zk’s. The estimated variance–
covariance matrix is the ðK � 1Þ � ðK � 1Þ matrix, Ŝ; with the corresponding
elements of ŝkl : Under the null hypothesis, the test statistic

w2 ¼ ðZ1; . . . ;ZK�1ÞŜ
�1
ðZ1; . . . ;ZK�1Þ

T (23)

has asymptotically a w2 distribution with K�1 degrees of freedom.
Several weight functions have been proposed and studied in the literature. The

most common weight is w(t) ¼ 1 for all t, which yields a standard log-rank test
and is available in most statistical packages. Gehan (1965) generalized Mann–
Whitney Wilcoxon’s test with w(ti) ¼ Yi. Tarone and Ware (1977) proposed a
weight function of w(ti) ¼ Yi

1/2. Peto and Peto (1972), Andersen et al. (1982),
Kalbfleisch and Prentice (1980) and others proposed alternative weights that are
based on the estimated survival function from the pooled sample. These weights
are not affected by censoring patterns, which is a problem when using Gehan’s
weight. Fleming and Harrington (1981) proposed a class of weighted log-rank test
that allows the weight to be very general and flexible. That is

wp;qðtiÞ ¼ ½Ŝðti�Þ�
p½1� Ŝðti�Þ�

q; p 
 0; q 
 0, (24)

where Ŝðti�Þ ¼ Ŝðti�1Þ is the Kaplan–Meier estimator in the pooled sample just
prior to ti. When p ¼ 0 and q ¼ 0, we have a standard log-rank test. When p40
and q ¼ 0, the test gives most weight to detecting an early difference in hazards,
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while when p ¼ 0 and q40 the test gives most weight to detecting late differences.
Klein and Moeschberger (2003) gave a detailed review of the effects of all the
commonly used weights. Log-rank tests are available in most commonly used
statistical packages. The availability of weights is different across statistical
packages (see Klein and Zhang, 2005).

To illustrate the weighted log-rank tests, we considered comparing the hazard
rates for the aneuploid and diploid tumors of the mouth described in the previous
section. Table 1 summarizes the results. The p-values of the tests range from
0.0601 to 0.3194. The tests with smaller p-values are those that give more weight
to early differences between the tumor groups.

Log-rank test statistics are based on estimating weighted differences in hazard
functions and are most sensitive when the hazard functions do not cross. Pepe
and Fleming (1989) proposed a class of statistics that are sensitive if the survival
functions of the two groups are stochastically ordered in the range of the data.
Pepe and Fleming’s test is based on the weighted difference of Kaplan–Meier
estimates

WKM ¼

ffiffiffiffiffiffiffiffiffi
n1n2

n

r Z t

0

wðtÞ Ŝ1ðtÞ � Ŝ2ðtÞ
h i

dt; (25)

where n ¼ n1 þ n2: Here w(t) is a non-negative weight function with the property
that wðtÞ ¼ 0 if ĜkðtÞ ¼ 0; for k ¼ 1, 2, where Ĝkð:Þ is the Kaplan–Meier estimator
of the censoring distribution for sample k. The WKM test statistics generalize the
location test statistics. For uncensored data with a weight equal to 1 the WKM
estimates the difference in mean survival time. The variance of WKM can be
estimated from the unpooled samples or from the pooled sample. We only report
the pooled variance estimator here since it has superior performance over the
unpooled estimator (Pepe and Fleming, 1989)

ŝ2 ¼ �
Z t

0

R t
0

wðuÞŜðuÞdu
h i2

ŜðtÞŜðt�Þ

n1Ĝ1ðt�Þ þ n2Ĝ2ðt�Þ

nĜ1ðt�ÞĜ2ðt�Þ
dŜðtÞ, (26)

where Ŝðt�Þ is the pooled Kaplan–Meier estimator. Pepe and Fleming (1989)
suggest that the weights to be a function of Ĝk to satisfy a stability constraint.

Table 1

Two sample weighted log-rank tests comparing aneuploid and diploid tumors

Version w(ti) w2 p-value

Log-rank 1 2.790 0.0949

Gehan Yi 3.305 0.0691

Tarone-ware Yi
1/2 3.118 0.0774

Fleming–Harrington (P ¼ 1, q ¼ 0) Ŝðti�Þ 3.296 0.0694

Fleming–Harrington (P ¼ 0, q ¼ 1) 1� Ŝðti�Þ 0.992 0.3192

Fleming–Harrington (P ¼ 1, q ¼ 1) Ŝðti�Þ 1� Ŝðti�Þ

h i
1.390 0.2374
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One suggestion is

wcðtÞ ¼
nĜ1ðt�ÞĜ2ðt�Þ

n1Ĝ1ðt�Þ þ n2Ĝ2ðt�Þ
. (27)

For large sample sizes under the null hypothesis the statistic w2 ¼WKM2=ŝ2 has
a limiting w2 distribution with 1 degree of freedom.

We used the weighted Kaplan–Meier test and compare the aneuploid and
diploid tumor groups for the cancer of the mouth data set discussed above. For
this test we have a w2 statistic of 3.27 and a p-value of 0.0706.

For competing risks data tests can be based either on the crude hazard rates or
the cumulative incidence functions. To compare crude hazard rates the weighted
log-rank tests discussed above can be applied by treating failures from causes
other than the cause of interest as censored observations. These tests are easy to
apply and are available in most statistical packages tests. These tests, however,
do not reflect differences in cumulative incidence functions since the product
integral of the crude hazard rate is not equal to the cumulative incidence function.
The CIF is a function of the crude hazards from all competing risks, so differ-
ences in crude hazard rates of a particular cause do not translate into differences
in CIF.

Several tests have been suggested that directly compare CIF in the competing
risks framework. The first is due to Gray (1988). Let CIk(t), k ¼ 1,y,K be the
CIF for the cause of interest (e ¼ 1 for simplicity) for treatment k. The hypothesis
of interest is

H0 : CI1ðtÞ ¼ � � � ¼ CIK ðtÞ; for all t � t:

HA : at least one of the CI
0s
k ðtÞ is different for some t:

(28)

Gray proposed a test based on the sub-distribution hazard function of CIk(t)
defined by

l�kðtÞ ¼
�d logf1� CIkðtÞg

dt
(29)

and showed that an improper random variable X �ik; i ¼ 1,y, nk, has a hazard rate
of l�kðtÞ; where X �ik ¼ Tik; if eik ¼ 1 and X �ik ¼ 1; if eik 6¼ 1. The cumulative sub-
distribution hazard L�kðtÞ ¼

R t

0
l�kðuÞdu is estimated by

L̂
�

kðtÞ ¼

Z t

0

1�cCIkðu�Þ
n o

Y kðuÞ
h i�1

Ŝkðu�ÞdNkðuÞ; (30)

where NkðuÞ ¼
Pnk

i¼1IðX ik � u; �ik ¼ 1; dik ¼ 1Þ; Y kðuÞ ¼
Pnk

i¼1Y ikðuÞ and Ŝkð:Þ is
the Kaplan–Meier estimator for all causes obtained by ignoring the cause of
failure. Gray’s test is given by

Zk ¼

Z t

0

wkðuÞ dL̂
�

kðuÞ � dL̂
�

0ðuÞ
n o

; (31)
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where wk(.) is a weight function and L̂
�

0ð:Þ is estimated from the pooled
sample. Gray suggests that the weight function be of the form wk(t) ¼ L(t)Rk(t),
where

RkðtÞ ¼
Y kðtÞ 1�cCIkðt�Þ

h i
Ŝkðt�Þ

. (32)

When L(t) ¼ 1, Gray’s test corresponds to an analogue of the log-rank test on the
sub-distribution hazard.

Standard counting process techniques can be used to find the variance–covar-
iance matrix (see Klein and Bajorunaite, 2004). That is

V ðZkÞ ¼

Z t

0

RdðuÞ � RkðuÞ

RdðuÞ

� �2
Y kðuÞ

dĈI01ðuÞ

Ŝkðu�Þ

þ

Z t

0

RkðuÞ

RdðuÞ

� �2X
iak

Y iðuÞ
dĈI01ðuÞ

Ŝiðu�Þ
ð33Þ

and

CovðZh;ZkÞ ¼

Z t

0

�
RkðuÞðRdðuÞ � RhðuÞÞ

RdðuÞ
2

� �
Y hðuÞ

dĈI01ðuÞ

Ŝhðu�Þ

þ

Z t

0

�
RhðuÞðRdðuÞ � RkðuÞÞ

RdðuÞ
2

� �
Y kðuÞ

dĈI01ðuÞ

Ŝkðu�Þ
.

þ
X

jah;k

Z t

0

RkðuÞRhðuÞ

RdðuÞ
2

� �
Y jðuÞ

dĈI01ðuÞ

Ŝjðu�Þ
ð34Þ

Here R� (t) is the value of Ri(t) summed over all K treatments and ĈI01ðuÞ is the
pooled sample estimate of the cumulative incidence function of the event of
interest. The test statistic is

w2 ¼ Z1; . . . ;ZK�1ð ÞS� Z1; . . . ;ZK�1ð Þ
t, (35)

where S� is the inverse of the correct part of the covariance matrix. The statistics
has a large sample w2 distribution under the null hypothesis. Estimates of cu-
mulative incidence function and the K-sample Gray’s test are available in cmprsk
R-library created by Robert Gray (see http://www.cran.r-project.org/doc/pack-
ages/cmprsk.pdf).

The second test is based on an analogue of the weighted Kaplan–Meier test
discussed above. This test is originally due to Pepe (1991) and is based on the
difference between cumulative incidence function in the two sample problem. The
test statistic is given by

Z ¼

ffiffiffiffiffiffiffiffiffi
n1n2

n

r Z t

0

ŵðtÞ bCI11ðtÞ � bCI12ðtÞh i
dt; (36)
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where ŵð:Þ is a weight function. Here for the kth treatment we let CI1k be the CIF
of the cause of interest and CI2k the CIF for all other causes. We let ĈI01 be the
estimate of the CIF of the cause of interest in the pooled sample, Ŝk the Kaplan–
Meier estimator ignoring cause of failure in the kth sample and Yk(t) the number
at risk at time t in the kth sample. Pepe (1991) suggested a method of moments
type estimator of the variance of Z. Here we use an improved estimator presented
in Bajorunaite and Klein (2007) based on a counting process formulation given
(with w() ¼ 1) by

s2Z ¼
n1n2

n1 þ n2

� �
X2
k¼1

R t
0 ðt� sÞ 1�ĈI2kðuÞ

Y kðsÞ
� 1

Y kðsÞ

R t
s
ĈI1kðuÞdu

n o2
Y kðsÞ

ŜkðsÞ
dĈI01ðsÞþR t

0 ðt� sÞ
ĈI01ðuÞ

Y kðsÞ
� 1

Y kðsÞ

R t
s
ĈI1kðuÞdu

n o2
Y kðsÞ

ŜkðsÞ
dĈI2kðsÞ

2664
3775: ð37Þ

The test statistics Z=sZ has an approximate standard normal distribution under
the null hypothesis.

A third test is a Kolmogorov–Smirnov type test suggested by Lin (1997). The
test statistic is

Z ¼ sup
t2½0;t�

wðtÞ cCI11ðtÞ �cCI12ðtÞn o��� ���. (38)

Lin shows that for large samples DkðtÞ ¼
ffiffiffiffiffi
nk
p

ĈI1kðtÞ � CI1k

h i
has the same lim-

iting distribution as

DkðtÞ �
ffiffiffiffiffi
nk

p
Z t

0

1� CI2kðuÞ

Y kðuÞ
dM1kðuÞ

�
þ

Z t

0

1� CI1kðuÞ

Y kðuÞ
dM1kðuÞ

�CI1kðtÞ

Z t

0

dM1kðuÞ þ dM2kðuÞ

Y kðuÞ

�
ð39Þ

Here the Mjk(t) are independent martingale. A Monte Carlo method is used
to find the p-values. We replace the Mjk(t)’s by

Pnk

l¼1z
l
jkNl

jkðtÞ; j ¼ 1,2, k ¼ 1,2,
where the zl

jk are independent standard normal random variables. Here Nl
jkðtÞ ¼

I ½X lk � t; �lk ¼ j; dlk ¼ 1�: To generate the distribution of Dk(t), we repeatedly
generate a large number, L, of realizations by repeatedly generating z’s from the
normal distribution with all other quantities fixed at their sample values. We
obtain replicates of Dk using (39) which provides us with replicates of Z given by

Ẑl ¼ sup
t2½0;t�

D1lðtÞffiffiffiffiffi
n1
p �

D2lðtÞffiffiffiffiffi
n2
p

���� ����; l ¼ 1; . . . ;L. (40)

These are then compared to the observed value of Z to provide a Monte Carlo
p-value.

We apply these competing risks tests to the comparison of relapse and treat-
ment related mortality between the HLA-identical sibling and HLA-matched
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unrelated donor groups in the data set presented at the end of Section 2. Table 2
presents the results.

The log-rank test compares the crude hazard rates and in this example suggests
no differences in the relapse hazard rates. The other four tests compare directly
the cumulative incidence function and in most cases this is a primary interest.
Gray’s test, which compares the sub-distributional hazards, has the most power
to detect proportional sub-distributional hazards and has little power to detect
crossing sub-distributional hazards (or cumulative incidence curves), as we have
here for relapse. The other two tests are more omnibus tests and have better
power to detect crossing cumulative incidence functions. In this example, the
cumulative incidence functions cross (see Fig. 3a) and these two tests indicate a
significant difference in the relapse incidences.

4. Regression models

In this section, we review a number of models that are used to study the effects of
covariates on outcome. Our data consists of (Xi,di,Zi(t)), for i ¼ 1,y, n where
Zi(t) ¼ (Zi1(t),y,Zip(t)) is a p-vector of explanatory covariates. These covariates
may be fixed at time zero (e.g. gender, race, initial disease stage, etc.) or they may
vary with time (most recent blood pressure, indicator of some intermediate event).
For time-dependent covariates the value needs to be known for everyone at risk
just prior to every event time.

In most biological applications a semi-parametric model is used to model the
effect of the covariates on outcome. In these models a parametric form is assumed
for the covariate effect but the distribution of the baseline survival rate is not
specified. In the sequel we will focus on these methods.

The most common regression model is the Cox (1972) or proportional hazards
model. For this model we assume that the covariates act in a multiplicative
fashion on the hazard rate. That is we assume that

lðtjZðtÞÞ ¼ l0ðtÞ exp bZðtÞ
� �

, (41)

where l0(t) is a baseline hazard rate and b a p-vector of parameter estimators.
Note that for this model the relative risk for a subject with a covariate vector Z1

Table 2

Test of hypothesis in BMT example

Relapse Treatment-Related Mortality

Test p-value p-value

Log-rank test 0.4702 o0.0001

Gray’s test 0.1188 o0.0001

Pepe’s test 0.0533 o0.0001

Kolmogorov test 0.0212 o0.0001
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as compared to a subject with covariate vector Z2 is a constant given by

l0ðtÞ exp bZ1

� �
l0ðtÞ exp bZ2

� � ¼ exp b Z1 � Z2½ �
� �

. (42)

For a binary covariate coded as (0,1), expfbg is the relative risk for a subject with
the characteristic (Z ¼ 1) as compared to a subject with the baseline level of the
characteristic (Z ¼ 0), all other covariates held the same. For continuous covari-
ates, expfbg is the relative risk for a one unit change in the covariate. Because of
the relationship between the hazard rate and the survival function, for fixed
covariates, the relationship between Z and the survival function is

SðtjZÞ ¼ S0ðtÞ
expfbZg, (43)

where S0ðtÞ ¼ expf�
R t

0 l0ðuÞdug is the baseline survival function.
The parameters of the proportional hazards model are estimated using a par-

tial likelihood approach. We assume for simplicity that there are no tied event
times and we have only fixed time covariates. As before let t1ot2o � � �otD be the
ordered event times and Z(j) the corresponding covariate associated with the
subject who failed at tj. Let R(tj) be the set of individuals at risk just prior to time
tj. The log partial likelihood is

LLðbÞ ¼
XD

j¼1

bZðjÞ �
XD

j¼1

ln
X

l2Rðtj Þ

expðbZlÞ

24 35. (44)

When there are ties in the event times then modifications to (44) are given by
Efron (1977), Breslow (1974) and Cox (1972) (see Klein and Moeschberger, 2003
for details).

The partial maximum likelihood estimators (pmle) of b; b̂; are found by max-
imizing (44) or equivalently solving the score equations U(b) ¼ qLL(b)/qb ¼ 0.
For large samples b̂ has an approximate multivariate normal distribution with a
mean b and a variance estimated consistently by the inverse of the information
matrix Iðb̂Þ; where

IðbÞ ¼ �@2LLðbÞ=@b2 ¼ @UðbÞ=@b.

Global tests of the hypothesis H0: b ¼ b0 can be made in three ways. The first test
is a likelihood-ratio test with

w2LR ¼ 2½LLðb̂Þ � LLðb0Þ�. (45)

The second is the Wald test with

w2W ¼ ðb̂� b0Þ
tIðb̂Þðb̂� b0Þ (46)

and the third is the score or Rao test with

w2SC ¼ Uðb0Þ
tI�1ðb0ÞUðb0Þ. (47)
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Under the null hypothesis all three statistics have an approximate w2 distribution
with p degrees of freedom.

Local tests of subsets of covariates can also be constructed in three forms.
Let b ¼ ðb1; b2Þ; where b1 is a q-vector of the b’s of interest and b2 the vector of the
remaining b’s of interest. We wish to test H0: b1 ¼ b10. We partition the pmle into
b̂ ¼ ðb̂1; b̂2Þ and the information matrix I as

I ¼
I11 I12

I21 I22

 !
. (48)

For the likelihood-ratio test we compute the pmle of b with the first q components
fixed at b10; b̂2ðb10Þ: The test statistic is

w2LR ¼ 2 LLðb̂Þ � LLðb10; b̂2ðb10Þ
h i

. (49)

The Wald test is

w2W ¼ ðb̂1 � b10Þ
t I11ðb̂Þ
h i�1

ðb̂1 � b10Þ, (50)

where I11ðb̂Þ is the upper q� q submatrix of I�1ðb̂Þ:The score test is given by

w2SC ¼ U½b10; b̂2ðb10Þ�
tI11½b10; b̂2ðb10Þ�U½b10; b̂2ðb10Þ�. (51)

All three test statistics have a large sample w2 distribution with q degrees of
freedom under the null hypothesis.

To illustrate the regression methods we consider a sample of 154 patients
described in Ichida et al. (1993). The goal of the study was to evaluate a change in
protocol in disinfectant practices for severe burn cases from a routine bathing
care (initial 10% povidone–iodine cleaning followed by regular cleansing with
Dial soap) to body cleansing with 4% chlohexidine gluconate. Of interest was a
comparison of the distribution of the time to staphylococcus infection. Patients
were censored by death or on leaving the hospital. The covariates to be con-
sidered are indicator variables for the type of treatment (Z1 ¼ 1 if body cleansing,
0 if routine care), gender (Z2 ¼ 1 if female, 0 if male), race (Z3 ¼ 1 if white, 0
otherwise), percent of total surface area burned (Z4) and a time-dependent
indicator of whether the burn had been excised or not (Z5(t) ¼ 1 if burned excised
by time t, 0 otherwise). Note the value of Z5(t) is initially 0 and changes to 1 on
the day the burn was excised.

A proportional hazards model with only the main effect, Z1, finds an estimate
of �0.56 (SE ¼ 0.29). The likelihood ratio w2 is w2LR ¼ 3.64 (p ¼ 0.0541), the Wald
w2 w2W ¼ 3.64 (0.0563) and the score w2 is w2SC ¼ 3.74 (0.0532). Note that when
there are no ties in the event times the score w2 is equal to the usual log-rank w2.
Here the estimated relative risk is 0.57 ¼ exp{�0.56} so patients are approxi-
mately half as likely to develop an infection on the new bath solution as compared
to the old method. A 95% confidence interval can be found by exponentiation of
the interval for b. The interval is exp{�0.05671.96 0.563} ¼ [0.32, 1.02].

Survival analysis 297



Before additional analysis on the fixed covariates is performed it is useful to
check the assumption of proportional hazards. One approach is to create an
artificial time-dependent covariate, ZPH(t) for each fixed time covariate, Z. We let
ZPH(t) ¼ Zf(t), where f( � ) is a known function. Typically, as suggested by Cox
(1972), we use f(t) ¼ ln(t) although we could use other functions such as f(t) ¼ t

or f(t) ¼ I[tot0]. Interested readers are directed to Therneau and Grambsch
(2000) for a somewhat technical discussion of what type of departure from pro-
portionality each choice of f has the most power to detect. A local test of the
hypothesis that the regression coefficient for ZPH(t) is equal to zero is a check of
proportional hazards. When the proportional hazards assumption is suspect then
one can model Z by a set of time-dependent covariates such as Z1(t) ¼ ZI[tot0]
and Z2(t) ¼ ZI[tZt0], where t0 is usually found by maximizing the log partial
likelihood (see Klein and Moeschberger, 2003). For the bathing solution data we
have the following p-values of the Wald tests for proportional hazards suggesting
there is no problem with this assumption (Table 3).

Table 4 gives the results of fitting the proportional hazards model to all five
covariates. In this table we see that the main effect of method of care is not
significant, that white patients are significantly more likely to have an infection
(8.5 times more likely), that once patients have their wound excised they are less
like to develop infections and that gender and percent surface area burned are not
associated with the time to infection. Note that for Z4 the relative risk of
exp{0.003} is the increase risk per a change of 1% of body surface area burned.
A more interpretable number may be exp{10� 0.003} ¼ 1.03, which is the
increase in risk of infection per an increase of 10% in body surface area.

Table 3

Tests of proportional hazards

Effect p-value

Z1: Method of care 0.6323

Z2: Gender 0.1900

Z3: Race 0.2752

Z4: Percent burned 0.3451

Table 4

Proportional hazards analysis of full model

Effect b SE exp {b} w2 p-value

Z1: Method of care �0.499 0.300 0.61 2.77 0.096

Z2: Gender �0.537 0.392 0.58 1.87 0.171

Z3: Race 2.142 1.013 8.51 4.46 0.034

Z4: Percent burned 0.003 0.007 1.00 0.23 0.632

Z5(t): Excision indicator �0.898 0.485 0.41 3.43 0.064
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Keeping the main effect of method of care and eliminating the non-significant
factors in Table 4 using forward model selection we obtain the final model given
in Table 5.

The proportional hazards model is perhaps one of the most studied models in
the statistical literature. The reader is referred to the text books by Therneau and
Grambsch (2000) or Klein and Moeschberger (2003) for details and discussions
on regression diagnostics for this model. Software to fit the Cox model is avail-
able in most every package that deals with censored data.

Cox regression models can be developed for other censoring and truncation
schemes. For left-truncated data all of the above results carry through. These
models are available in SAS, for example. For interval-censored data special
techniques have been developed for proportional hazards regression. These are
detailed, for example, in Finkelstein (1986), Goggins and Finkelstein (2000) and
in the book by Sun (2006).

A second set of models for survival data are the additive hazards models. These
model the excess risk due to a factor rather than the relative risk. The model was
originally proposed by Aalen (1989, 1993) with time-varying risk coefficients and
modified to have fixed risk coefficients by Lin and Ying (1994, 1997). For this
model we have

lðtjZiðtÞÞ ¼ a0ðtÞ þ aðtÞZiðtÞ. (52)

Here a0() is a baseline rate and a() is a p-vector of regression functions.
To estimate the regression parameters in the Aalen model (52) a least squares

approach is used. For simplicity we will consider the case where all the covariates
are fixed at time t. Let Yi(t) be the indicator that the ith subject is at risk at time t,
and let Ni(t) ¼ 1 if Xirt and di ¼ 1. Let N(t) ¼ [N1(t),y,Nn(t)]

t, and let X(t) be
the n� (p+1) matrix with ith row given by [Yi(t), Yi(t)Z1i,y,Yi(t)Zpi],
i ¼ 1,y, n. We shall estimate the cumulative regression function

AðtÞ ¼ AjðtÞ ¼

Z t

0

ajðuÞdu

� �
; j ¼ 0; 1; . . . ; p (53)

by

ÂðtÞ ¼

Z t

0

X�ðuÞdNðuÞ, (54)

Table 5

Proportional hazards analysis of final model

Effect b SE exp {b} w2 p-value

Z1: Method of care �0.483 0.300 0.62 2.65 0.103

Z3: Race 2.180 1.012 8.90 4.67 0.031

Z5(t): Excision indicator �0.998 0.483 0.37 4.26 0.039
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where X�(t) is a generalized inverse of X. While any generalized inverse maybe
used in most applications, the inverse X�(t) ¼ [Xt(t)X(t)]�1Xt(t). Huffer and
McKeague (1991) examined the use of other generalized inverses. The estimator is
defined over the range of the data [0,t], where [Xt(t) X(t)] is non-singular. The
variance–covariance matrix of Â is given by

cvarðÂðtÞÞ ¼X
Ti�t

XtðTiÞXðTiÞ
 ��1

XtðTiÞI
DðTiÞXðTiÞ XtðTiÞXðTiÞ

 ��1h it

,

(55)

where ID(t) is a diagonal matrix with diagonal elements equal to 1 if subject i dies
at time t. For large samples the estimates of A are approximately normal with a
variance given by (55).

Figure 4 shows the estimated cumulative regression estimates for the time to
infection data based on the four fixed covariates. Included in the figures is the
point estimate of Ai(t) and 95% pointwise confidence intervals constructed as
ÂiðtÞ � 1:96cvarðÂiðtÞÞ

1=2: The slope of these estimates provides an estimator of a().
Smother estimates of a() can be obtained by smoothing these crude estimates (see
Klein and Moeschberger, 2003). From these graphs it appears that there is little
effect of the method of care, gender or percent body surface since the curves and
confidence intervals are close to the zero line. For race it appears there is a strong
positive effect, at least in the first three weeks with an approximate estimate of a(t)
of about 0.6/20 ¼ 0.03, after which the estimate of a() is close to zero.

Tests for the global hypothesis H0: aj(t) ¼ 0, j ¼ 1,y, p or local hypotheses
like H0j: aj(t) ¼ 0 can be constructed based on a weighted statistic as suggested
first by Aalen (1993). Let W(t) be the p� p diagonal weight matrix with diagonal
elements (W1(t),y,Wp(t)). The test statistic is a quadratic form in
U ¼ (U1,y,Up) where

UjðtÞ ¼

Z t

0

W jðuÞdÂðuÞ. (56)

The covariance matrix is

V ¼
X

Ti

WðTiÞ XtðTiÞXðTiÞ
 ��1

XtðTiÞI
DðTiÞXðTiÞ X

tðTiÞXðTiÞ
 ��1n ot

WðTiÞ ð57Þ

and the test statistic is given by X2
¼ UtV�1U. Under the null hypothesis for large

samples the statistic has a w2 distribution with p degrees of freedom. For the
weight function Aalen (1993) proposed the diagonal elements of [Xt(t)X(t)]�1,
however Bhattacharyya and Klein (2005) show that in the one-way layout this
may lead to test statistics that depend on which group is chosen as the baseline
group. They show that weights which are multiples of the identity matrix do
not have this problem. Such weights include Wj(t) ¼ 1 for all t, Wj(t) ¼ Y(t), the
total number at risk at time t and Wj(t) ¼ Y(t)1/2. Gandy et al. (2007) suggest a
refinement of the additive model to eliminate this problem as well based on
redefining the covariate vector.
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Table 6 gives the test statistics and p-values for the Aalen model using several
weight functions. Note that there is rough agreement between these tests
suggesting that gender is marginally significant, percent of area burned is not
significant, race is strongly associated with outcome and the main effect of
method of care is associated with infection.

The above computations were based on a SAS macro that can be found at
http://www.biostat.mcw.edu/software/SoftMenu.html. An SPlus/R package is

z4: Percent Burned
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Fig. 4. Aalen’s additive regression function estimates.
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available at http://www.med.uio.no/imb/stat/addreg/. A package timereg 0.1 for
R available at http://www.med.uio.no/imb/stat/addreg/ includes routines to fit
the additive model.

The second additive hazards model is the model of Lin and Ying (1994). In this
model the effect of the covariates on the hazard rate is given by

lðtjZÞ ¼ g0ðtÞ þ cZðtÞ. (58)

Here g0 is an arbitrary baseline hazard function. Estimators of the model
parameters are found by maximizing a pseudo partial score equation based
on replacing the hazard rate in the Cox model by the model (58) in the score
equations. The estimates are given by

ĉ ¼ A�1Bt, (59)

where the p-vector B is given by

Bt ¼
Xn

i¼1

di Zi � Z̄ðX iÞ
 �

. (60)

A is the p� p matrix

A ¼
Xn

i¼1

Xi

j¼1

ðX j � X j�1Þ½Zi � Z̄ðX jÞ�
t½Zi � Z̄ðX jÞ�. (61)

Here we assume that the Xi’s are ordered with 0 ¼ X 0oX 1o � � �oX n and that

Z̄ðtÞ ¼

Pn
i¼1

ZiY iðtÞPn
i¼1

Y iðtÞ

. (62)

Table 6

Tests for a regression effect in the Aalen model

Weight

Effect [Xt(t)X(t)]�1 Y(t) Y(t)1/2

Global test w2 ¼ 24U7 w2 ¼ 29U62 w2 ¼ 12U12

po0.0001 p ¼o0.0001 p ¼ 0.0165

Z1: Method of care w2 ¼ 3U95 w2 ¼ 4U07 w2 ¼ 4U15

p ¼ 0.0468 p ¼ 0.0437 p ¼ 0.0416

Z2: Gender w2 ¼ 3U44 w2 ¼ 4U55 w2 ¼ 3U00

p ¼ 0.0634 p ¼ 0.0329 p ¼ 0.0831

Z3: Race w2 ¼ 21U19 w2 ¼ 25U92 w2 ¼ 10U12

po0.0001 p ¼o0.0001 p ¼ 0.0015

Z4: Percent burned w2 ¼ 0U18 w2 ¼ 0U06 w2 ¼ 0U29

p ¼ 0.6681 p ¼ 0.8143 p ¼ 0.58
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The variance of ĉ can be estimated consistently by

cvarðĉÞ ¼ A�1CA�1, (63)

where

C ¼
Xn

i¼1

di Zi � Z̄ðX iÞ
 �t

Zi � Z̄ðX iÞ
 �

. (64)

For large samples the estimators have a normal distribution with mean c and a
variance estimated by (63). Tests of hypothesis about model parameters can be
based on the large sample normal distribution.

Applying the Lin–Ying model to the wound care problem gives the results in
Table 7. Here we see that only the percent surface area burned is not associated
with the time to infection. For the main effect of method of care the rate of
occurrence of infection is reduced by 0.0091 by using the new cleaning method.
These results are in agreement with the Aalen model using the weight function
Y(t) in testing.

Additive hazards models have been studied for other censoring and truncation
schemes. In particular, for interval-censored data the paper by Sun et al. (2004)
provides results for both additive models. A good survey of these results can be
found in Sun (2006).

The Cox proportional hazard model and Aalen’s additive hazards models are
the two most commonly used semi-parametric regression models. The models
complement each other and provide different interpretations of the effects of the
covariates on the hazard rate. One advantage of the additive models is that it
allows the covariates to have a time-varying effects that is easy to estimate.
Scheike and Zhang (2002) proposed an additive–multiplicative intensity model
that includes the Cox regression model as well as the additive Aalen model.
We partition the covariates into two disjoint vectors, Z1 ¼ 1;Z11; . . . ;Z1p

	 

and

Z2 ¼ Z21; . . . ;Z2q

	 

: We define the hazard function by

lðtjZ1;Z2Þ ¼ ðZ
t
1aðtÞÞ exp Zt

2b
� �

. (65)

For this model one first estimates b by solving the estimating equation

UðbÞ ¼
Z t

0

Zt
2 � Zt

2Yðb; tÞY
�ðb; tÞ

� �
dNðtÞ ¼ 0; (66)

Table 7

Estimates of regression effects in the Lin–Ying model

Effect ĝ SE Z ¼ ĝ=SE p-value

Z1: Method of care �0.0091 0.0044 �2.30 0.0424

Z2: Gender �0.0082 0.0041 �1.99 0.0462

Z3: Race 0.0134 0.0029 4.59 o0.0001

Z4: Percent burned 0.0007 0.0001 0.55 0.5830
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where Yðb; tÞ ¼ Y 1ðtÞZ11 expfZ
t
21bg; . . . ;Y nðtÞZ1n expfZ

t
2nbg

 �t
: The estimate of

AðtÞ ¼
R t

0 aðuÞ du is given by

ÂðtÞ ¼

Z t

0

Y�ðb̂; uÞdNðuÞ. (67)

Here Y�ðb; sÞ ¼ ½Yðb; sÞtWðsÞYðb; sÞ��1Yðb; sÞtWðsÞ; whereW() is a diagonal weight
matrix with elements W iðtÞ ¼ Y iðtÞ expf�Z2ibg: The variance of b̂ can be esti-
mated by

Varðb̂Þ ¼ I�1ðb̂Þvar½Uðb̂Þ�I�1ðb̂Þ, (68)

where

IðbÞ ¼ �@UðbÞ=@b,

var½Uðb̂Þ� ¼
Z t

0

Zt
2 � Sð1Þðb̂; tÞY�ðb̂; tÞ

h i
diagðdNðtÞÞ Zt

2 � Sð1Þðb̂; tÞY�ðb̂; tÞ
h it

and

Sð1Þðb̂; tÞ ¼
Xn

i¼1

Y iðtÞZ2i expfZ2ibgZ1i.

When Z1 is a vector of discrete-valued covariates the mixed additive–multipli-
cative model leads to stratified Cox model, which is available in most statistical
package. The general mixed model can be fit using the cox.aalen-function in R
created by Scheike (Martinussen and Scheike, 2006).

To illustrate this model, we consider the burn data with the covariates method
of care, gender and race as having a multiplicative effect (Z2) and the covariate
percent of surface area burned as having an additive effect (Z1). The p-value
testing for an effect of percent of area burned has a p-value of 0.95 in this model
as compared to a p-value of 0.57 in a standard Cox model. As shown in Table 8,
the estimates of the multiplicative effects are quite similar in the two models. This
is not surprising since a test of the appropriateness of modeling the percentage of
surface area burned as a time-varying effect discussed in Scheike and Zhang
(2002) was not significant (p ¼ 0.63).

Table 8

Illustration of the mixed model

Effect Standard Cox Model Mixed Model

Estimate SE p-value Estimate SE p-value

Method of care �0.61 0.30 0.0377 �0.60 0.30 0.0420

Gender �0.64 0.39 0.1050 �0.62 0.39 0.1103

Race 2.11 1.00 0.0351 2.11 1.03 0.0370

Percent burned 0.004 0.007 0.5686 — — 0.9500
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An alternative to both the multiplicative and additive hazards models is
the proportional odds model. This model, first suggested by Pettitt (1984) and
Bennett (1983) allows for the effects of the covariates to diminish over time. The
model assumes that

1� SðtjZÞ

SðtjZÞ
¼

1� S0ðtÞ

S0ðtÞ
expfbZg. (69)

Here S0(t) is a baseline survival function.
The proportional odds model can be viewed as a special model of the semi-

parametric transformation models

fðTÞ ¼ �bZþ E, (70)

where f is an unspecified monotone transformation function, and E a random
variable with a known distribution independent of Z. When f(t) ¼ log(t) and E

has a standard logistic distribution with probability density function
f(x) ¼ exp(x)/[1+exp(x)]2, this leads to a parametric proportional odds model.

Various authors have considered and studied the proportional odds models
and general transformation models. The key references for semi-parametric
inference in the transformation models are Pettitt (1984), Bennett (1983), Cheng
et al. (1995), Rossini and Tsiatis (1996), Murphy et al. (1997), Fine et al. (1998),
Yang and Prentice (1999), Bagdonavicius and Nikulin (1999) and Chen et al.
(2002). To fit a semi-parametric proportional odds model with right-censored
survival data, Cheng et al. (1995), Fine et al. (1998) and others suggested using
a general approach based on IPCW techniques. Murphy et al. (1997) presented
a profile likelihood approach, recently Bagdonavicius and Nikulin (1999) and
Chen et al. (2002) considered an estimating equations approach based on a
modified partial likelihood method. Martinussen and Scheike (2006) gave a
detailed overview of semi-parametric analysis of transformation models with
censored data.

Let F(t) ¼ exp(f(t)) be a strictly increasing positive function such that
F(0) ¼ 0 and F(t)-N as t-N. For a transformation model, the hazard func-
tion of T given Z can be written as

lðtjZÞ ¼ l0ðexp½bZ�Þ exp½bZ�FðtÞdFðtÞ, (71)

where l0(t) is the hazard associated with exp(E). In the case of a semi-parametric
proportional odds model note that

log
1� SðtjZÞ

SðtjZÞ

� �
¼ log½FðtÞ� þ bZ, (72)

where F(t) ¼ 1�S0(t)/[1�S0(t)] and S0(t) is an unspecified survival function. The
survival and hazard functions are

SðtjZÞ ¼
1

1þ FðtÞ expðbZÞ
and lðtjZÞ ¼

dFðtÞ
expf�bZg þ FðtÞ

. (73)
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The relative risk for two individual with covariates Z2 versus Z1 is

RRðtÞ ¼
lðtjZ2Þ

lðtjZ1Þ
¼

expf�bZ2g þ FðtÞ
expf�bZ1g þ FðtÞ

. (74)

Thus, exp((Z2�Z1)b) is the initial relative risk and the relative risk tends to 1 for
very large time. This is an appealing property that the covariate effect diminishes
over time.

We introduce an estimating equation approach for the general transformation
models. Let

Sð0Þðt; b;FÞ ¼
Xn

i¼1

Y iðtÞ expfbZig
dFðt�Þ

1þ Fðt�Þ expfbZig
. (75)

For known b we can estimate F() by a Breslow-type estimator

~Fðt;bÞ ¼
Z t

0

dN � ðuÞ

Sð0Þðu; b; ~FÞ
. (76)

Here the estimation is solved by moving recursively through time starting with
~FðtÞ ¼ 0 for times smaller than the first death. With an estimate of F in hand we
estimate b using a score equation approach by maximizing

UðbÞ ¼
Xn

i¼1

Z t

0

Zi expf�bZig � ð@ ~Fðt�; bÞ=@bÞ

expf�bZig �
~Fðt�; bg

�
Sð1Þðt; b; ~FÞ

Sð0Þðt; b; ~FÞ

� �
, (77)

where

Sð1Þðt; b; ~FÞ ¼
@Sð0Þðt; b; ~FÞ

@b
.

Estimation proceeds by iterating between (76) and (77). The asymptotic variance
of b is estimated by a sandwich estimator (see Bagdonavicius and Nikulin, 1999;
Martinussen and Scheike, 2006)

dVarðbÞ ¼ I�1ðbÞ
X̂

I�1ðbÞ, (78)

where

IðbÞ ¼ �
@UðbÞ
@b

(79)

and

X̂
¼
Xn

i¼1

Z t

0

Zi expf�bZig � ð@ ~Fðt�; bÞ=@bÞ

expf�bZig �
~Fðt�; bÞ

� q̂ðt; bÞ

� �2
dNiðtÞ, (80)
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where

q̂ðt; bÞ ¼
Sð1Þðt; b; ~FÞ

Sð0Þðt; b; ~FÞ
� kðt; bÞS0ðt; b; ~FÞ
 ��1 Z t

0

Lðs; bÞkðs; bÞd ~Fðs; bÞ;

kðt; bÞ ¼ exp �

Z t

0

S�0ðu; bÞ

Sð0Þðu; b; ~GÞ
d ~Fðu�; bÞ

� �
,

Lðt; bÞ ¼
Sð1Þðt; b; ~FÞS�0ðt; bÞ � Sð0Þðt; b; ~FÞS�1ðt; bÞ

Sð0Þðt; b; ~FÞ
, ð81Þ

and

S�j ðt; bÞ ¼
Xn

i¼1

Y iðtÞ
Zi expf�bZig � ð@ ~Fðt�; bÞ=@bÞ

expf�bZig �
~Fðt�; bg

� �j

expf2bZg
@½1=ð1þ ~Fðt�Þ expfbZigÞ�

@b

� �
,

for j ¼ 0,1; b ¼ b̂:
Parametric proportional odds model can be fit by a maximum likelihood

method and are available in most statistical packages, such as SAS, SPlus and
STATA (Klein and Zhang, 2005). Scheike’s timereg package (Martinussen and
Scheike, 2006) can be used to fit a semi-parametric proportional odds model with
prop.odds function.

To illustrate this model we consider the burn data with four covariates. First,
we fit a parametric proportional odds model using the SAS Proc Lifereg pro-
cedure and specify Dist ¼ logistic as an option in the model statement. Next we fit
a semi-parametric proportional odds model using timereg prop.odds function.
Table 9 gives the results. Here we see again a strong effect of race and marginal
effects of treatment and gender. Here exp{�0.70} ¼ 0.50 is the odds ratio in favor
of survival for patients given the new treatment. That is, patients given the
standard treatment have an odds 2 as large of having an infection than patients
given standard treatment.

A quite general approach to censored data regression has recently been
suggested by Andersen et al. (2003). This general technique can be applied to

Table 9

Illustration of the proportional odds model

Effect Parametric Proportional Odds Semi-Parametric Proportional Odds

Estimate SE p-value Estimate SE p-value

Method of care �0.67 0.35 0.0531 �0.70 0.37 0.0573

Gender �0.86 0.44 0.0516 �0.85 0.44 0.0496

Race 2.39 1.02 0.0159 2.39 1.02 0.0191

Percent burned 0.003 0.008 0.6957 �0.005 0.009 0.5880
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censored survival data and as discussed in the next section to competing risks
data. The general formulation is as follows. Let (Ti, i ¼ 1,y, n) be the inde-
pendent and identically distributed random variables. Each Ti could be a scalar
random variable, a vector Ti ¼ (Tij, j ¼ 1,y, p) or a process Ti ¼ ðXiðtÞ; t 
 0Þ:
We are interested in a regression model for y the expectation of some function f of
Ti. That is

y ¼ E½f ðTiÞ�, (82)

which may also be multivariate or a function of time. We suppose that we have
made available an (approximately) unbiased estimator, ŷ; for y. Examples are Ti

is continuous and f is the identity function which yields y ¼ E[Ti], the mean; Ti

Bernoulli and f(Ti) ¼ I[Ti ¼ 1] so y ¼ p ¼ P[Ti ¼ 1]; and T1,y, Tn are non-
negative lifetimes and f(Ti) ¼ I[Ti4t] so y ¼ S(t) ¼ P[Ti 4t].

Suppose that in addition to Ti we have covariates Zi that are an independent
and identically distributed sample from a distribution O. Then

y ¼ E f ðTiÞ½ � ¼ E E f ðTijZ½ �½ � ¼

Z
E f ðTiÞjZi½ �dOðZiÞ

and ŷ is an unbiased estimator for this marginal expectation. If we take O to be
the empirical distribution function and we let

yi ¼ E½f ðTijZi�, (83)

then y ¼
P

iyi=n: This means that E½ŷ� ¼
P

iyi=n and the ‘‘leave-one-out’’ sta-
tistics ŷ�i based on the sample of size n�1 with Ti removed from the sample is
unbiased for

P
laiyl=ðn� 1Þ: This implies that the so-called pseudo-observation,

ŷi; defined by

ŷi ¼ nŷ� ðn� 1Þŷ�i ¼ ŷþ ðn� 1Þðŷ� ŷ�iÞ, (84)

is an unbiased estimate for yi ¼ E[f(Ti)|Zi].
We exploit the relationship (83) using a generalized linear model with a link

function f(). That is

fðyiÞ ¼ btZi (85)

with an inverse link function (mean function)

mi ¼ f�1ðbtZiÞ. (86)

Here we are incorporating an intercept term by a column of 1’s in Zi. We estimate
model parameters using the theory of generalized estimating equation (GEE)
methods (cf. Liang and Zeger, 1986; Zeger and Liang, 1986). The estimating
equations to be solved are

UðbÞ ¼
Xn

i¼1

@mi

@b

� �t

Vi ¼
Xn

i¼1

UiðbÞ ¼ 0, (87)
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where Vi is a working covariance matrix for ŷi: In most applications Vi is the
identity matrix. The estimator of b is found by solving (87). The covariance of the
b̂ is found using a ‘‘sandwich estimator’’ defined byX̂

¼ IðbÞ�1cvarðUðbÞÞIðbÞ�1 (88)

where

IðbÞ ¼
Xn

i¼1

@mi

@b

� �t

V�1i

@mi

@b

� �
(89)

and

cvarðUðbÞÞ ¼Xn

i¼1

Uiðb̂Þ
tUðb̂Þ. (90)

This technique can be applied in a number of situations. One can use the
approach to model the relationship between covariates and survival at a single
point of time or at a grid of time points by using pseudo-observations based on
the Kaplan–Meier estimator (3). One can develop additional regression models
for the cumulative hazard rate by using pseudo-values based on the Nelson–Aalen
estimator (5). In Andersen et al. (2003) and Andersen and Klein (2007) the tech-
nique is used to model multistate probabilities. In the next section, we will show
how the approach can be used to model competing risk probabilities.

Here we shall look at modeling the effect of covariates on the mean time to an
event or on the mean log-survival function in the infection data set (see Andersen
et al., 2004). The models discussed earlier in this section induce regression models
for the mean of the (log) survival time, but these models are highly non-linear and
hard to interpret. We shall look at modeling the restricted mean defined by

mðtÞ ¼ E½minðT ; tÞ� ¼
Z t

0

SðuÞdu, (91)

since when the last observation is censored the mean is not well defined. In our
example we shall take t ¼ 60 which is slightly larger than the largest death at day
51 but smaller than the largest on study time. We shall examine two models:

mðtjZÞ ¼ b0 þ btZ

and

E½ln minðT ; tÞð ÞjZ� ¼ b0 þ btZ.

The model for E[ln(T)] is the so-called accelerated failure model which is usually
analyzed by assuming a parametric model for the residuals. Semi-parametric
approaches to the accelerated failure time model can be found in Buckley and
James (1979), Ritov (1990) and Leurgans (1987), but these approaches have a
number of numerical difficulties. Here we construct pseudo-observation for E[T]
using the Kaplan–Meier estimator (3) in Eq. (84). For E[ln(T)] we compute
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pseudo-observations from

ln½t1� þ

Z ln½minðtD ;tÞ�

ln½t1�

ŜðuÞduþ ðt� tDÞ
þŜðtDÞ, (92)

where t1o � � �otD are the ordered event times. Once the pseudo-observations are
computed we fit the GEE estimates using V ¼ 1 in (87–90). Any package which
computes GEE can be used in the second step. Note that the pseudo-observations
are computed only once since they do not involve the Z’s.

Table 10 shows the results for both the E[T] and E[lnT] models using the
identity link. Here we see that patients with the new method of care have on
average 9.22 more days free of infection than those given the old bath solution.

SAS macros to compute pseudo-values for the restricted mean and the survival
function are available on our website at www.biostat.mcw/Software.html. Also
available on our website are R functions to compute the pseudo-values for these
parameters.

5. Regression models for competing risks

For competing risk data we often wish to model the effect of covariates for a
specific cause of failure. For competing risks data we can model the cause-specific
hazard rate for a given cause, we can model the cumulative incidence function
indirectly by modeling each of the J crude hazard rates and combining them using
(16), or we can model directly the effects of covariates on the cumulative incidence
function. In this section, we will briefly discuss a few techniques to fit these models
and provide some comments on the merits of these approaches. We assume, for
simplicity, that the first competing risk is of interest and that all other risks can be
combined into a second competing risk.

The first approach is to model the cause-specific hazard function (15). Here we
can use any of the models and techniques discussed in the previous section with
the modification that events from causes other than the cause of interest are
treated as censored observations. No new software is needed for these models.

Table 10

Regression models for E[T] and E[lnT]

Effect Models for E[T] Models for E[ln(T)]

b SE p-value b SE p-value

Intercept 49.98 5.63 3.775 0.176

Z1: Method of care 9.22 4.01 0.0365 0.332 0.173 0.0544

Z2: Gender 7.25 5.39 0.1789 0.355 0.185 0.0545

Z3: Race �15.90 5.57 0.0044 �0.708 0.150 o0.0001

Z4: Percent burned �0.06 0.5830 �0.002 0.005 0.7467
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One needs, however, to interpret the results in terms of the cause-specific hazard
rate only since the cumulative incidence function for the cause of interest is not a
simple function of the cause-specific hazard rate for the cause of interest, but
rather a function of all the J competing risks.

A second approach is to model the cumulative incidence function for the cause
of interest by modeling the cause-specific hazards for all J risks and combining
these using an Aalen–Johansen (1978) estimator. That is

ĈIðtjZÞ ¼

Z t

0

exp �
X2
j¼1

L̂jðu� jZÞ

( )
dL̂1ðujZÞ. (93)

Cheng et al. (1998) proposed modeling CI(t|Z) using a proportional hazards
regression model for all causes. In Shen and Cheng (1999), the additive model for
the cause-specific hazards was considered. Scheike and Zhang (2003) proposed
using the mixed additive–multiplicative model for the hazards. Andersen et al.
(1993) derived a variance estimator for a general multistate model, which can
be applied to estimate the standard error of ĈIðtjZÞ: With this approach the
relationship between the covariates and the CIF is highly non-linear and quite
difficult to interpret.

The third approach is to model the CIF directly. Here we discuss three meth-
ods to perform estimation for this approach.

The first is due to Fine and Gray (1999) and is based on modeling the sub-
distribution hazard (29) defined in the discussion of Gray’s test in Section 3. A
proportional sub-distribution hazard model is given by

l�ðtjZÞ ¼ l�0ðtÞ exp bZ
� �

, (94)

where l�0ðtÞ is an unknown baseline hazard function. Since

CIðtjZÞ ¼ exp �

Z t

0

l�ðujZÞdu

� �
¼ exp �

Z t

0

l�0ðuÞdu

� �� �expðbZÞ
(95)

we can interpret the covariate effect on the CIF directly.
With complete data and no censoring, Fine and Gray (1999) proposed a

modified partial likelihood method. A modified risk set at the time of failure for
the ith individual is defined by Ri ¼ {l: (XlZ Xi)[(XlrXi,el 6¼ 1}. That is Ri is the
set of all individuals yet to fail at time Xi or who failed from cause 2 prior to Xi.
If we set Xi ¼N if the ith individual failed from a cause other than that of
interest, standard partial likelihood methods can be applied. This makes estima-
tion available in all statistical packages.

For a censored sample, the counting process Ni(t) ¼ I[Tirt,ei ¼ 1] and the
modified risk indicator Yi(t) ¼ 1�Ni(t�) are not always observable for censored
individuals. Let Ci be the potential censoring time for the ith subject and define
ri(t) ¼ I[CiZTi4t]. Then ri(t)Ni(t) and ri(t)Yi(t) are computable for all time
points. Fine and Gray proposed estimating the regression parameter b by solving
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a modified score equation

UðbÞ ¼
Xn

i¼1

Z t

0

Zi �

Pn
l¼1

wlðsÞY lðsÞZl exp bZl

� �
Pn
l¼1

wlðsÞY lðsÞ exp bZl

� �
8>><>>:

9>>=>>;wiðsÞdNiðsÞ, (96)

where wiðtÞ ¼ riðtÞĜðtÞ=ĜðTi ^ tÞ and ĜðtÞ the Kaplan–Meier estimator
of the survival function of the censoring distribution. The cumulative baseline
sub-distribution hazard can be estimated by a Breslow-type estimator

L�0ðtÞ ¼
Xn

i¼1

Z t

0

wiðuÞdNiðuÞPn
l¼1

wlðsÞY lðsÞ exp bZl

� � . (97)

Fine and Gray (1999) derived consistent variance estimators, which consider the
variation caused by using an estimated censoring survival function. The estimator
is given by the sandwich estimator

cvarðb̂Þ ¼ Iðb̂Þ
h i�1

Ŝ Iðb̂Þ
h i�1

. (98)

Here we have

IðbÞ ¼ �@UðbÞ=@b

and

X̂
¼
Xn

i¼1

ðĝi þ ŵiÞ
t
ðĝi þ ŵiÞ,

where

ĝi ¼

Z t

0

Zi �
Sð1Þðb̂; tÞ

Sð0Þðb̂; tÞ

" #
wiðtÞdM̂iðtÞ,

ŵi ¼

Z t

0

�
Pn
l¼1

R t
0 Zl � ðS

ð1Þðb̂; tÞ=Sð0Þðb̂; tÞÞ
h i

IðX iou � tÞwlðtÞdM̂iðtÞ

� �
Pn
l¼1

I ½X i 
 u�

dM̂
C

i ðuÞ

Sð0Þðb; tÞ ¼
Xn

i¼1

wiðtÞY iðtÞ expfbZig;S
ð1Þðb; tÞ ¼

Xn

i¼1

wiðtÞZiY iðtÞ expfbZig,

M̂iðtÞ ¼ NiðtÞ �

Z t

0

Y iðuÞdL̂
�

0ðuÞ
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and

M̂
C

i ðtÞ ¼ Nc
i ðtÞ �

Z t

0

I ½X i 
 u�

Pn
l¼1

dNc
l ðuÞPn

l¼1

I ½X l 
 u�

2664
3775 with Nc

i ðtÞ ¼ I ½X i � t; di ¼ 0�.

Estimates of regression parameters in this model are available in the crr function
of the cmprsk R-library created by Robert Gray. Sun et al. (2006) considered an
alternative mixed sub-distribution hazard model of the form

l�0ðtjZ1;Z2Þ ¼ aðtÞZ1 þ l�0ðtÞ expðbZ2Þ, (99)

where a(t) is an unknown q-vector of time-varying components representing the
effects of covariates Z1 and b a p-vector of unknown regression parameters for the
effects of covariates Z2.

A second approach to modeling the CIF is the pseudo-value approach
discussed in Section 4. For competing risk data this approach is discussed
in Klein and Andersen (2005) and Klein (2006). For competing risks data
we consider a grid of time points, t1,y, tM. At each grid time point we estimate
the CIF using (13) based on the complete data set, ĈIðthÞ and based on the
sample of size n�1 obtained by deleting the ith observation, ĈIðiÞðthÞ; res-
pectively. The pseudo-value for the ith subject at time th is defined as ŷih ¼

nĈIðthÞ � ðn� 1ÞĈIðiÞðthÞ: Let yih ¼ CI(th|Zi) be the outcome of interest. We
model yih by

fðyihÞ ¼ ah þ cZi, (100)

where f is a known link function. Common link functions such as logit
link with f(y) ¼ log(y/(1�y)) and the complementary log–log link with
f(y) ¼ log[�log(1�y)] can be applied here. Note that the complimentary log–
log link gives models equivalent to the proportional hazards models on the sub-
distribution hazard. The logit link gives a proportional odds model for the CIF.
Estimates of the a’s and c’s are obtained using the pseudo-score Eq. (87). The
sandwich variance estimate (87)–(90) is used to estimate the standard error. To
numerically apply this approach, Klein and Andersen (2005) suggested
computing the pseudo-values at a preset grid time points first, and then using
Proc GENMOD procedure in SAS for models with independent or empirical
working covariance model. A SAS macro and an R function to compute the
pseudo-values for the cumulative incidence function are also available on our
website.

The third approach to direct regression modeling of the cumulative incidence
function is based on the IPCW approach discussed at the end of Section 2. We
will illustrate using a generalized additive model

f CIðtjZÞð Þ ¼ AðtÞZ, (101)
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where f is a known link function, A(t) a p+1 dimensional vector of regression
effects and Z ¼ (1, Z1,y,Zp) has the first element equal to 1 to allow for a
baseline cumulative incidence. The log(f(x) ¼ ln(1�x)), logit (f(x) ¼ ln(x/(1�x))
or the complimentary log–log function (f(x) ¼ ln(�ln(1�x)) are commonly used
link functions. The log-link function gives a model like Aalen’s additive model
(52) in the non-competing risk framework.

Scheike and Zhang (2006) proposed estimating A() by solving a pseudo-
score equation at each distinct event time, t1ot2o � � �otD: That is one solves
Uðti; bÞ ¼ 0

Uðti; bÞ ¼
Xn

l¼1

@f�1ðAðtiÞZlÞ

@AðtiÞ

I ½X l � ti; �l ¼ 1�I ½Cl 
 X l ^ ti�

ĜðX l ^ tiÞ
� @f�1ðAðtiÞZlÞ

( )
,

(102)

where Ĝ is an estimate of the survival function of the censoring times. To estimate
the variance define

Iðt;AðtÞÞ ¼
Xn

i¼1

@f�1ðAðtÞZiÞ

@AðtÞ

� �
@f�1ðAðtÞZiÞ

@AðtÞ

� �t

, (103)

then we can estimate the variance of ÂðtÞ by

ŜðtÞ ¼
Xn

i¼1

Ŵ
A

i ðtÞŴ
A

i ðtÞ
t; (104)

Table 11

Regression models for relapse

Crude Hazard Cox Model Fine and Gray Andersen and Klein

b SE p b SE p b SE p

Donor type

Matched unrelated 0.011 0.153 0.94 �0.32 0.16 o0.01 �0.037 0.16 0.02

Mismatched unrelated �0.944 0.364 0.01 �1.37 0.38 o0.01 �1.61 0.45 o0.01

Disease

AML �0.0271 0.145 0.06 �0.17 0.15 0.24 �0.17 0.15 0.27

CML �0.721 0.157 o0.001 �0.75 0.16 o0.01 �0.66 0.17 o0.01

Stage of disease

Intermediate 0.640 0.153 o0.001 0.51 0.15 o0.01 0.54 0.16 o0.01

Advanced 1.8487 0.150 o0.001 1.51 0.15 o0.01 1.55 0.15 o0.01

Karnofsky

490 �0.118 0.142 0.41 0.17 0.15 0.26 0.28 0.16 0.07
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where

WA
i ðtÞ ¼ Iðt;AðtÞÞ

� ��1
niðtÞ þ wiðtÞ
� �

;

niðtÞ ¼
@f�1ðAðtÞZiÞ

@AðtÞ

I ½X i � t; �i ¼ 1�I ½Ci 
 X i ^ t�

ĜðX i ^ tÞ
� @f�1ðAðtÞZiÞ

( )

and

wiðtÞ ¼

Z t

0

Xn

l¼1

@f�1ðAðtÞZlÞ

@AðtÞ

I ½X l � t; �l ¼ 1�I ½Cl 
 X l ^ t�

ĜðX l ^ tÞ
Iðu � X l � tÞ

( )
dM̂

C

i ðuÞPn
l¼1

I ½X l 
 u�
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Fig. 5a. Regression function estimates for treatment related mortality CIF using log link function.
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One drawback of this approach is that one needs to estimate the censoring
distribution for each individual. This is done by using a Kaplan–Meier estimator.

We illustrate these methods using the bone marrow transplant data set. Recall
that the data set consists of 1715 patients with 1225, 383 and 108 patients
receiving HLA-identical sibling, HLA-matched unrelated and HLA-mismatched
unrelated transplant, respectively. The initial Karnofsky score was greater than or
equal to 90 in 1382 cases. The study had 537 patients with acute lymphoblastic
leukemia (ALL), 340 with acute myelogenous leukemia (AML) and 838 with
chronic myelogenous leukemia (CML). Patients were transplanted in an early
(1026), intermediate (410) or advanced (279) disease state.

The study has two competing risks, treatment-related death (death in complete
remission, n ¼ 557/1716 cases) and relapse (recurrence of the primary disease,
n ¼ 311/1716 cases). For illustration purpose, we only report the results of donor
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Fig. 5b. Regression function estimates for relapse using log link function.
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effect on relapse based on: (1) fitting a Cox proportional hazard model to the
crude relapse rate; (2) fitting a Fine and Gray proportional sub-distributional
hazards regression and (3) the Klein and Andersen’s pseudo-value approach using
a complementary log–log model with the identity working covariance matrix on
1�CI(t), which is equivalent to Fine and Gray’s model. For the pseudo-value
model, 10 equally spaced points on the event scale were used. The results are in
Table 11. In Fig. 5a and 5b, we present the estimated regression function and
95% pointwise confidence intervals for A(t) based on fitting model (101) using the
link f(x) ¼ �log(1–x). Here we show only the curves for donor type. Note that
the Cox model based on the crude hazard rate suggests no difference between the
HLA-matched sibling and the matched unrelated groups. The other methods
suggest that the matched unrelated group has a lower relapse cumulative
incidence perhaps due to more of a graft-versus-leukemia effect.
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A Review of Statistical Analyses for Competing Risks

Melvin L. Moeschberger, Kevin P. Tordoff and Nidhi Kochar

Abstract

This paper reviews the statistical analyses of competing risks data. There is an

extensive history of this topic; however, the literature is often confusing par-

tially because it evolved over time. The available data for competing risks is in

the form of time until event occurrence where T is the time from some suitable

starting point until some cause of failure for each individual who fails, and di is

an indicator variable equal to 1 if failure is due to the ith cause, 0 otherwise. In

the latent failure time approach, one assumes that there are k potential failure

times, X1, X2,y,Xk, associated with each risk. T is then the min (X1,

X2,y,Xk) and di is an indicator variable equal to 1 if failure is due to the ith
cause, 0 otherwise. References for the latent failure time model prior to the

1970s may be found in David and Moeschberger (1978), and more recently in

Klein and Moeschberger (2003).

The direction of the statistical analyses of competing risks studies changed

dramatically after the identifiability problem for marginal distributions of the

latent failure time model was pointed out by Tsiatis (1975), Prentice et al.

(1978), and many others. At that time, interest centered on estimating iden-

tifiable competing risk probabilities. Most of the references cited in this paper

deal with the more recent attempts to analyze competing risks data.

I simply wish that, in a matter which so closely concerns the well being of the

human race, no decision shall be made without all the knowledge which a little

analysis and calculation can provide.

Daniel Bernoulli (1766)

1. Introduction

In the competing risk problem, an individual or an experimental unit (referred to
in this discussion as the subject) is observed until a particular event occurs in the
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presence of several events. Such events may preclude the occurrence of the main
event of interest. A variety of disciplines may encounter problems involving
competing risks. These include cancer research, reliability of physical equipment,
economics, insurance assessments, and outcomes of preventive behaviors, among
many other areas. Assessing the importance of these risks over a period of time
has long been a concern of biostatisticians, demographers, vital statisticians, and
actuaries.

The problem of assessing the effect of what the mortality pattern of a pop-
ulation would be if smallpox could be eradicated dates back to Daniel Bernoulli
(1700–1782), one of the great scientists of the 18th century. Just a few years before
Jenner inoculated an eight-year-old boy named James Phipps with cowpox;
Bernoulli wrote a mathematical analysis of the problem and also encouraged the
universal inoculation against smallpox. His analysis was first presented at the
Royal Academy of Sciences in Paris during 1760 and later published in Bernoulli
(1766).

As noted earlier, the subject under consideration is often exposed to several
risks, but the eventual failure of the subject is attributed to only one of the risks,
usually called the cause of failure. The available data for competing risks is in the
form of time until event occurrence where T is the time from some suitable
starting point until some cause of failure for each individual who fails, and di is an
indicator variable equal to 1 if failure is due to the ith cause, 0 otherwise. In the
latent failure time approach, one assumes that there are k potential failure times,
X1, X2,y,Xk, associated with each risk. T is then the min (X1, X2,y,Xk) and di

is an indicator variable equal to 1 if failure is due to the ith cause, 0 otherwise.
References for the latent failure time model prior to the 1970s may be found in
David and Moeschberger (1978) and more recently in Klein and Moeschberger
(2003).

The direction of the statistical analyses of competing risks studies changed
dramatically after the identifiability problem for marginal distributions of the
latent failure time model was pointed out by Tsiatis (1975), Prentice et al. (1978),
and many others. At that time, interest centered on estimating identifiable com-
peting risk probabilities. Such probabilities are represented by the crude (or
cause-specific) hazard rate for cause i in the latent failure time model by

hiðtÞ¼
lim
Dt!0

Pr½t � X iotþ DtjT 
 t�

Dt
(1)

which is the conditional rate of occurrence for the ith cause of failure in the
presence of all possible causes of failure, or by the cumulative incidence function

CiðtÞ ¼ Pr½T � t; di ¼ 1� ¼

Z t

0

hiðuÞ exp �

Z u

0

Xk

i¼1

hiðvÞdv

( )
du (2)

Estimating the cumulative incidence function is of primary interest in most
clinical studies. The Kaplan–Meier method can be used to obtain a nonpara-
metric estimate of the cumulative incidence when the data consists of subjects
who experience an event and the censoring mechanism is assumed to be
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noninformative (a special case of which is if the time at which a subject expe-
riences an event is assumed to be independent of a mechanism that would cause
the patient to be censored).

Gooley et al. (1999) discuss the appropriateness of the cumulative incidence
function in survival analysis as opposed to routinely using the Kaplan–Meier
estimator. They present a representation of both the cumulative incidence and
Kaplan–Meier functions utilizing the concept of censored observations being
‘‘redistributed to the right.’’ They claim that these interpretations ‘‘allow a more
intuitive understanding of each estimate and therefore an appreciation of why the
Kaplan–Meier method is inappropriate for estimation purposes in the presence of
competing risks, while the cumulative incidence estimate is appropriate.’’

Model-based approaches such as the Cox proportional hazards model (Cox,
1972), or a refinement of this model, are also often used for the analysis of
competing risks data. These models are particularly attractive in situations where
one observes additional covariates which may be related to the event of interest.

Another alternative approach is to assume an additive hazard model presented
by Aalen (1989), McKeague (1988), and more recently explored by Klein (2006).
The latter author argues that additive models for either the hazard rates or the
cumulative incidence functions are more natural and that these models properly
partition the effect of a covariate on treatment failure into its component parts.
The use and interpretation of such models are explored in detail in a study of the
efficacy of two preparative regimes for hematopoietic stem cell transplantation.

Sun et al. (2004) also present an additive hazards model for competing risks
analyses of the case-cohort design. This design may be applicable when the pro-
portional hazards model does not provide a good fit for the observed survival
data. Methods are presented for estimating regression parameters and cumulative
baseline hazard functions, as well as cumulative incidence functions. The pro-
posed estimators are shown to be consistent and asymptotically normal using the
martingale central limit theory. The simulation studies conducted suggest that the
proposed methods perform well.

Gichangi and Vach (2007) present a guided tour to the analysis of competing risk
data. They point out that ‘‘there is still a great deal of uncertainty in the medical
research and biostatistical community about how to approach this type of data.’’

In their opinion, there are three main reasons for this uncertainty

(1) The analysis of competing risks data does often not allow one to answer all
research questions of interest, as we are unable to analyze associations or
relationships among different risks. This general research methodological
problem is often confused with a lack of adequate statistical methodology.

(2) Some standard methods of survival analysis like the log-rank test and the Cox
model can be used in analyzing competing risks while other standard meth-
ods, especially the Kaplan–Meier estimator, have limited use. This is very
confusing from a pedagogical point of view.

(3) Most papers on competing risks are written on a rather formal mathematical
level. This is a natural consequence of the fact that the basic problem in
analyzing competing risks is the proper definition of the quantities of interest.
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However, the formal mathematical level makes many papers difficult to un-
derstand for many researchers.

This paper is certainly worth a close reading since the authors seem to have an
appreciation for the difficulty and practical understanding of the issues inherent
in sorting out this very real problem.

2. Approaches to the statistical analysis of competing risks

Refinements and extensions of the cumulative incidence approach have been
considered by various authors. We present a brief discussion of these methods.

Several authors have discussed the topic of competing risks and the estimation
of the cumulative incidence of an event. The theoretical concepts underlying the
estimation of the cumulative incidence of an event using a variety of models is
reviewed by Gail (1975) and Benichou and Gail (1990). Prentice et al. (1978) have
discussed the likelihood inference approach to examine the effect of prognostic
factors on the event of interest in the presence of competing risk events. A variety
of probability models for summarizing competing risk data are described by Pepe
and Mori (1993). A method to estimate the cumulative incidence of a specific
event based on an extension of Cox proportional hazards regression model has
been developed by Tai et al. (2001). Their findings suggest that the estimates
obtained using the Kaplan–Meier approach are numerically larger than those
accounting for competing risk events.

An alternative approach that accounts for informative censoring is given in the
paper by Satagopan et al. (2004). They discuss cumulative incidence estimation in
the presence of competing risk events. This approach is based on work done by
Kalbfleisch and Prentice (2002) and Marubini and Valsecchi (1995). They outline
a two-step process in which the first step involves calculating the Kaplan–Meier
estimate of the overall survival from any event (where both the event of interest
and the competing risk event are considered ‘events’), while the second step invo-
lves calculating the conditional probabilities of experiencing the event of inter-
est. The cumulative incidences are then estimated using these probabilities.

Often we are interested in comparing the risk of failure from a particular cause
over two or more groups. The cumulative incidences in the various groups can be
calculated by a variety of methods. If we are calculating incidences based on the
Kaplan–Meier approach when the risks are noninformative, then the log-rank
test is appropriate. However, when calculating incidences in the presence of
competing risks, a modified test based on Gray’s (1988) paper may be used. Both
these methods are nonparametric and not based on any specific model.

Another approach that has been developed by Fine and Gray (1999) is a
modification of the Cox proportional hazards model. This model directly assesses
the effect of covariates on the cumulative incidence function, or subdistribution
function, of a particular type of failure in the presence of competing risks. The
basic model assumes that the subdistribution with covariates is a constant shift on
the complementary log(�log) scale from some baseline subdistribution function.
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Fine (2001) proposes a semi-parametric transformation model for the
crude failure probabilities of a competing risk, conditional on covariates. This
model is developed as an extension of the standard approach to survival data
with independent right censoring. The procedures are useful for subgroup
analyses of cumulative incidence functions which may be complex under a cause-
specific hazards formulation. Estimation of the regression coefficients is achieved
using a rank-based least squares criterion. The new estimating equations are
computationally simpler than the partial likelihood procedure in Fine and
Gray (1999), and simulations show that the procedure works well with practical
sample sizes.

Pepe (1991) presents an alternative approach to estimating the cumulative
incidence functions in a competing risk situation. The author develops inferential
procedures for functions which are not simply survival, cumulative incidence, or
cumulative hazard functions, but that can be expressed as simple functions of
several of them. This paper’s strong contribution is that it develops the asymp-
totic distribution theory for estimators of these constituent functions when there
is a dependence structure among the multiple time-to-event endpoints.

Heckman and Honore (1989) show under certain regularity conditions, that
for both proportional hazards and accelerated failure time models, if there is an
explanatory variable whose support is the real line then the joint distribution of
the competing risk times may be identifiable under certain conditions.

Abbring and van den Berg (2003) prove identification of dependent competing
risks models in which each risk has a mixed proportional hazard specification
with regressors, and the risks are dependent by way of the unobserved hetero-
geneity, or frailty, components. The authors also show that the conditions for
identification given by Heckman and Honore, discussed above, can be relaxed.

Lunn and McNeil (1995) present two methods for the joint estimation of
parameters in survival analysis models with competing risks. They demonstrate
that it is possible to analyze survival data with competing risks using existing
programs for fitting Cox’s proportional hazards regression model with censored
data. Two vectors of regression coefficients may be defined depending on the
type of failure. The first procedure discussed runs a Cox regression stratified by
the type of the failure. The second procedure uses unstratified Cox regression
assuming that the hazard functions associated with the two types of failure have a
constant ratio, which is an assumption that is often too stringent.

Jewell et al. (2003) provide an analysis with current status data (an extreme
form of censoring which arises where the only information on studied individuals
is their current survival status at a single monitoring time) in the context of
competing risks. They look at simple parametric models and compare the results
to nonparametric estimation. In addition to simulation results, the authors
establish asymptotic efficiency of smooth functionals of the subdistribution
functions.

Gilbert et al. (2004) provide tests for comparing mark-specific hazards and
cumulative incidence functions. The authors develop nonparametric tests for the
problem of determining whether there is a relationship between a hazard rate
function or a cumulative incidence function, and a mark variable which is only
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observed at uncensored failure times. They consider the case where the mark
variable is continuous.

There are several software packages available that estimate the cumulative
incidence functions for an event of interest. Some of these include R (The R
Foundation for Statistical Computing; http://www.r-project.org/), S-plus (In-
sightful Corporation; http://www.insightful.com), Stata (StataCorp LP; http://
www.stata.com), and SAS (SAS Institute Inc.; http://www.sas.com). A popular
software technique that has experienced widespread usage has been made avail-
able in R by Gray (1988, 2004; http://biowww.dfci.harvard.edu/	gray/). This
software, along with others, will be implemented for the example discussed in the
following section.

Several authors have suggested extensions of the above software. Rosthoj et al.
(2004) suggest SAS macros for estimation of the cumulative incidence functions
based on a Cox regression model for competing risks survival data. They describe
how to estimate the parameters in this model when some of the covariates may, or
may not, have exactly the same effect on several causes of failure. In their paper,
two SAS macros are presented. The first macro named ‘CumInc’ is for estimation
of the cumulative incidences, and a second macro named ‘CumIncV’ is for esti-
mation of the cumulative incidences as well as the variances of those estimated
cumulative incidences.

Klein and Andersen (2005) argue that the estimates from regression models for
competing risks outcomes based on proportional hazards models for the crude
hazard rates do not agree with impressions drawn from plots of cumulative in-
cidence functions for each level of a risk factor. They present a technique which
models the cumulative incidence function directly by using pseudovalues from a
jackknife statistic constructed from the cumulative incidence curve. They then
study the properties of this estimator and apply the technique to a study dealing
with the effect of alternative donors on relapse for leukemia patients that were
given a bone marrow transplant.

Two interesting papers by Andersen et al. (2002, 2003) show how the com-
peting risks model may be viewed as a special case of a multi-state model. The
properties of this model are reviewed and contrasted to the so-called latent failure
time approach. The relation between the competing risks model and right-
censoring is discussed, and a regression analysis of the cumulative incidence
function is also reviewed.

Freidlin and Korn (2005) have pointed out that in certain circumstances when
testing for treatment effects in the presence of competing risks, the popular
cumulative incidence based approach may be problematic. However it would
seem that more investigation is required to ascertain when, and under what
circumstances, the cumulative incidence approach possesses the bias that is
spoken of in this research study.

Steele et al. (2004) propose a general discrete time model for multilevel event
history data. This model is developed for the analysis of longitudinal repeated
episodes within individuals where there are multiple states and multiple types of
events (competing risks) which may vary across states. The different transitions
are modeled jointly to allow for correlation across transitions in unobserved
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individual risk factors. This model is then applied to the analysis of contraceptive
use dynamics in Indonesia where transitions from two states, contraceptive use
and nonuse, are of interest.

Escarela and Carriere (2003) propose fitting a fully parametric model for
competing risks with an assumed copula. Using the assumed copula, the authors
show how the dependence structure between the cause-specific survival times can
be modeled. Features include: identifiability of the problem, accessible under-
standing of the dependence structure, and flexibility in choosing marginal survival
functions. The model is constructed in such a way that it allows us to adjust for
concomitant variables and a dependence parameter to assess the effect that these
have on each marginal survival model and on the relationships between the causes
of death.

The following two papers deal with sample sizes for competing risks. First,
Pintilie (2002) presents a method to calculate the sample size for testing the effect
of a covariate on an outcome in the presence of competing risks. Secondly,
Latouche et al. (2004) present approximate sample size formulas for the propor-
tional hazards modeling of competing risk subdistributions, considering either
independent or correlated covariates. The validity of these approximate formulas
is investigated through numerical simulations.

3. Example

To illustrate some of the methods previously described, we considered the mouse
carcinogenicity data set published by Hoel (1972). The data were obtained from
a laboratory experiment on two groups of RFM strain male mice which had
received a radiation dose of 300 r at an age of 5–6 weeks. The mice were randomly
assigned to either a conventional laboratory environment or a germ-free envi-
ronment, and the number of days until death was recorded for each mouse. Two
major causes of death were considered, namely thymic lymphoma and reticulum
cell sarcoma, while all other causes of death were combined into a single group.
Thus, the data consisted of three variables: number of days until death, cause of
death, and type of environment.

A total of n ¼ 181 mice were randomly assigned to either a conventional
laboratory environment or a germ-free environment. Of the 99 mice that were
randomly assigned to the conventional laboratory environment, 22 died as a
result of thymic lymphoma while 38 died as a result of reticulum cell sarcoma.
The remaining 39 mice assigned to the conventional laboratory environment
experienced deaths attributed to other causes. Of the 82 mice that were randomly
assigned to the germ-free environment, 29 died as a result of thymic lymphoma
while 15 died as a result of reticulum cell sarcoma. The remaining 38 mice assigned
to the germ-free environment experienced deaths attributed to other causes.

We begin by analyzing the data using nonparametric methods that are
implemented in widely available software packages such as R 2.1.0 and Stata/
SE 9.2. We will then consider other nonparametric methods of analyses described
in the literature and compare their results to those given by the software
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packages. Lastly, we will analyze the data using two semi-parametric methods
also described in recent literature, and again compare their results to those
previously obtained.

We first analyzed the data using the method described in Gray (1988). Gray’s
method can be performed using the ‘cmprsk’ package found in the R 2.1.0
statistical software package. Specifically, the ‘cuminc’ function provides statistical
tests, estimates of the cumulative incidences, and variance estimates for the
different environment groups. The ‘plot.cuminc’ function was then used to plot
the cumulative incidence functions for the three failure types within each of
the two environment groups. The output from the ‘cuminc’ function is given in
Tables 1–3 while the plots are displayed in Figs. 1–3. Although so many
significant digits would not typically be recorded in the Tables, we have included
the actual R output strictly for the benefit of the reader. From the p-values given
in Table 1, we see that there are significant differences between the environment
groups in terms of death due to reticulum cell sarcoma and death due to other
causes. By examining Figs. 2 and 3, we see that in both cases, the germ-free
environment appears to improve survival time over the conventional environ-
ment. However, there is not enough evidence to suggest any significant differences
between the environment groups in terms of death due to thymic lymphoma. In
fact, Fig. 1 appears to suggest that the conventional environment may even be
preferred when considering death due to thymic lymphoma.

Again using the Hoel data, we were able to estimate the cumulative incidence
functions in the presence of competing risks by downloading the ‘st0059’ package
available in the Stata/SE 9.2 software program. Specifically, the ‘stcompet’ func-
tion provides estimates of the cumulative incidence functions and their standard
errors, as well as upper and lower confidence bounds for the cumulative inci-
dences based on a log(-log) transformation. The resulting estimated cumulative
incidence functions are displayed in Figs. 4–6. Note that these plots are in agree-
ment with those produced using Gray’s method. The lone difference being the
convention with which the two software packages determine the largest time on
study to be used in the extension of the plots. Whereas Gray’s method in R 2.1.0
extends the plots out until the largest time on study within each treatment group
regardless of cause, Stata/SE 9.2 uses the largest cause-specific time on study
within each of the treatment groups.

Table 1

Gray’s test statistics and p-values for comparing the environment groups

Tests: Stat pv df

1 2.895483 0.0888281369 1

2 13.885342 0.0001943080 1

3 6.640314 0.0099696340 1

Notes: Test 1 corresponds to death due to thymic lymphoma.

Test 2 corresponds to death due to reticulum cell sarcoma.

Test 3 corresponds to death due to other causes.

M. L. Moeschberger et al.328



We then analyzed the same data set using the cumulative incidence estimator
described in Klein and Moeschberger (2003). This method produced the same
estimates as those obtained using Gray’s method. The resulting cumulative in-
cidence plots due to Klein and Moeschberger are given in Figs. 7–9. Klein and
Moeschberger also provide a SAS macro for computing cumulative incidence on
their web-site (http://www.biostat.mcw.edu/homepgs/klein/book.html), however
this macro is written for the special case of only one competing risk. Therefore as
an example, we considered only the deaths due to thymic lymphoma or reticulum
cell sarcoma and again performed the analysis using Gray’s method as well as the
SAS macro provided by Klein and Moeschberger. Again, the estimates were
identical. The cumulative incidence plots obtained from Gray’s method when
considering only thymic lymphoma and reticulum cell sarcoma are given in Figs.
10 and 11, while those obtained from Klein and Moeschberger’s SAS macro are
displayed in Figs. 12 and 13.

Table 3

Gray’s estimated variances of the cumulative incidence estimates

200 400 600 800 1000

1 1 0.0004897504 0.0015219666 0.0017700850 NA NA

2 1 0.0007072238 0.0022024528 0.0026829906 0.002840750 0.002840750

1 2 0.0000000000 0.0003012409 0.0013277692 NA NA

2 2 0.0000000000 0.0000000000 0.0002957942 0.001674860 0.001933082

1 3 0.0005811311 0.0014549986 0.0021697718 NA NA

2 3 0.0001487210 0.0005743169 0.0008405426 0.002460062 0.003147561

Notes: In Table 3, the first column indicates that the estimates are for the two environment groups

(1 corresponds to conventional and 2 corresponds to germ-free). The second column indicates that the

estimates are for the three causes of death (1 corresponds to thymic lymphoma, 2 corresponds to

reticulum cell sarcoma, and 3 corresponds to other causes). Also for Table 3, the first row of each table

indicates the time points for which the respective estimates are given.

Table 2

Gray’s cumulative incidence estimates

200 400 600 800 1000

1 1 0.05050505 0.18181818 0.22222222 NA NA

2 1 0.06097561 0.23170732 0.31707317 0.3536585 0.3536585

1 2 0.00000000 0.03030303 0.15151515 NA NA

2 2 0.00000000 0.00000000 0.02439024 0.1585366 0.1829268

1 3 0.06060606 0.17171717 0.30303030 NA NA

2 3 0.01219512 0.04878049 0.07317073 0.2682927 0.4390244

Notes: In Table 2, the first column indicates that the estimates are for the two environment groups

(1 corresponds to conventional and 2 corresponds to germ-free). The second column indicates that the

estimates are for the three causes of death (1 corresponds to thymic lymphoma, 2 corresponds to

reticulum cell sarcoma, and 3 corresponds to other causes). Also for Table 2, the first row of each table

indicates the time points for which the respective estimates are given.
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Fig. 1. Cumulative incidence estimates for the thymic lymphoma failure type (Gray).
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Fig. 2. Cumulative incidence estimates for the reticulum cell sarcoma failure type (Gray).
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Once again using the complete data set given in Hoel (1972), we applied the
‘crr’ function in R 2.1.0 to fit the proportional subdistribution hazards regression
model described in Fine and Gray (1999). The output from the ‘crr’ function is
given in Tables 4–6 while the estimated cumulative incidence plots are displayed
in Figs. 14–16. From the p-values given in Tables 4 and 5, we see that there are
marginal differences between the environment groups in terms of death due to
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Fig. 3. Cumulative incidence estimates for the other causes failure type (Gray).
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Fig. 4. Cumulative incidence estimates for the thymic lymphoma failure type (Stata/SE 9.2).
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thymic lymphoma and significant differences for death due to reticulum cell sar-
coma. By examining Fig. 14, we see that in the case of thymic lymphoma, the
conventional environment appears to improve survival time over the germ-free
environment. However, Fig. 15 suggests that the germ-free environment is pre-
ferred in the case of reticulum cell sarcoma. The p-value and plot associated with
other causes are also displayed in Table 6 and Fig. 16, respectively. Their ex-
amination does not suggest any significant differences between the environment
groups in terms of death due to other causes. Note that for thymic lymphoma and
reticulum cell sarcoma, the cumulative incidence estimates and conclusions based
on this semi-parametric method due to Fine and Gray are quite similar, though
not identical, to those drawn from the nonparametric method developed by Gray
(1988). On the other hand, for deaths due to other causes, Gray’s nonparametric
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Fig. 5. Cumulative incidence estimates for the reticulum cell sarcoma failure type (Stata/SE 9.2).
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method suggested a significant effect due to environment while the semi-para-
metric method due to Fine and Gray does not. Also note that the plots produced
using Fine and Gray’s method are extended out until the largest cause-specific
time on study regardless of treatment group.

We again estimated the cumulative incidence functions for each cause of failure
using a method proposed by Rosthoj et al. (2004). In their paper, the authors
provide two SAS macros which can be used for estimating the cumulative in-
cidence functions based on a Cox regression model for competing risks survival
data. The ‘CumInc’ macro was used in SAS to obtain the cumulative incidence
estimates for each cause of death within both the conventional and germ-free
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Fig. 7. Cumulative incidence estimates for the thymic lymphoma failure type (Klein and

Moeschberger).

0.5

0.4

0.3

0.2

0.1

0.0

C
um

ul
at

iv
e 

In
ci

de
nc

e

0 200 400 600 800 1000
Days

Conventional Germ-free

Reticulum Cell Sarcoma

Fig. 8. Cumulative incidence estimates for the reticulum cell sarcoma failure type (Klein and
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environments. The resulting plots are very similar to those produced using Gray’s
(1988) method and are displayed in Figs. 17–19. Fig. 17 suggests that for death
due to thymic lymphoma, the conventional environment may improve survival
time over the germ-free environment. However, Figs. 18 and 19 suggest that when
considering death due to reticulum cell sarcoma or other causes, the germ-free
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Fig. 9. Cumulative incidence estimates for the other causes failure type (Klein and Moeschberger).
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environment may actually be preferred. One noticeable difference between the
plots produced using the techniques described by Rosthoj and Gray’s method is
the crossing of the cumulative incidence functions for other causes in Fig. 19. This
is explained by the convention employed by Rosthoj, which extends the
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Fig. 11. Cumulative incidence estimates for the reticulum cell sarcoma failure type when other causes

are excluded (Gray).
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Fig. 12. Cumulative incidence estimates for the thymic lymphoma failure type when other causes are

excluded (Klein and Moeschberger SAS macro).
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Fig. 13. Cumulative incidence estimates for the reticulum cell sarcoma failure type when other causes

are excluded (Klein and Moeschberger SAS macro).

Table 4

Fine and Gray’s estimated regression coefficients, standard errors, and p-values for comparing the

environment groups with respect to thymic lymphoma

Coefficients:

[1] 0.5192

Standard errors:

[1] 0.282

Two-sided p-values:

[1] 0.066

Table 5

Fine and Gray’s estimated regression coefficients, standard errors, and p-values for comparing the

environment groups with respect to reticulum cell sarcoma

Coefficients:

[1] �0.9336

Standard errors:

[1] 0.2966

Two-sided p-values:

[1] 0.0016

Table 6

Fine and Gray’s estimated regression coefficients, standard errors, and p-values for comparing the

environment groups with respect to other causes

Coefficients:

[1] 0.004542

Standard errors:

[1] 0.227

Two-sided p-values:

[1] 0.98
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Fig. 14. Cumulative incidence estimates for the thymic lymphoma failure type (Fine and Gray).
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Fig. 15. Cumulative incidence estimates for the reticulum cell sarcoma failure type (Fine and Gray).
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cumulative incidence functions out until the largest time on study regardless of
the specific cause or treatment group.

As a final note, we point out that the cumulative incidence plots published in
Hoel (1972) may be reproduced by considering separate data sets for each specific
cause of death (thymic lymphoma, reticulum cell sarcoma, and other causes) and
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Fig. 16. Cumulative incidence estimates for the other causes failure type (Fine and Gray).
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performing Gray’s method. This technique, however, fails to estimate the cumu-
lative incidence functions in a simultaneous fashion.

4. Conclusion

At this time, it is our recommendation that the technique described in Gray (1988)
be the preferred method for estimating cumulative incidence curves in the pres-
ence of competing risks. Although several of the methods described above pro-
duced similar results, the recommendation to use Gray’s method is based
primarily on the fact that it is nonparametric in nature. Therefore no assumption
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Fig. 18. Cumulative incidence estimates for the reticulum cell sarcoma failure type (Rosthoj).
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Fig. 19. Cumulative Incidence estimates for the other causes failure type (Rosthoj).

A review of statistical analyses for competing risks 339



of proportional hazards is required. We believe that the bias alluded to by other
authors would require further investigation before any alternate recommenda-
tions could be made. For that reason, we are currently preparing a simulation
study to determine if, and when, such biases occur.
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Cluster Analysis

William D. Shannon

Abstract

This chapter introduces cluster analysis algorithms for finding subgroups of objects

(e.g., patients, genes) in data such that objects within a subgroup are more similar

to each other than to objects in other subgroups. The workhorse of cluster analysis

are the proximity measures that are used to indicate how similar or dissimilar

objects are to each other. Formulae for calculating proximities (distances or

similarities) are presented along with issues related to scaling and normalizing

variables. Three classes of clustering are presented next – hierarchical clustering,

partitioning, and ordination or scaling. Finally, some recent examples from a

broad range of epidemiology and medicine are very briefly described.

1. Introduction

In medicine and epidemiology, the concept of patient subgroups is well estab-
lished and used in practice. In cancer tumor staging the goal is to determine
treatment strategy and prognosis based on the patient subgroup. The National
Heart, Lung and Blood Institute at the NIH classifies (during the writing of this
chapter) blood pressure levels as normal (o120/80), pre-hypertension (120/80–
139/89), Stage 1 hypertension (140/90–159/99), and Stage 2 hypertension (4159/
99). In spatial epidemiology, disease clusters are found for planning healthcare
delivery or for identifying causes of the disease.

To understand and motivate this work, it is valuable to have a basic overview
of some modern statistical clustering algorithms. These tools can be applied to
biomedical data to identify patients within subgroups who are likely to have similar
natural history of their disease, similar treatment responses, and similar prognoses.
This chapter addresses the problem of cluster analysis or unsupervised learning
where the goal is to find subgroups or clusters within data when group membership
is not known a priori. These might be clusters of patients, genes, disease groups,
species, or any other set of objects that we wish to put into homogeneous subsets.
The assumption of any cluster analysis is that the objects within a cluster are in
some sense more similar to each other than to objects in other subgroups.
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In contrast to cluster analysis is the classification or supervised learning
problem. In classification the object’s subgroup membership is known from the
data, such as cases versus controls in an epidemiological study or responder
versus non-responder in a clinical trial. The goal of the classification model is to
use covariates or features of the objects with known class membership to de-
velop a mathematical model to predict class membership in future objects where
their true classification is not known. There are a large number of statistical and
computational approaches for classification ranging from classical statistical
linear discriminant analysis (Fisher, 1936) to modern machine-learning ap-
proaches such as support vector machines (Cristianini and Shawe-Taylor, 2000)
and artificial neural networks (Bishop, 1996). Classification models as described
here are distinct from cluster analysis and will not be discussed further in this
chapter. However, cluster analysis or unsupervised learning is often referred to
as classification, leading to confusion, though the context of the problem should
make it clear which is being considered – if the data contains a variable with a
class membership label then the classification is referring to that described in
this paragraph. When no class membership variable is present in the data, then
cluster analysis is being referred to. The remainder of this paper will focus on
cluster analysis.

The concept of cluster analysis is most easily understood through a visual
representation. In fact, cluster analysis should be thought of as an exploratory
data analysis tool for data reduction where multivariate data are being displayed
to uncover patterns (Tukey, 1977). In Fig. 1, we show visual clustering of 2-
dimensional data (x, y) with four distinct clusters labeled A, B, C, and D. It is
clear that the objects within each cluster are more similar to each other in terms of
their X, Y values then they are to objects in the other clusters. Each of these three
methods are discussed in more detail later in this chapter.

In multivariate data with more than 2 or 3 variables, the ability to identify
clusters through direct visualization is impossible requiring a cluster analysis pro-
gram. There are three major classes of cluster analysis – hierarchical, partitioning,
and ordination or scaling – displayed in Fig. 1. Hierarchical cluster analysis clusters
objects by proximity, in this case a distance measure, and displays them in a tree or
dendrogram (e.g., Everitt et al., 2001; Gordon, 1999). Objects labeled at the tips of
the tree are connected to each other by the branches of the dendrogram. Objects
connected early or at a lower height are more similar as is seen with the four
subgroups A–D. Objects connected at a higher level are further apart such as the
objects between the four subgroups. Cluster analysis by partitioning produces
boundaries between clusters so that points on one side of a boundary belong to one
cluster while points on the other side of the boundary belong to the other cluster
(Hartigan, 1975; Hartigan and Wong, 1979). In this example the boundaries are
precise, though boundaries can be fuzzy or defined by probability vectors. Cluster

analysis by ordination or scaling uses a projection of the data from many dimensions
onto a few dimensions that can be displayed visually (Cox and Cox, 2001). In this
example we projected the 2 dimensional X, Y data onto the X-axis, though in
practice ordination often projects multi-dimensional data onto linear combinations
of the dimensions or new arbitrary dimensions.
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For a broad overview of the multivariate statistics used in cluster analysis, the
reader is referred toTimm (2002). For a broad overview of both unsupervised and
supervised learning methods from both the statistics and machine-learning lit-
erature, the reader is referred to Hastie et al. (2001). For a broad overview of the
application of these methods to biological data the reader is referred to Legendre
and Legendre (1998). Each of these references covers hierarchical and other
clustering methods in more mathematical detail than presented here and show
their application to data for illustration.

2. Proximity measures

2.1. Some common distance measures

Fundamental to cluster analysis is the concept of proximity of two objects to each
other measured in terms of a numerical value indicating the distance or similarity
between the pair. For example, let two objects x and y be represented by points in
the Euclidean n-dimensional space x ¼ (x1, x2,y, xn) and y ¼ (y1, y2,y, yn). The
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Fig. 1. Display of the three classes of cluster analysis discussed in this chapter.
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commonly used Minkowski distance of order p, or p-norm, distance are defined in
Table 1 where pZ1.

Each of the example Minkowski distances (e.g., Manhattan, Euclidean,
Chebyshev) has an intuitive sense of proximity. The Manhattan distance is how
many blocks one would travel walking through downtown Manhattan, if blocks
were laid out as a grid (i.e., go three blocks east and turn north for two blocks).
The Euclidean distance is our normal sense of distance as measured by a ruler.
The Chebyshev distance represents the distance along the largest dimension.
These are illustrated for a distance between points X and Y, denoted by d(x, y), in
Fig. 2.

Distances can also be calculated using categorical variables (Table 2). Let our
objects x ¼ (x1, x2,y, xn) and y ¼ (y1, y2,y, yn) be points on an n-dimensional
space where each dimension is represented by a categorical variable. If we let
wj ¼ 1 if neither xj and yj are missing, and wj ¼ 0 otherwise, then we can calculate
‘matching’ distances between objects X and Y. In the simplest example think of
the objects vectors x ¼ (x1, x2,y, xn) and y ¼ (y1, y2,y, yn) as strings of 0’s and
1’s so that

di
xy ¼

0 if xi ¼ yi ¼ 0 or xi ¼ yi ¼ 1

1 if xi ¼ 0; yi ¼ 1 or xi ¼ 1; yi ¼ 0

(
.

The Hamming and matching distances for this is the number of non-matching
variables between xj and yj either weighted by the number of non-missing cases
(matching metric) or not weighted (Hamming distance). Numerous other cate-
gorical distance measures are available and often based on contingency table
counts (e.g., Jaccard distance).

In many applied problems there is a mixture of continuous and categorical
variables. Distances can still be calculated between pairs of objects in this case
using the Gower distance metric, which combines distances obtained using a

Table 1

Three commonly used distance measures on continuous variables

Distance Formula Common Name

1 – norm Xn

i¼1

jxi � yij
Manhattan distance

2 – norm Xn

i¼1

jxi � yij
2

 !1=2 Euclidean distance

Infinity norm
lim

p!1

Xn

i¼1

jxi � yij
p

 !1=p

¼

max jx1 � y1j; jx2 � y2j; . . . ; jxn � ynj
	 


Chebyshev distance

Cluster analysis 345



standard p-norm metric on the continuous variables (e.g., Euclidean), and dis-
tances obtained using a matching-type distance measure on the categorical var-
iables (e.g., Hamming).

2.2. Definition of distance measures

The above list of distance measures (also called metrics) was not meant to be
comprehensive in any sense, but rather an introduction to the commonly used
distances and the idea of distance measured on categorical and mixed data types.

Manhattan d(x,y) = 1 + 2 = 3

Euclidean d(x,y) = 2.24

Chebyshev d(x,y) = 2

X

Y

1

2.242

Fig. 2. Geometric display of three common distance measures.

Table 2

Two commonly used distance measures on categorical variables

Distance Formula

Hamming Xn

i¼1

widi
xy; d

i
xy ¼

0 if xi ¼ yi

1 if xiayi

(

Matching Pn
i¼1

widi
xyPn

i¼1

wi

; di
xy ¼

0 if xi ¼ yi

1 if xiayi

(
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Implicit in each of the distance measures, however, is the necessity to meet certain
formal criteria which are presented here.

Let objects x ¼ (x1, x2,y, xn), y ¼ (y1, y2,y, yn), and z ¼ (z1, z2,y, zn) be
points on an n-dimensional space. Denote the distance between any pair of them
by d(a, b). Then d(a, b) is a distance measure if each of the criterion in Table 3 are
true.

A fourth criterion d(x,y)rmax{d(x,z),d(y,z)}, known as the strong triangle or
ultrametric inequality, makes the space ultrametric. This states that every triangle
in the ultrametric space connecting any three objects is isosceles (i.e., at least two of
the sides have equal length, d(x,y) ¼ d(y,z) or d(x,z) ¼ d(y,z) or d(x,y) ¼ d(z,x)).
Ultrametric spaces have nice mathematical properties that make them amenable to
certain types of problems (e.g., phylogenetic tree construction in evolution), but are
not routinely used in medicine and epidemiology, though could be a valuable
addition to biostatistical data analysis. An example of an ultrametric cluster anal-
ysis in medicine would be that all patients within a disease subgroup are equally
distant from all patients in a different disease subgroup. This may have the po-
tential to refine disease prognosis into more homogeneous subgroups but as far as
we know it has not been formally explored.

2.3. Scaling

Although clustering methods can be applied to the raw data, it is often more
useful to precede the analysis by standardizing the data. Standardization in sta-
tistics is a commonly used tool to transform data into a format needed for
meaningful statistical analysis (Steele and Torrie, 1980). For example, variance

stabilization is needed to fit a regression model to data where the variance for
some values of the outcome Y may be large, say for those values of Y corre-
sponding to large values of the predictor variable X, while the variance of Y is
small for those values corresponding to small values of X (i.e., heteroscedasticity).
Another use of standardization is to normalize the data so that a simple statistical
test (e.g., t-test) can be used.

Scaling or transformation of data for cluster analysis has a different purpose
than those used to meet assumptions of statistical tests as described in the pre-
vious paragraph. Cluster analysis depends on a distance measure that is most
likely sensitive to differences in the absolute values of the data (scale). Consider a

Table 3

Criterion for distance measures

Rule Definition

d(x,y)Z0 The distances between two objects X and Y is positive, and equal to 0 only

when the two objects are the same, i.e., X ¼ Y

d(x,y) ¼ d(y,x) The distance between two objects is symmetric where going from X to Y is the

same distance as going from Y to X

d(x,y)rd(x,z)+d(y,z) The distance between two objects X and Y will always be less than or equal to

the distances between X and Z and between Y and Z (triangle inequality)
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hypothetical situation where multiple lab tests have been measured on a patient
where each test has a continuous value. Suppose further that the values for all but
one test are normally distributed with mean 100 and variance 1, and the values for
the remaining test is normally distributed with mean 100 and variance 10. Using
the raw data the distance becomes dependent nearly exclusively on this one test
with high variance as illustrated in Fig. 3, where each patient’s lab values are
shown connected by the line. On visual inspection, we see that the distances
between patients on the first 5 lab tests will be small compared to the distances
between patients for the lab test 6. If distances were calculated only on lab tests
1–5, the average Euclidean distance would be 3.24 while including lab test 6 the
average Euclidean distance is 10.64 resulting in the cluster analysis being driven
primarily by this last lab test.

To avoid this complication the analyst can weight the variables in the distance
calculation (all distance measures described above have a corresponding variable
weighting formulation that can be found in any standard cluster analysis refer-
ence, e.g., Everitt et al., 2001) or find an appropriate data transformation to have
the variables scaled equivalently. In the case where the variables are all normally
distributed, as in this example, a z-score transformation would be appropriate.

A second scaling issue is easily shown in time series data, though applies to any
type of data. Suppose a lab test measured on a continuous scale is done at
multiple times in patients. The goal of this study might be to find clusters of
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Fig. 3. The effect of high variability in different variables between subject distances.
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patients with the same absolute values of the lab tests or to find patients with the
same time series pattern of the lab tests. In Fig. 4 we display three patients, two of
whom (A and C) show a decrease in their lab values at the sixth time point, and
one (B) who shows no change. In the top graph showing the raw values patients A
and B are more similar. In the bottom graph where we have shifted the profiles to
be centered at 0 we see that patients A and C are more similar. The result is that
clustering on the un-shifted data will find clusters of patients with similar raw lab
values, while clustering on the shifted lab values will find clusters of patients with
similar changes in pattern over time.

This section introduced the concept of scaling and shifting variables in cluster
analysis. The important point to remember is that the cluster analysis results will
be drastically affected by the choice of scale of the data. In the first example
distances are dominated by the variance in a single variable and in the second
example distances are dominated by the value locations. No single rule for trans-
forming the data exists but it is important for the analyst to think through these
issues and understand that the choices made will impact significantly the results
obtained. By stating clearly before the analysis what the goal is (e.g., find patients
with similar lab values or find patients with similar changes in patterns) the
appropriate transformations can likely be found.

2.4. Proximity measures

Implicit in any cluster analysis is the concept of proximity, whether defined in
terms of distance or similarity. Several cluster analysis methods, such as hierar-
chical clustering and some ordination methods, require in addition to a way to
calculate proximities between objects, the calculation of a proximity (say
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distance) matrix giving pairwise distances between all pairs of objects. The clus-
tering algorithm uses this matrix as the input to find the clusters.

If Oi, i ¼ 1,y,N denote the objects to be clustered (e.g., patients), Xj,
j ¼ 1,y,P denote the variables measured on the objects, and xi,j denote the value
of variable Xj in object Oi, then the Euclidean distance, say, between two objects

i,i0 is di;i0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;1 � xi0 ;1Þ

2
þ ðxi;2 � xi0 ;2Þ

2
þ � � � þ ðxi;P � xi0 ;PÞ

2
q

: By repeating this

calculation for all pairs, the N�P raw data table is transformed into the object
pairwise distances matrix D:

Object X 1 X 2 � � � X P

1

2

3

4

5

..

.

N

x1;1 x1;2 � � � x1;P

x2;1 x2;2 � � � x2;P

x3;1 x3;2 � � � x3;P

x4;1 x4;2 � � � x4;P

x5;1 x5;2 � � � x5;P

..

. ..
. . .

. ..
.

xN;1 xN;2 � � � xN;P

26666666666664

37777777777775
) D ¼

0 d1;2 d1;3 d1;4 d1;5 � � � d1;N

0 d2;3 d2;4 d2;5 � � � d2;N

0 d3;4 d3;5 � � � d3;N

0 d4;5 � � � d4;N

0 � � � d5;N

. .
. ..

.

0

26666666666664

37777777777775
,

where d1,2 is the distance between objects 1 and 2, d1,3 the distance between
objects 1 and 3, etc. Only the upper triangle of the distance matrix is shown
because of symmetry where d1,2 ¼ d2,1, d1,3 ¼ d3,1, etc. The diagonal for a distance
matrix is 0 since the distance from an object to itself is 0. A similarity matrix often
scales similarities to lie between 0 and 1 making the diagonal elements all 1.

A proximity matrix measured on N objects will have n(n�1)/2 entries in the
upper triangle. The size of the distance matrix becomes a problem when many
objects are to be clustered. The increase in the number of distances limits
hierarchical clustering and some ordination methods to a small number of
objects. To illustrate, for N ¼ 10 there are 10*9/2 ¼ 45 pairwise distances, for
N ¼ 100 there are 4,950 pairwise distances, for N ¼ 1,000 there are 499,500
pairwise distances, and for N ¼ 10,000 there are 49,995,000 pairwise distances.
When the number of pairwise proximities becomes too large to calculate and
process efficiently partitioning methods that do not require pairwise distance
matrices (e.g., k-means clustering) should be used for the cluster analysis. What
this size is will depend on the computer resources available to the data analyst.

3. Hierarchical clustering

3.1. Overview

One of the major cluster analysis tools used is hierarchical clustering (Everitt and
Rabe-Hesketh, 1997) where objects are either joined sequentially into clusters
(agglomerative algorithms) or split from each other into subgroups (divisive
clustering). In most applications agglomerative clustering is predominant and will be
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the focus of this section. Agglomerative clustering begins with each object separate
and finds the two objects that are nearest to each other. These two objects are joined
(agglomerated) to form a cluster, which is now treated as a new object. The distances
between the new object and the other objects are calculated and the process repeated
by joining the two nearest objects. This algorithm repeats until every object is joined.
Several examples of hierarchical clustering algorithms are presented in Table 4.

An example of hierarchical clustering would be to identify prognosis
subgroups where development of additional symptoms results in different
diagnoses. In this case the presence of severe symptoms could be viewed
hierarchically as being a subset of patients with less severe symptoms.

We illustrate this iterative process in Fig. 5 using a centroid cluster analysis
algorithm (this and other cluster algorithms will be defined below). In the first step
objects A and B which are nearest each other are joined (as indicated by the line)
and a new object at the midpoint on this line is used to represent this cluster. In the
second step objects D and E are joined. In the third step the new cluster AB is joined
to object C. In the fourth and last step the cluster ABC is joined with cluster DE.

For this 2-dimensional problem it is easy to visualize the clustering in a scatter
plot. For higher dimensional data (as well as 1 and 2 dimensional like Fig. 5), the
dendrogram is able to represent the clustering process. In Fig. 6 the average
cluster analysis performed on the objects A–E in Fig. 5 is shown. Here, we see the
same pattern in the iterative process where cluster AB is formed first at the lowest
height, followed by DE, then ABC, and finally ABCDE. The advantage of the
dendrogram over the scatter plot representation is that the dendrogram includes a
measure of distance at which objects are merged on the vertical axis.

In each step of the clustering as objects are merged the proximity matrix is
modified to reflect the new number of objects and the new measures of proximity.
In the first step we merged A and B whose distance was the smallest at 0.44.

A B C D E

A 0 0:44 1:12 3:33 3:49

B 0 1:43 3:47 3:50

C 0 2:33 2:73

D 0 1:06

E 0

2666666664

3777777775
The AB cluster was formed and the distance matrix updated to show the distance
between AB and the other objects. From this the objects D and E are merged whose
distance is smallest at 1.06.

AB C D E

AB 0 1:26 3:39 3:49

C 0 2:33 2:72

D 0 1:06

E 0

26666664

37777775
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Table 4

Five commonly used hierarchical clustering algorithms

Algorithm Formula Description

Average linkage DKL ¼
1

NK NL

X
i2Ck

X
j2CL

dðxi;xjÞ
The distance between two clusters is the average of all the pairwise distances of all the

members of one cluster with all the members of the other cluster. These tend to be

small clusters with equal variance

Centroid method DKL ¼ x̄K � x̄Lk k2 The distance between two clusters is the distance between the clusters centroids or mean

vectors and are resistant to outliers

Complete linkage DKL ¼ max
i2CK

max
j2CL

dðxi; xjÞ The distance between two clusters equals the maximum distance between all the

members of one cluster with all the members of the other cluster. These tend to be

clusters with equal diameters across the space of the objects but are subject to

distortion by outliers

Single linkage DKL ¼ min
i2CK

min
j2CL

dðxi ;xjÞ The distance between two clusters equals the minimum distance between all the members

of one cluster with all the members of the other cluster. These tend to be ‘stringy’

elongated clusters and have difficulty finding small compact clusters

Ward’s minimum-variance

method
DKL ¼

x̄K � x̄Lk k2

ð1=NK Þ þ ð1=NLÞ

This method combines clusters with similar variances to produce homogeneous clusters.

It assumes that the variables are distributed as multivariate normal and clusters tend

to have similar size and distinct separation
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Fig. 6. Dendrogram representation of the clustering of the five objects in Fig. 5.

Fig. 5. Example of clustering order of five objects.
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In the next step objects AB and C are merged with smallest distance 1.26.

AB C DE

AB 0 1:26 3:40

C 0 2:48

DE 0

26664
37775

In the final step clusters ABC and DE were merged completing the algorithm.

ABC DE

ABC 0 2:90

DE 0

264
375) ABCDE

ABCDE 0

� �

Once a dendrogram is fit to the data the decision as to where to cut it to produce
distinct clusters is made. In Fig. 7, we fit a dendrogram to the data from Fig. 1 that
were visually clustered into four distinct subgroups labeled A, B, C, and D. Within
each cluster were six objects labeled A1–A6, B1–B6, etc. The horizontal dashed lines
in Fig. 7 show how the dendrogram can be cut to produce from 1 to 4 clusters. In
addition, we could decide anywhere between not cutting the dendrogram and have
all the objects merged into a single cluster to cutting at the right height to keep each
object in its own cluster. Criteria for deciding how to cut dendrograms will be
discussed below.

Fig. 7. How hierarchical clustering is split into different cluster numbers (stopping rule).
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4. Partitioning

Hierarchical clustering algorithms proceed by sequentially merging objects or
clusters into larger clusters based on some distance criterion. These algorithms
however tend to be computationally intensive and begin breaking down for larger
datasets (the size depending on the computer resources available). In addition,
these algorithms tend to be less dependent on data distributions, with the
exception of a few such as Ward’s method, and so do not take advantage of
probability models. In this section, we will introduce two types of partitioning
clustering – k-means and model-based clustering – that can be used for very large
datasets or when a probability model is assumed.

Partitioning attempts to split the space directly into regions where objects
falling in the same region belong to the same cluster. The boundaries defining
these regions can be defined differently and may be hard thresholds or based on
probability of membership. In Fig. 8, data are generated from one of four
bivariate normal distributions. Two decision boundaries are over-laid on the
data. The solid straight lines represent the type of boundary obtained from a k-
means clustering where objects are clustered according to the side of these lines
they fall on. The dashed contour lines represent probability distributions and are
the type of decision boundaries obtained from a model-based clustering. Each
object has a probability of belonging to each of the four groups and is assigned to
that group for which it has the highest probability of belonging to.

Fig. 8. Display of both a k-means partition (solid line boundary) and model-based clustering (dashed

lines indicating density estimates).
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4.1. k-Means clustering

The k-means algorithm directly partitions the space into k non-overlapping
regions where k is specified by the analyst. This algorithm is useful for very large
datasets where a hierarchical relationship is not being sought. This might include
problems of clustering patients by disease category where the development of one
category is not dependent on passing through a different category. In contrast
hierarchical clustering assumes that lower branches or clusters on the dendrogram
possess the same symptoms as clusters above it on the dendrogram.

The k-means algorithm is simple to implement. Assume each object is
represented by a vector x ¼ (x1, x2,y, xn) and the analyst wants to divide them
into k clusters. The algorithm starts with either k random or user-specified vectors
from the space to represent the starting cluster centers which we denote by x̄k for
the kth cluster, k ¼ 1,y,K. The distance from each object to each of these initial
centers, dðxi; x̄kÞ; is calculated with each object being assigned to the center that it
is closest to. If we define a cluster of objects as Ck, a subset of all objects
{1,2,y,N}, then the k-means algorithm assigns individual objects xi to the
nearest cluster mean, i.e., ðCK : mink¼1; ...; K dðxi; x̄kÞ: All objects assigned to the
same center form a distinct cluster. The algorithm recalculates the cluster centers
x̄k by averaging the individual vectors x ¼ ðx1;x2; . . . ; xnÞ 2 Ck: The algorithm
repeats by calculating the distance of each object to the new cluster centers,
reassigns each object to its new nearest cluster center, and iterates this process
until none of the objects change clusters.

In Fig. 9 we see three iterations of the k-means algorithm in the first column
for k ¼ 4. We initialized this algorithm with four centers located at (�1, 1), (1, 1),
(1, �1), and (�1, �1) defining the four clusters by the quadrants (i.e., all objects
in the upper right quadrant belong to the (1, 1) cluster). After the first iteration
the clusters centers (dark dots) have moved part of the way towards the ‘true’
cluster centers located at (�2.5, 2.5), (1.5, 1.5), (�1, �2), and (4, �3). Overlaying
this plot is the decision boundary which assigns objects to one of the four cluster
centers. In the second iteration the cluster centers have converged on the true
centers and the decision boundary finalized.

Any appropriate distance measure can be used in k-means clustering.
However, there is often an assumption of multivariate normality in the data
and the algorithm is implemented using the Mahalanobis distance measure. Let
x ¼ (x1, x2,y, xn) be the object and x̄k be the cluster means as above, and let Ŝ

�1

k

be the inverse of the estimated covariance matrix for the kth cluster. Then the
Mahalanobis distance, used routinely in multivariate normal distribution theory,
is defined as D2

ik ¼ ðxi � x̄kÞ
TS�1k ðxi � x̄kÞ:

4.2. Model-based clustering

If we assume the data from cluster k was generated by a probability model fk(x:y)
with parameters y, model-based clustering allows a maximum likelihood
estimation approach to determine cluster membership. For our objects x ¼ (x1,
x2,y, xn), we can define a vector of cluster assignments by g ¼ (g1, g2,y, gn)

T

where gI ¼ k if object xi belongs to cluster k. The parameters y and cluster
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membership vector g can be estimated by maximizing the likelihood

Lðx; y; gÞ ¼
YK
k¼1

f gk
ðx; yÞ,

where f gk
is the distribution for the objects in cluster k.

If we assume the distributions for each of the K clusters is multivariate normal
then the likelihood function is

Lðx; m1; . . . ;mK ;S1; . . . ;Sk; gÞ ¼
YK
k¼1

Y
i2Ck

ð2pÞ�p=2
jSkj

�1=2

� exp �
1

2
ðxi � mkÞ

TS�1k ðxi � mkÞ

� �
,

where Ck is the subset of objects in cluster k. This imposes significant structure
assumptions on the data. However, accurate algorithms exist (e.g., EM) for
maximum likelihood estimation of the parameters, including the class member-
ship vector g. In most applications the user will specify the covariance structure
desired which defines other criteria to be optimized.

Whichever criterion is optimized the model-based search is an iterative process
like the k-means algorithm. The left column of plots (Fig. 9) shows how the

k-Means Model Based

Iteration 1

Iteration 2

Iteration 1

Iteration 2

y y

y y

y y

x x

x x

x x

Fig. 9. Iterative process of k-means and model-based partitioning.
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iterations for the same data used in the k-means example might appear in the
model-based clustering. In this example the three iterations of k-mean cluster

centers were used as ^̄x1; . . . ; ^̄xK and we assumed that S ¼
1 0

0 1

� �
: In the first plot

the probability densities appear as one and as we move to the second and third
iteration we see a clear separation the probability masses into four distinct clusters.

An excellent general reference for model based clustering is McLachlan and
Peel (2000).

5. Ordination (scaling)

Ordination or scaling methods project data from many dimensions to one, two, or
a few dimensions while maintaining relevant distances between objects. Two
objects that are far apart (close together) in the high dimensional space will be far
apart (close together) in the lower dimensional space. In this lower dimensional
space visual clustering can be done. Perhaps the best-known ordination method in
multivariate statistics is principal components analysis (PCA) where variables are
linearly transformed into new coordinates where hopefully the first two or three
contain the majority of the information present in all the variables.

5.1. Multi-dimensional scaling

Multi-dimensional scaling (MDS) takes a proximity matrix measured on a set of
objects and displays the object in a low dimensional space such that the
relationships of the proximities in this low dimensional space matches the
relationships of the distances in the original proximity matrix. A classical example
of MDS is the visualization of cities determined by the flying distances between
them. In the distance matrix we show the distances between 10 US cities, where
Atlanta is 587 miles to Chicago, 1,212 miles to Denver, etc (Table 5).

This distance matrix defines a set of pairwise relationships for this set of cities
but offers no clue as to their location in the US – their latitude and longitude.
However, MDS can display these cities in a 2-dimensional projection to see if the
physical locations can be estimated. In Fig. 10, we show the result of this
projection and observe that in fact this does approximately reproduce their
locations relative to each other.

MDS models are fit by finding a data matrix in fewer dimensions, say 2
dimensions, that produces a proximity matrix similar to that obtained, whether
generated from an existing data matrix or given directly such as is found in many
psychological experiments where a subject is asked to state the similarity of
objects. Let di, j be the distance between objects i and j obtained either by
calculating distances between the object vectors x ¼ (x1, x2,y, xn) or obtained
directly through a judgment experiment. MDS searches for a data representation
for each object, say y ¼ (y1, y2), so that the distances between the objects are
similar to the di,j’s, and so the objects can be displayed in a 2-dimensional scatter
plot. If we let di,j be the original distances (or proximities) we are working with,
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Table 5

Flying mileage between 10 American cities

Atlanta Chicago Denver Houston Los Angeles Miami New York San Francisco Seattle Washington, DC

Atlanta 0 587 1212 701 1936 604 748 2139 2182 543

Chicago 0 920 940 1745 1188 713 1858 1737 597

Denver 0 879 831 1726 1631 949 1021 1494

Houston 0 1374 968 1420 1645 1891 1220

Los Angeles 0 2339 2451 347 959 2300

Miami 0 1092 2594 2734 923

New York 0 2571 2408 205

San Francisco 0 678 2442

Seattle 0 2329

Washington, DC 0
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and di,j(y) be the distances calculated on our new data points y ¼ (y1, y2), classical
MDS attempts to find the data vectors y ¼ (y1, y2) such that the following is
minimized:

EM ¼
X
iaj

di;j � di;jðyÞ
 �2

.

This represents the square-error cost associated with the projection. Note that
the scale and orientation of the y ¼ (y1, y2) are arbitrary and the map of the US
cities in the above example may just have easily been flipped from top to bottom
and left to right. The goal of the MDS is not to obtain the exact values of the
possibly unknown data vectors x ¼ (x1, x2,y, xn), but rather to obtain their
pairwise spatial relationships.

Other criterion for MDS exists that addresses specific data requirements. For
example, Kruskal showed that if the data are ordinal the projected distances di,j(y)
should only match the observed distances di,j on a rank ordering. By imposing a
monotonically increasing function on the observed distances, denoted by f(di,j),
that preserves the rank order of them, then the criterion for the non-metric MDS
is

EN ¼
1P

iaj

di;jðyÞ
 �X

iaj

f ðdi;jÞ � di;jðyÞ
 �2

.

Another commonly used MDS-like algorithm is known as Sammon’s mapping
or normalization where the normalization allows small distances to be preserved
and not overwhelmed by minimizing squared-error costs associated with large
distances. Sammon mapping minimizes:

ES ¼
X
iaj

di;j � di;jðyÞ
 �

di;j

2

.

Fig. 10. Example of multi-dimensional scaling assigning relative positions of the US cities.
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Finding the points y ¼ (y1, y2) requires a search. If the original data x ¼ (x1,
x2,y, xn) are available, the search might begin with the first two principal com-
ponents. If it is not available the starting points y ¼ (y1, y2) may be randomly
generated. The search proceeds by iteration where the new set of points y ¼ (y1,
y2) are generated by the previous set using one of several search algorithms until
the change in the goodness-of-fit criterion falls below a user defined threshold.

5.2. Correspondence analysis

Another important ordination procedure for categorical data, analogous to PCA
and MDS, is correspondence analysis (CA). Table 6 shows a cross-classification
of people in Caithness, Scotland, cross-classified by eye and hair color (Fisher,
1940). This region of the UK is particularly interesting as there is a mixture of
people of Nordic, Celtic, and Anglo-Saxon origin. In this table we find 326 people
with blue eyes and fair hair, 38 with blue eyes and red hair, etc.

Ignoring the computational details we find the projection of this variables
produces the scatter plot in Fig. 11. From this display we find that people with
blue or light eye color tend to have fair hair, people with dark eyes tend to have
black eye color, etc. The distances between these variables on this 2-dimensional
projection gives a relative strength of the relationships. For example, blue eyes
and fair hair are strongly related but blue eyes and dark hair are weakly related.
Medium eye and hair color are strongly related and moderately related to the
other colors as indicated by their appearance somewhat near the middle of the
scatter plot.

Like MDS this projection places the points on arbitrary scales. Also, in this
example two categorical variables are used for illustration but multiple variables
can be projected onto a lower dimensional space.

6. How many clusters?

The author of this chapter believes that cluster analysis is an exploratory data
analysis tool only and that methods to date to impose formal statistical inference
to determine the correct number of clusters have not been fully developed and
framed in such a way that they can be generally applied. This includes work by
the author that attempts to use a graph-valued probability model to decide the

Table 6

Caithness, Scotland, cross-classified by eye and hair color

Hair Color

Fair Red Medium Dark Black

Eye Color Blue 326 38 241 110 3

Light 688 116 584 188 4

Medium 343 84 909 412 26

Dark 98 48 403 681 85
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number of clusters by maximum likelihood (Shannon and Banks, 1999). How-
ever, many people make use of heuristic strategies for deciding the number of
clusters that will be discussed in this section.

6.1. Stopping rule

In hierarchical clustering the ‘stopping rule’ indicates where to split the tree. The
dendrogram in Fig. 7 could be cut to form 1, 2, 3, or 4 clusters (indicated by the
dashed horizontal lines). (In fact it could produce more clusters by cutting lower
on the vertical axis.) Several methods have been suggested for deciding among
these choices and are defined and tested in the work by Milligan (1981). These
generally are a modification of squared error or variance terms. Using definitions
given before in this chapter, three stopping rule criteria for deciding how many

Fig. 11. Correspondence analysis display relating hair and skin color.
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clusters in the data are defined for each cut of the dendrogram:

R2 ¼ 1�

P
K

P
i2Ck

xi � x̄kk k2

 !
xi � x̄k k2

,

pseudo� F ¼

xi � x̄k k2 �
P
K

P
i2Ck

xi � x̄kk k2

 !,
K � 2

 !
P
K

P
i2Ck

xi � x̄kk k2

,
ðn� KÞ

 ! ,

and,

pseudo� t2 ¼

P
i2Ck[CL

xi � x̄Ck[CL

�� ��2 � P
i2Ck

xi � x̄Ck

�� ��2 � P
i2CL

xi � x̄CL

�� ��2 !
P

i2Ck

xi � x̄Ck

�� ��2 þ P
i2CL

xi � x̄CL

�� ��2 !,
ðnK þ nL � 2Þ

.

These might be useful heuristics and the number of clusters which maximize
these might be a reasonable number to use in the analysis. However, these are not
distributed according to any known distribution (e.g., F, t) and it is important not
to assign probabilities with these. See Milligan and Cooper (1985) and Cooper
and Milligan (1988) for a detailed examination of these statistics and others
regarding their performance in estimating the number of clusters.

6.2. Bayesian information criterion

When model-based clustering is used more formal likelihood criteria are avail-
able. The Schwartz Information Criterion (also called the Bayesian Information
Criterion) is one of those which is often used. Recall that if we are modeling K

multivariate normal clusters then the likelihood function is

Lðx; m1; . . . ;mK ;S1; . . . ;Sk; gÞ ¼
YK
k¼1

Y
i2Ck

ð2pÞ�p=2 Skj j
�1=2

� exp �
1

2
ðxi � mkÞ

TS�1k ðxi � mkÞ

� �
Let log(L) denote the log-likelihood, m ¼ 2k+1 be the sum of number of esti-
mated parameters, and n be the number of objects. Then the Schwartz Infor-
mation Criterion is

�2 logðLÞ þm logðnÞ.

We select K clusters that maximizes this criterion.
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7. Applications in medicine

A search of the NIH PUBMED publication database using the MESH term
‘cluster analysis’ resulted in 14,405 citations covering a wide range of areas of
medicine. Here we provide a brief snapshot to some of them for reference.

Bierma-Zeinstra et al. (2001) used cluster analysis to analyze data on 224
consecutive patients being seen for hip pain. Ward’s method for cluster analysis
using medical history and physical exam results uncovered 10 distinct subgroups
of patient. Subsequent examination of variables derived from X-rays and sono-
grams of their hip and knee regions showed significant correlation with these
clusters. The medical history and physical exam results can then be used to clas-
sify patients into likely diagnostic group without waiting for expensive imaging
data.

Lei et al. (2006) used hierarchical and k-means clustering to determine what
size of lumbar disc replacement prosthesis appliances can be used in patients.
Analyzing radiological data on 67 patients they were able to identify seven dis-
tinct device sizes that are widely used. If validated this will reduce the number of
disc replacement sizes that need to be manufactured and stocked resulting in a
possible improvement in healthcare delivery services.

Kaldjian et al. (2006) identified a list of factors that facilitate and impede
voluntary physician disclosure of medical errors for patient safety, patient care,
and medical education. Using a literature search they identified 316 articles re-
porting physician errors and extracted 91 factors from them and an additional 27
factors from a focus group thought to be related to error reporting. Several
hierarchical clustering algorithms were used, but what is unique about this paper
(versus the others reported here) was the distance measure used. In this study, 20
physicians grouped the factors into from 5 to 10 groups based on factor sim-
ilarity, in essence a ‘conceptual’ proximity. The results of this research identified
responsibility to the patient, to themselves, to the profession, and to the com-
munity as factors that facilitated error reporting. Attitude, helplessness, anxiety
and fear, and uncertainty were identified as factors impeding error reporting.

Other applications include medication adherence (Russell et al., 2006), pre-
diction of post-traumatic stress disorder (Jackson et al., 2006), microarry data
analysis (Shannon et al., 2002; Shannon et al., 2003), and clarification of the
obsessive compulsive disorders spectrum (Lochner et al., 2005). This small sample
is presented to show the range of applications and introduce the reader to ad-
ditional literature in the medical field to see how cluster analysis is applied.

8. Conclusion

This chapter has provided a brief overview of cluster analysis focusing on hier-
archical, partitioning, and ordination methods. An overview of distance measures
and the construction of pairwise distance matrices was presented since these are
fundamental tools within the field of cluster analysis. Also, a very brief exposure to
stopping rules for determining how many clusters and applications in medicine was
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presented to allow the reader entry into the literature for these areas. Anyone new
to cluster analysis and planning on using these tools will be able to find many
introductory textbooks to the field, and most statistical software packages have
clustering algorithm procedures in them. Those readers wanting to become more
involved with cluster analysis are encouraged to visit the Classification Society of

North America’s web page at http://www.classification-society.org/csna/csna.html.
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Factor Analysis and Related Methods

Carol M. Woods and Michael C. Edwards

Abstract

This chapter introduces exploratory and confirmatory factor analysis (EFA

and CFA) with brief mention of the closely related procedures principle com-

ponents analysis and multidimensional item response theory. For EFA, em-

phasis is on rotation, the principle factors criterion, and methods for selecting

the number of factors. CFA topics include identification, estimation of model

parameters, and evaluation of model fit. EFA and CFA are introduced for

continuous variables, and then extensions are described for non-normal con-

tinuous variables, and categorical variables. Study characteristics that influence

sample size (for EFA or CFA) are discussed, and example analyses are pro-

vided which illustrate the use of three popular software programs.

1. Introduction

Factor analysis (FA) refers to a set of latent variable models and methods for
fitting them to data. Factors are latent variables: Unobservable constructs pre-
sumed to underlie manifest variables (MVs). The objective of FA is to identify the
number and nature of the factors that produce covariances or correlations among
MVs. The variance of each MV is partitioned into common variance which is
shared with other MVs, and unique variance, which is both random error and
systematic variance unshared with other MVs (called specific variance). Because
specific variance and random error are not modeled separately in FA, unique
variance is often considered ‘‘error’’ variance. Common factors represent common
variance and unique factors represent unique variance.

The FA model is:X
xx
¼ LFLT

þDc; (1)

where Rxx is the p� p covariance matrix among MVs x1, x2,y, xp, K is a p�m

matrix of regression coefficients called factor loadings that relate each factor to
each MV, U is an m�m matrix of correlations among m factors, and Dc is a p� p
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diagonal matrix of unique variances (one for each MV). The model could be fitted
to a matrix of correlations instead of covariances; this standardizes the factor
loadings and elements of Dc. Standardized unique variances are referred to as
uniquenesses. The sum of squared standardized factor loadings, incorporating the
correlations among factors (i.e., KUKT) gives the communalities for the MVs. The
communality for an MV is the proportion of total variance it shares with other
MVs, or its reliability. Notice that the communality and the uniqueness sum to 1.

Classic FA is applicable to continuous MVs and is analogous to multivariate
linear regression, except that the predictors are unobservable. Assumptions com-
parable to those made in linear regression are made in FA: Common and unique
factors are presumed uncorrelated, unique factors are presumed uncorrelated
with one another, and MVs are assumed to be linearly related to the (linear
combination of) factors. Additional assumptions are needed to identify the model
because latent variables have no inherent scale. The scale of the common factors
is often identified by fixing the mean and variance to 0 and 1, respectively. The
mean of the unique factors is also usually fixed to 0, but the variance is estimated.
The variance of a unique factor is usually interpreted as the error variance of the
MV.

FA can be exploratory or confirmatory depending on the degree to which
investigators have prior hypotheses about the number and nature of the under-
lying constructs. Although some of the methods used in exploratory and con-
firmatory factor analysis (EFA and CFA) are distinct, the boundary between
them is often blurred. Rather than imagining them as completely separate tech-
niques, it is useful to think of EFA and CFA as opposite ends of the same
continuum.

In EFA, a preliminary sense of the latent structure is obtained, often without
significance testing. Additional research is needed to make definitive claims about
the number and nature of the common factors. In CFA, a hypothesized model is
tested, and sometimes compared to other hypothesized models. CFA is a special
case of a structural equation model (SEM); thus many principles of SEM also
apply to CFA. CFA models are evaluated using significance tests and other
indices of fit. Though replication and cross-validation is important for both types
of FA, results from CFA are more definitive because prior hypotheses are tested.

2. Exploratory factor analysis (EFA)

EFA is performed when investigators are unable or unwilling to specify the
number and nature of the common factors. A key task is to select the number of
common factors (m) that best accounts for the covariance among MVs. Several
models with differing m are fitted to the same data and both statistical infor-
mation and substantive interpretability are used to select a model. The goal is to
identify the number of major common factors such that the solution is not only
parsimonious, but also plausible and well matched to the data. Typically, all pm

elements of K are estimated rather than constrained to a particular value. Unique
variances and correlations among factors are also estimated.
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Once the parameters of a model with a particular m are estimated, the solution
is rotated to improve substantive interpretability. Rotated, not un-rotated, factor
loadings aid in the selection of m. The term factor rotation was coined during an
era when FA was carried out by hand. FA models were represented graphically in
m-dimensional space with an axis for each factor and a point for each MV. Axes
were literally rotated to a subjective, simple structure solution. Thurstone (1947)
specified formal criteria for simple structure, but essentially, each factor should be
represented by a distinct subset of MVs with large factor loadings, subsets of MVs
defining different factors should overlap minimally, and each MV should be
influenced by only a subset of common factors.

In contemporary FA, rotation is objective and automated by computer soft-
ware. The matrix of rotated loadings is produced by multiplying K by an m� p

transformation matrix, T. The elements of T are chosen to either maximize a
simplicity function or minimize a complexity function. These functions mathe-
matically specify simple structure, or its opposite (complexity) in the pattern of
loadings.

The EFA model is rotationally indeterminate, meaning that if a single K can be
found that satisfies the model for a particular Rxx, then infinitely many other Ks
exist that satisfy the model equally well. Procedures used to estimate EFA model
parameters (discussed in a subsequent section) impose criteria to obtain unique
values; however, an infinite number of alternative Ks could replace the initial
solution.

Numerous rotation methods have been developed (see Browne, 2001). One
major distinction among them is whether factors are permitted to correlate.
Orthogonal rotations force factors to be uncorrelated whereas oblique rotations
permit nonzero correlations among factors. Orthogonal rotations are primarily of
didactic or historical interest; they are easier and were developed first. It is usually
best to use an oblique rotation because factors are typically correlated to some
degree, and correlation estimates will be 0 if they are not. A few of the most
popular oblique rotation procedures are described next.

2.1. Rotation

The two-stage oblique Promax rotation procedure (Hendrikson and White, 1964)
is frequently used and widely implemented in software. Orthogonal rotation is
carried out first, followed by a procedure that permits correlations among factors.
The first stage consists of rotating loadings to an orthogonal criterion called
‘‘Varimax’’ (Kaiser, 1958). The transformation matrix for orthogonal Varimax

rotation maximizes the sum of the variances of the squared factor loadings on
each factor. The simplicity criterion is:

V ¼
Xm

k¼1

1

p

Xp

j¼1

ðl2jk � l̄
2

:kÞ
2; where l̄

2

:k ¼
1

p

Xm

k¼1

l2jk (2)

and ljk is an element of K for the jth MV and the kth factor. Greater variability in
the magnitude of the squared loadings indicates better simple structure.
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The second stage of the Promax procedure is to raise Varimax-rotated loadings
to a power (often the 4th), restore the signs, and estimate new loadings that are as
close as possible to the powered loadings. Least squares estimation is used to
minimize the sum of squared differences between the Varimax-rotated loadings
and the powered (target) loadings, tjk, which is the complexity function:

P ¼
Xm

k¼1

Xp

j¼1

ðl2jk � tjkÞ
2. (3)

Because variables with larger communalities have more influence on the rotated
solution than variables with smaller communalities, each row of K is standardized
before rotation and returned to the original scale after rotation. Loadings for
each MV are divided by the square root of the communality (called a Kaiser

weight) before rotation, and then multiplied by the Kaiser weight after rotation.
This process of row standardization was originally introduced for orthogonal
Varimax rotation, but is now commonly used with most rotations, both ortho-
gonal and oblique.

Other popular oblique rotations are members of a family described by Craw-
ford and Ferguson (1970). The general complexity function is:

CF ¼ ð1� kÞ
Xp

j¼1

Xm

k¼1

Xm

‘¼1

l2jkl
2
j‘

ka‘

þk
Xm

k¼1

Xp

j¼1

Xp

h¼1

l2jkl
2
hk

jah

, (4)

where k weights MV complexity (first term) and factor complexity (second term),
and 0rkr1. MV complexity is minimized when there is a single nonzero loading
in each row of K; factor complexity is minimized when there is a single nonzero
loading in each column of K.

Researchers select k and specify whether the rotation is orthogonal or oblique.
When k ¼ 1/p, and orthogonal rotation is specified, the Crawford–Ferguson (CF)
criterion is the same as the orthogonal Varimax criterion. Oblique Varimax rota-
tion is also possible. When k ¼ 0, complexity in the MVs, but not the factors, is
minimized. Oblique rotation renders the CF criterion equivalent to the oblique
quartimax criterion (also called ‘‘quartimin’’ or ‘‘direct quartimin’’), introduced
by Jennrich and Sampson (1966).

Some FA experts prefer oblique quartimax rotation (e.g., Browne, 2001), but
the best approach may depend on the particular data set and the goals of the FA.
It is sometimes useful to use two or three different rotation criteria and then select
the most substantively interpretable solution.

We turn now to methods for estimating the parameters of EFA models. The
two most common methods are iterative principle factors and maximum likeli-
hood (ML) estimation. Typically, correlations rather than covariances are analy-
zed because factor loadings are easier to interpret when standardized. Also, note
that the columns of K (i.e., the factors) are always uncorrelated following initial
estimation. In EFA, correlations among factors are introduced only by oblique
rotation.
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2.2. Principle factors

Because the EFA model is rotationally indeterminate, an additional criterion is
imposed when the parameters are estimated so that initial factor loadings are
unique. By the criterion of principle factors, each common factor should account
for the maximum possible amount of variance in the MVs. Only one K satisfies
the principle factors criterion. A principle factors solution uses eigenvalues and
eigenvectors to estimate K. If S is a symmetric matrix and Su ¼ ‘u; then ‘ is an
eigenvalue of S and u is an eigenvector of S.

In EFA, eigenvalues and eigenvectors of the reduced correlation matrix, Rxx,
are used to compute K. Rxx has communalities for each MV on the diagonal
(rather than 1’s). For a given m, K is constructed from the m largest eigenvalues
and the corresponding eigenvectors: K ¼ UD

1=2
‘ : U is a p�m orthogonal matrix

with columns equal to eigenvectors, and D
1=2
‘ is an m�m diagonal matrix with

nonzero elements equal to square roots of eigenvalues. An eigenvalue is equal to
the sum of squared loadings down each column of K, interpreted as the propor-
tion of variance accounted for by each factor.

A complication inherent in the procedure just described is that communalities
are needed prior to the computation of factor loadings. These so-called prior
communalities must be estimated. Guttman (1940) showed that the squared
multiple correlation (R2) from the regression of an MV on the p�1 other MVs is a
lower bound for the communality. Though somewhat conservative, R2s from
these regressions are usually used as estimates of prior communalities.

A newer way to estimate prior communalities is the partitioning method

(Cudeck, 1991), which may be used only if pZ2m+1. For each MV, the re-
maining p�1 MVs are divided into two mutually exclusive subsets of m variables
(because the method is contingent upon m, it must be repeated for every different
m under consideration). The jth MV for which a communality is sought is subset
1, and the other mutually exclusive sets of MVs are subsets 2 and 3. The com-
munality for the jth MV is given by q13P

�1
23 q21; where q13 is the vector of cor-

relations between subsets 1 and 3, q21 is the vector of correlations between subsets
1 and 2, and P�123 is the (inverse of) the m�m matrix of correlations between
subsets 2 and 3.

The set of procedures described thus far is referred to as principle factors

conditional on prior communalities (or simply, conditional principle factors).
However, a closely related method, iterative principle factors, can provide better
answers. Iterative principle factors minimizes the sum of squared residuals, which
are discrepancies between sample correlations (or covariances) and a particular
solution for the FA model:

RSS ¼
Xp

i¼1

Xp

j¼1

½Rxx � ðKUKT
Þ�2ij , (5)

where RSS is the residual sums of squares, U is diagonal (prior to rotation), and
Dc is not shown because it has been subtracted from the full correlation matrix to
create Rxx. A key feature of the iterative approach is that communalities placed
on the diagonal of Rxx are estimated simultaneously with the factor loadings.
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The iterative approach begins as conditional principle factors. Then the initial
estimate of K is used to estimate new communalities as the sum of squared
loadings across each row. These are placed on the diagonal of Rxx, eigenvalues
and eigenvectors are obtained as before, and K is re-estimated. This process
continues until the communalities change minimally from one iteration to the
next (i.e., converge).

2.3. Normal theory maximum likelihood (ML) estimation

One advantage of principle factors methods is that no distributional assumption
about the MVs is needed. However, the disadvantage is that no standard errors
(SEs), significance tests, or confidence intervals (CIs) are available. If MVs can be
assumed to jointly follow a multivariate normal distribution, EFA parameters
can be estimated as in conditional principle factors, with the additional require-
ment that they maximize a multivariate normal likelihood function. Normal the-
ory ML estimation is the same as iterative principle factors except that loadings
are chosen to maximize the likelihood function rather than to minimize RSS. The
joint likelihood is

L ¼
YN
i¼1

Rxxj j:5

ð2pÞ:5p
exp �

1

2
ðxi � lÞTS�1xx ðxi � lÞ

� �
, (6)

where N is the total number of observations, xi the vector of MV scores for
observation i, and l is the vector of MV means.

When ML is used, a likelihood ratio (LR) test statistic and numerous descrip-
tive indices may be used to evaluate global model fit. Two versions of the LR
statistic are used. The classic LR statistic is (N�1)(�2)[log(L)], and Bartlett’s
(1950) corrected version is ðN � ðð2pþ 11Þ=6Þ � ð2m=3ÞÞ � ð2Þ½logðLÞ�: L is (Eq.
(6)) evaluated at the maximum. With sufficient N, the LR statistic is approxi-
mately w2-distributed with degrees of freedom:

df ¼
1

2
pðpþ 1Þ � pþ pm�

1

2
mðm� 1Þ

� �
¼
ðp�mÞ2 � ðpþmÞ

2
(7)

Bartlett’s correction may increase the degree to which the LR statistic is
w2-distributed. The LR statistic may be used to test the null hypothesis (H0) that
the FA model with m factors holds. Rejection of Ho indicates that Rxx has no
particular structure or that more factors are needed. Thus, failing to reject H0 is
desirable. However, this test of perfect fit is sensitive to N. Virtually any par-
simonious model is rejected if N is large enough, and substantial misfit is missed if
N is small.

Numerous descriptive indices of model fit have been developed that should be
consulted along with, or instead of, the w2-test. These indices are usually studied
or discussed in the context of CFA rather than EFA; thus it is more natural to
review them when describing CFA. However, the indices are also useful for EFA,
and are the primary method by which the number of factors is decided upon when
ML is used. ML also provides SEs for the factor loadings and inter-factor
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correlations (following oblique rotation), which aids in the often subjective proc-
ess of assigning MVs to factors in EFA.

2.4. Tools for choosing m

Three statistical tools used to choose m (which may be used with either principle
factors or ML) are residuals, a scree plot, and parallel analysis. Smaller residuals
indicate better model fit. A summary statistic, such as the root mean square
residual or the maximum absolute residual, can be compared for models with
different m. Examination of residuals for each correlation or covariance may help
to identify specific areas of model misfit. The best model typically has many small
residuals and no particularly large ones. Many software programs standardize
residuals, which aid in the interpretation of their magnitude. Typically, a stand-
ardized residual greater than about 2 is considered large.

Another tool, the scree plot (Cattell, 1966), is a graph of the eigenvalues of Rxx.
Figure 1 shows an example for 9 MVs. The vernacular definition of ‘‘scree’’ is an
accumulation of loose stones or rocky debris lying on a slope or at the base of a
hill or cliff. In a scree plot, it is desirable to find a sharp reduction in the size of the
eigenvalues (like a cliff), with the rest of the smaller eigenvalues constituting
rubble. When the eigenvalues drop dramatically in size, an additional factor
would add relatively little to the information already extracted. Because scree
plots can be subjective and arbitrary to interpret, their primary utility is in pro-
viding two or three reasonable values of m to consider. The plot in Fig. 1 suggests
that a useful model for these data may have 3 or 4 factors.

Parallel analysis (Horn, 1965) helps to make the interpretation of scree plots
more objective. The eigenvalues of Rxx are plotted with eigenvalues of the reduced
correlation matrix for simulated variables with population correlations of 0 (i.e.,
no common factors). An example is displayed in Fig. 2. The number of

number of factors
2 4 6 8

ei
ge

nv
al

ue
 

0

1

2

3

4

Fig. 1. Example scree plot.
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eigenvalues above the point where the two lines intersect (3 for the example in
Fig. 2) is the suggested m. The rationale for parallel analysis is that useful factors
account for more variance than could be expected by chance. Recall that an
eigenvalue is the proportion of variance explained by each factor. Only factors
with eigenvalues greater than those from uncorrelated data are useful.

We are not aware of a commercial computer program that implements parallel
analysis, but any software that will simulate data from a normal distribution and
compute eigenvalues may be used. To carry out parallel analysis, generate N

observations from a normal distribution for p variables (N and p for the simulated
data match those for the observed data). Then compute the reduced correlation
matrix among simulated MVs and its eigenvalues, repeat this process approx-
imately 100 times, and average the eigenvalues for each simulated MV. It is these
mean eigenvalues that are plotted against the eigenvalues of Rxx. Syntax for
parallel analysis using SPSS (SPSS Incorporated, 2006), or SAS software (SAS
Institute, 2006) was published by O’Connor (2000).

Additional tools are available to help select m when ML is used. Global indices
of model fit may be compared among models with differing m. Increasing m

improves model fit to some degree, but the goal is to identify m such that one
fewer factor results in substantially poorer fit and one additional factor has little
impact on the fit. Additionally, nested models can be statistically compared using
a w2-difference test. The difference between the LR statistics for a model with k

factors and a model with k�1 factors is approximately w2-distributed with degrees
of freedom (df) equal to the difference between the df for the two models. A
significant difference suggests that fit is better for the model with k factors. Oth-
erwise, the more parsimonious model is preferred. The final model selected should
fit in an absolute, as well as relative, sense.

We conclude this section with a warning about an approach commonly em-
ployed to select m, which is theoretically unjustifiable and likely to be misleading.
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Fig. 2. Example of parallel analysis.

C. M. Woods and M. C. Edwards374



The eigenvalue-greater-than-one rule (also called the Kaiser criterion or the Kai-
ser–Guttman rule) leads researchers to select m equal to the number of eigenvalues
of Rxx that exceed 1. The number of eigenvalues greater than 1 is a lower bound
for the number of components to extract in principle components analysis (discussed
next), but it should never be used as the sole criterion to select m for EFA.

3. Principle components analysis (PCA)

PCA is a data reduction method sometimes confused with EFA. Conditional
principle factors EFA is mathematically similar to PCA. For both, parameters
interpreted as standardized regression coefficients are calculated from eigenvec-
tors and eigenvalues of a correlation matrix. However, EFA analyzes the reduced

correlation matrix, with prior communalities on the diagonal, whereas PCA
analyzes the full correlation matrix, with 1’s on the diagonal. Because a com-
munality is the proportion of MV variance that is reliable, PCA treats MVs as
error-free. Thus, what may seem like a small technical difference between PCA
and EFA has important implications for interpretation.

The purpose of EFA and PCA differs, as does interpretation of the
results. EFA seeks to explain covariation among MVs and is useful for under-
standing underlying structure in the data. Total MV variance is separated into
common and unique elements, and common factors are constructs thought to give
rise to MVs. In contrast, PCA is useful for reducing a large number of variables
into a smaller set. Instead of separating common and unique variance, total MV
variance is reorganized into linear combinations called components. A component
is a linear combination of MVs, not a latent variable. Component loadings are
standardized regression coefficients indicating the strength of relation between
each MV and each component. However, a component has no particular inter-
pretation beyond ‘‘linear combination of’’ MVs. When the goal of an analysis
is to understand underlying dimensions implied by correlations (or covariances)
among MVs, and interpret the dimensions as constructs, FA is applicable and
PCA is not.

4. Confirmatory factor analysis (CFA)

CFA is used to test a hypothesized model. Investigators specify the number
of factors, and typically constrain many factor loadings to 0. Thus, fewer loadings
are estimated in CFA than in EFA because not all factors are hypothesized
to underlie all MVs. MVs with nonzero loadings on a factor are indicators of
the factor. Researchers decide when fitting the model to data which para-
meters are free (i.e., to be estimated) and which are fixed (i.e., constrained to some
value).

Because more restrictions are placed on the parameters than in EFA, CFA
models are not rotationally indeterminate. Thus, eigenvalues and eigenvectors
are not used in CFA, and correlations among factors are not introduced by
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rotation. Instead, researchers specify whether correlations among factors are
free or fixed. Typically, unique variances are estimated as in EFA and correlations
among them can be estimated if relationships are hypothesized. An important
consideration in CFA that influences how many parameters can be freed is model
identification.

4.1. Identification

A CFA model is identified if parameter estimates are unique, otherwise the model
is unidentified (also called under-identified) and the results are not trustworthy. At
a minimum, there must be more known quantities (e.g., non-redundant elements
of Rxx) than unknown quantities (i.e., parameters to estimate). This is a necessary
but not sufficient condition for model identification. Bollen (1989) describes
conditions that are sufficient but not necessary for identification that are useful
for models matching these criteria. Models with m 4 1 are identified if there are 3
or more indicators per factor, each indicator has a nonzero loading on only 1
factor, and unique variances are uncorrelated. Only 2 indicators per factor are
acceptable if either all the factors are correlated (i.e., U has no zeros), or each row
of U has at least one nonzero off-diagonal element.

Many possible models can be specified and identified which do not match
Bollen’s (1989) criteria above. Identification can be proven by matrix algebra,
but this is tedious, error-prone, and unrealistic for some users. Most software
programs detect some types of under-identification and warn users that re-
specification may be needed. If identification is uncertain, Jöreskog and Sörbom
(1986) suggest fitting the model to data, computing the model-implied covariance
matrix, and then re-fitting the model treating the model-implied covariances as if
they were observed. If parameter estimates from the two fittings differ, the model is
not identified.

In addition to model identification, the scales of all latent variables must be
identified in CFA. Typically, unique factors are handled as in EFA: Means are
fixed to 0 and variances are free. The scales of common factors also may be
identified as in EFA, by fixing the means and variances to 0 and 1, respectively.
Alternatively, a common factor can be assigned the scale of one MV to which it is
highly related by fixing that MV’s loading to 1. This permits estimation of the
common-factor variance which is sometimes of interest. Model fit is unaffected by
the procedure used to identify the scales of the factors.

4.2. Estimation

A CFA model is usually fitted to data with ML under the assumption that MVs
are continuous and multivariate normal. The likelihood is:

LCFA ¼ log R̂xx

�� ��þ trðRxxR̂
�1

xx Þ � log Rxxj j � p, (8)

where Rxx is the observed covariance matrix, Ŝxx the model-implied covariance
matrix, and ‘‘tr’’ refers to the trace (i.e., sum of diagonal elements). Thus, SEs for
factor loadings and inter-factor correlations are available, as is an LR statistic for
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evaluating model fit that is w2-distributed in large samples. The LR statistic is
(N�1)LCFA (where LCFA is (Eq. (8)) evaluated at the maximum) with df equal to
the number of nonredundant elements in Rxx less than the number of free
parameters, t:

df ¼
1

2
pðpþ 1Þ � t (9)

CFA models should be fitted to covariance, not correlation, matrices, unless
one’s software is known to handle correlation matrices correctly (Cudeck, 1989).
The statistical theory that justifies CFA does not apply to correlation matrices
without modification. Because the procedures are more complicated for corre-
lation versus covariance matrices, many computer programs do not handle cor-
relation matrices appropriately and will provide incorrect SEs (and possibly an
incorrect LR statistic). The RAMONA program (Browne et al., 1994) and PROC
CALIS in SAS (SAS Institute, 2006) handle correlation matrices appropriately,
but with most software programs, it is best to fit a CFA model to a covariance
matrix to ensure a proper analysis.

4.3. Evaluation of model fit

After a CFA model has been specified, identification has been addressed, and
parameters have been estimated, a fundamental concern is how well the model fits
the data. First, there should be no improper parameter estimates. If a correlation
is outside the range �1 to 1, or a variance is negative (called a Heywood case), the
solution should not be interpreted and causes of the problem should be explored.
Improper estimates can occur when the population parameter is near the bound-
ary, when outliers or influential observations are present in the data, when the
model is poorly specified, or because of sampling variability.

If all parameter estimates are within permissible ranges, global model fit is
evaluated. As in EFA, the w2-test of absolute fit is sensitive to sample size
and could provide misleading results. However, the difference between LR
statistics for two nested models provides a useful w2-difference test (for large
samples) with df equal to the difference in dfs for the two models. A significant
difference supports the larger model; otherwise, the more parsimonious model is
preferred.

Absolute fit is evaluated using descriptive indices. Available options are abundant
and sometimes contradict one another. However, Hu and Bentler (1998, 1999)
extensively studied many indices and provide guidance for selecting and interpreting
a manageable subset. They recommend reporting one residuals-based measure such
as the standardized root mean square residual (SRMR; Bentler, 1995; Jöreskog and
Sörbom, 1981), and one or more of the following: (a) the root mean square error of
approximation (RMSEA; Browne and Cudeck, 1993; Steiger, 1990; Steiger and
Lind, 1980), (b) the Tucker–Lewis (1973) incremental fit index (TLI; also known as
the non-normed fit index due to Bentler and Bonett, 1980), (c) Bollen’s (1988) non-
normed index (D2), and (d) Bentler’s (1990) comparative fit index (CFI).
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The SRMR summarizes the differences between the observed and model-im-
plied covariance matrices:

SRMR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pðpþ 1Þ

Xp

i¼1

Xi

j¼1

ðsij � ŝijÞ

siisjj

� �2( )vuut , (10)

where sij is an element of Rxx and ŝij is an element of Ŝxx: Values closer to 0
indicate better fit; Hu and Bentler (1999) suggested that fit is good if SRMR r
about .09.

The RMSEA indicates the degree of discrepancy between the model and the
data per degree of freedom:

RMSEA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2LCFA �

df
N�1

df

s
, (11)

where LCFA is (Eq. (8)) evaluated at the maximum. Values closer to 0 indicate
better fit.

Roughly, model fit is quantified as close (RMSEA o .05), reasonably good
(.05 o RMSEA o .08), mediocre (.08 o RMSEA o .10), or unacceptable
(RMSEA 4 .10) (Browne and Cudeck, 1993). Hu and Bentler (1999) suggested
that RMSEA r about .06 indicates good fit. The RMSEA is unique because
under certain assumptions, its sampling distribution is known; thus, CIs can be
computed (Browne and Cudeck, 1993; Curran et al., 2003).

The TLI, CFI, and D2 are the incremental fit indices that measure the pro-
portionate improvement in fit by comparing our model to a more restricted,
hypothetical baseline model. Usually the baseline model has independent MVs,
thus 0 factors. The TLI and D2 indicate where our model lies on a continuum
between a hypothetical worst (baseline) model and a hypothetical perfect model,
for which the LR statistic equals its df (thus, the ratio is 1):

TLI ¼

w2
b

df b
�

w2m
df m

w2
b

df b
� 1

, (12)

and

D2 ¼
w2b � w2m
w2b � df m

. (13)

Subscripts ‘‘b’’ and ‘‘m’’ refer to the baseline model and the fitted model with m

factors.
The CFI shows how much less misfit there is in our model than in the worst-

fitting (baseline) model:

CFI ¼
ðw2b � df bÞ � ðw

2
m � df mÞ

w2b � df b

. (14)
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If our model fits perfectly, w2m ¼ df m and CFI ¼ 1. The worst possible fit for our
model is w2m ¼ w2b with df m ¼ df b; thus, CFI ¼ 0. The TLI and D2 are also typ-
ically between 0 and 1 with larger values indicating better fit, but values outside
that range are possible. Hu and Bentler (1999) suggested that values of TLI, CFI,
or D2 equal to at least .95 indicate good fit.

It is possible for a model that fits well globally to fit poorly in a specific region;
thus additional elements of model fit should be evaluated. Parameter estimates
should make sense for the substantive problem, and most factor loadings should
be statistically significant. It is useful to screen for extreme residuals, because
specific misfit may not be reflected in the SRMR summary statistic. Models that
are well matched to the data have moderate to large R2s for each MV and reliable
factors that explain substantial variance in the MVs.

The R2 is the proportion of total variance in an MV that is accounted for by
the common factors (i.e., the communality). Larger values are generally preferred.
Fornell and Larcker (1981) recommend interpreting a reliability coefficient, rZ,
for each factor:

rZ ¼

Pp
j¼1

lj

 !2

Pp
j¼1

lj

 !2

þ
Pp
j¼1

s2jj

, (15)

where s2jj is the (estimated) unique variance for the jth MV. A rule of thumb is that
.7 or larger is good reliability (Hatcher, 1994). Fornell and Larcker (1981) suggest
an additional coefficient, rvc(Z), as a measure of the average variance explained by
each factor in relation to the amount of variance due to measurement error:

rvcðZÞ ¼

Pp
j¼1

l2jPp
j¼1

l2j þ
Pp
j¼1

s2jj

. (16)

If rvc(Z) is less than .50, the variance due to measurement error is larger than the
variance measured by the factor; thus, the validity of both the factor and its
indicators is questionable (Fornell and Larcker, 1981, p. 46).

5. FA with non-normal continuous variables

In practice, MVs are often not approximately multivariate normal. This should be
evaluated before methods described in the previous sections are applied. If ML
estimation is used to fit an FA model to non-normal (continuous) data, the LR
statistic and SEs are likely to be incorrect (Curran et al., 1996; Yuan et al., 2005;
West et al., 1995). Thus, significance tests, CIs, and indices of model fit are
potentially misleading. Coefficients and tests of multivariate skewness and
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kurtosis (e.g., Mardia, 1970) are available in many computer programs and
should be used routinely. Outliers can cause non-normality, so screening for
outliers also should be common practice.

If non-normality is detected in CFA, one alternative is a weighted least squares
estimator called asymptotically distribution free (ADF) (Browne, 1982, 1984).
Parameter estimates minimize the sum of squared deviations between Rxx and
Ŝxx; weighted by approximate covariances among elements of Rxx. However, with
large p, it becomes impractical to invert the p� p weight matrix, and it appears
that large sample sizes (e.g., 1,000–5,000) are needed for the ADF method to
perform well (Curran et al., 1996; West et al., 1995).

A more generally applicable alternative is to use ML with a correction to the
LR statistic and SEs. The Satorra–Bentler correction (Satorra and Bentler, 1988;
Satorra, 1990) has performed well with moderate sample sizes such as 200–500
(Chou et al., 1991; Curran et al., 1996; Hu et al., 1992; Satorra and Bentler, 1988).
It is implemented in the EQS (Bentler, 1989) and Mplus (Muthén and Muthén,
2006) programs for CFA. ML with the Satorra–Bentler correction can also be
used for EFA and is implemented in Mplus. If SEs and an LR statistic are not
needed, conditional or iterative principle factors could be used for EFA because
multivariate normality is not required.

6. FA with categorical variables

Both EFA and CFA are commonly used to assess the dimensionality of question-
naires and surveys. Typically, such items have binary or ordinal response scales;
thus, classic FA is not appropriate for several reasons. For one, linear association is
not meaningful because absolute distances between categories are unknown. Thus,
the classic model of linear association among MVs, and between each MV and the
factor(s), is inapplicable. Also, Pearson correlations are attenuated for categorical
data, which can lead to underestimates of factor loadings if classic FA is applied.
Strictly speaking, discrete variables cannot follow the continuous multivariate
normal distribution. Serious biases can result when standard ML is used for FA
with Pearson correlations computed from categorical data (DiStefano, 2002; West
et al., 1995). An alternative to classic FA is needed for categorical data.

One solution is to posit that a continuous but unobserved distribution under-
lies the observed categories. In other words, in addition to an observed categorical
MV, x, there is an unobserved continuous variable, x*. It is assumed that the
categorization occurs such that:

x1 ¼

1; if x�1 � t1
2; if t1ox�1 � t2
::: :::

c� 1; if tc�2ox�1 � tc�1

c; if tc�1ox�1

8>>>>>><>>>>>>:
(17)
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where sj is the threshold separating category j from j+1 and j ¼ 1, 2,y, c. While a
linear relationship between x and the latent construct(s) is untenable, linearity is
reasonable for x*.

If it can be assumed for a given research context that the observed categorical
data arose through a categorization of unobserved continuous data, and that
every pair of unobserved variables is bivariate normal, then the correlations
among the underlying, continuous variables can be estimated by polychoric cor-

relations (called tetrachoric correlations when both variables are binary). Typi-
cally, a polychoric correlation is computed in two stages (Olsson, 1979). First, ts
are estimated for each MV based on the proportions of people responding in each
category (and the normality assumption). Second, the correlation between each
pair of underlying variables is estimated by ML. The likelihood is a function of
the ts and the bivariate frequencies. The classic FA model is then fitted to the
matrix of polychoric correlations. However, an alternate estimator is also needed.

Unweighted least squares requires no distributional assumptions about the
MVs and produces consistent estimates of the factor loadings. However, SEs,
significance tests, and most fit indices are not available; thus, it is only useful for
EFA. Weighted least squares (WLS) is a popular alternative that may be used for
EFA or CFA. When the asymptotic covariance matrix (i.e., the covariances
among all the elements in the covariance matrix among MVs) is used as the
weight matrix, WLS can provide accurate estimates of the SEs and the LR sta-
tistic. Unfortunately, inversion of the weight matrix (required for WLS) becomes
increasingly difficult as the number of MVs increases, and very large sample sizes
are needed for accurate estimation (West et al., 1995).

A compromise solution, called diagonally weighted least squares (DWLS;
Jöreskog and Sörbom, 2001), uses only the diagonal elements of the asymptotic
covariance matrix; thus, the weight matrix is much easier to invert. This results in
a loss of statistical efficiency, but corrective procedures (e.g., the Satorra–Bentler
correction) can be used to obtain accurate estimates of the SEs and the LR
statistic. DWLS with these corrections is sometimes called robust DWLS. Recent
simulations suggested that robust DWLS performs well, and better than WLS
based on a full weight matrix (Flora and Curran, 2004). Robust DWLS is im-
plemented in the LISREL (Jöreskog and Sörbom, 2005) and Mplus (Muthén and
Muthén, 2006) programs.

Another way to evaluate the latent dimensionality of categorical MVs is with
models and methods in the domain of item response theory (IRT; Embretson and
Reise, 2000; Thissen and Wainer, 2001). Unlike FA, IRT models were originally
developed for categorical data. As in FA, IRT models are based on the premise
that latent variables give rise to observed data, and parameters provide infor-
mation about relationships between MVs and factor(s). The exploratory–
confirmatory continuum described for FA also applies in IRT. In certain
circumstances, FA parameters may be converted by simple algebra to IRT
parameters (McLeod, Swygert, and Thissen, 2001; Takane and de Leeuw, 1987).
Multidimensional IRT (MIRT) methods (i.e., those involving more than one
common factor) are sometimes referred to as full information item factor analysis
(Bock et al., 1988; Muraki and Carlson, 1995) in acknowledgment of the
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similarities between classic FA and IRT. ‘‘Full information’’ reflects the fact that
IRT models are fitted to the raw data directly rather than to summary statistics
such as polychoric correlations. An ML-based estimation scheme described by
Bock and Aitkin (1981) is typically used to fit the models.

MIRT is not as widely used as categorical FA, probably because software
development has lagged behind that for FA. At the time of this writing, the
commercially available TESTFACT program (v.4; Bock et al., 2002) performs
exploratory MIRT and fits one very specific type of hierarchical confirmatory
model known as the bi-factor model (Holzinger and Swineford, 1937; Gibbons
and Hedeker, 1992). However, the only models implemented are for binary MVs.
The ltm package (Rizopoulos, 2006) for R offers slightly more flexibility in the
factor structure, but is limited to dichotomous variables and a maximum of two
latent factors. The POLYFACT program (Muraki, 1993) performs exploratory
MIRT for ordinal MVs, but this program has not been as widely distributed.
Software for general kinds of confirmatory MIRT models is not readily available.

MIRT methods are appealing because the model is fitted to the data directly,
thus polychoric correlations need not be calculated. However, the disadvantage is
that m-dimensional numerical integration is required (m ¼ number of factors);
thus, solutions are more difficult to obtain as m increases. Nevertheless, Markov
chain Monte Carlo estimation methods may hold promise for use with MIRT
models (Edwards, 2006), and we anticipate advancements in software for MIRT
in future years.

7. Sample size in FA

For classic FA (without assumption violations), how many observations are
needed for accurate estimation? Historically, minimum Ns have been suggested
such as 100 (Gorsuch, 1983; Kline, 1979), 200 (Guilford, 1954), 250 (Cattell,
1978), or 300 (Comrey and Lee, 1992), or minimum ratios of N to p such as 3
(Cattell, 1978), or 5 (Gorsuch, 1983; Kline, 1979). More recently, MacCallum,
Widaman, Zhang, and Hong (1999) astutely pointed out that such rules of thumb
are meaningless because the optimal N depends on characteristics of the study.
These authors showed that under certain conditions 60 observations can be ad-
equate, whereas in other situations, more than 400 observations are needed. Re-
sults apply to both EFA and CFA.

The theoretical arguments presented by MacCallum et al., 1999 (see also
MacCallum and Tucker, 1991) are based on the fact that nonzero correlations
between common and unique factors, and among unique factors, are a major
source of error in the estimation of factor loadings. The correlations tend to be
farther from zero with smaller N. However, small uniquenesses (e.g., r.3), and
highly overdetermined factors, having four or more indicators with large loadings,
can offset the limitations of small samples. Uniquenesses act as weights on the
matrices of correlations between unique and common factors and among
unique factors. The less these correlations are weighted, the less impact they have
on the FA results. Further, with the number of MVs held constant, increasing the
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number of indicators per factor reduces m, which reduces the number of cor-
relations among common and unique factors and among unique factors, giving
them less overall influence on results.

MacCallum et al. (1999) found that when uniquenesses were small (.2, .3, or .4),
accurate recovery of K could be achieved with around 60 observations with highly
overdetermined factors, and 100 observations with weakly determined factors
having 2 or 3 indicators. When uniquenesses were large (.6, .7, or .8), 400 obser-
vations were inadequate for recovery of K unless the factors had 6 or 7 strong
indicators each, in which case NZ200 was required. When uniquenesses varied
over MVs (.2, .3,y, .8), N ¼ 60 provided pretty good recovery of K for factors
with 6 or 7 strong indicators, but NZ200 was needed with weakly determined
factors. These results were observed both with (MacCallum et al., 2001) and
without (MacCallum et al., 1999) mis-specification of the model in the population.

The sample size question is perhaps even more crucial when analyzing cat-
egorical MVs. As mentioned above, WLS requires many observations (perhaps
several thousand) for stable parameter estimates (Potthast, 1993), primarily be-
cause of the potentially massive number of parameters in the weight matrix.
Robust DWLS has performed well with smaller samples. For example, Flora and
Curran (2004) found that a sample size of 200 was adequate for relatively simple
CFA models (e.g., 10 or 20 MVs and 1 or 2 factors), MVs with 2 or 5 categories,
and communalities of .49.

With either WLS or robust DWLS, adequate sample size is needed for esti-
mation of polychoric correlations because sparseness in the 2-way contingency
tables used in their computation can cause serious instability in the correlation
estimate. Sparseness is especially problematic for two dichotomous MVs, because
a tetrachoric correlation is inestimable when there is a zero cell in the 2� 2
contingency table. In addition, no easily implemented method exists to deal with
missingness, and the common practice of listwise deletion can further exacerbate
the problem. Robust DWLS is a relatively new procedure and additional research
on the sample-size question is warranted.

8. Examples of EFA and CFA

In this section we present three example FAs. Many software packages are cap-
able of estimating some (or all) of the FA models discussed in this chapter. We
selected CEFA (Browne et al., 2004) because it is one of the most flexible EFA
programs, and we chose LISREL (Jöreskog and Sörbom, 2005), and Mplus
(Muthén and Muthén, 2006) to illustrate CFA because they are very popular,
easy to use, and have many features. Other popular software programs that
perform EFA and CFA include SAS (SAS Institute, 2006), Splus (Insightful
Corporation, 2005), and R (R Development Core Team, 2005); all SEM pro-
grams carry out CFA. Our examples use only a fraction of currently available
options in the selected programs and the software is always expanding and im-
proving. Nevertheless, these examples should provide a valuable introduction to
persons unfamiliar with the software or with FA.
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8.1. EFA with continuous variables using CEFA

The first example is an EFA carried out using CEFA.1 Continuous multivariate
normal data were simulated using Mplus from a model with three correlated
factors and 18 MVs (N ¼ 400). For each factor, six different MVs had nonzero
loadings, and all other MVs had zero loadings. The population factor loadings
and communalities are given in Table 1. Population correlations among factors i

and j (rij) were: r12 ¼ .3, r13 ¼ .5, and r23 ¼ .4. The total sample of 400 was
divided in half to provide one sample for EFA and another for a follow-up CFA
(described in the next section).

For EFA, we analyzed a Pearson correlation matrix using ML (presuming mul-
tivariate normality). A scree plot of the eigenvalues, given in Fig. 3, suggests that no
more than four factors should be extracted. Table 2 compares the fit of models with
between one and four factors. The maximum absolute residual is in a correlation
metric; thus, values of .33 and .29 are very large. The information in Table 2 in-
dicates that fit is very poor for the one- and two-factor models. However, the three-
factor model fits well, and is not significantly improved upon by the addition of a
fourth factor. A w2-difference test comparing the three- and four-factor (nested)
models is nonsignificant (w2(15) ¼ 21.99, p ¼ .108). With real data, the substantive
interpretability of the rotated factor loadings with different numbers of factors is as
important as the fit and should be considered as part of model selection.

Estimated factor loadings, their SEs, and communalities for the three-factor model
are given in Table 1. The loadings have been rotated using the oblique quartimax
criterion. The estimated parameters match up well with the values used to generate
the data. The estimated correlations among factors and their SEs were: r12 ¼ .37
(.06), r13 ¼ .47 (.07), and r23 ¼ .44 (.07). These are also close to the population values.

CEFA is unusual among EFA programs because it provides SEs (and CIs) for
the parameters which can be useful for assigning MVs to factors. Often, factor
assignment is done using an arbitrary criterion such as ‘‘MVs with a loading of
.30 or larger load on the factor’’. Arbitrary criteria are still needed when SEs
are available, but sampling variability can be incorporated into the process. In
Table 1, the MVs we assigned to each factor are highlighted in bold. In this case,
loadings are either small or large so factor assignment is fairly straightforward.

8.2. CFA with continuous variables using LISREL

Once a structure has been determined from an EFA, it is useful to cross-validate it
with CFA using a new sample. Splitting the initial sample in half is often a prac-
tical way to cross-validate EFA results. In this section, the other half of the sim-
ulated data described in the previous section is analyzed with CFA using LISREL.

Performing CFA in LISREL is a two-stage process. In the first stage, a co-
variance matrix is estimated from the raw data using the PRELIS program, which
is distributed with LISREL. The PRELIS syntax we used is given in Appendix A.

1 The CEFA software and user’s manual may be downloaded for free from http:

//faculty.psy.ohio state.edu/browne/software.php.
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The first two lines are the title, followed by a data format line (DA) that specifies
the number of indicators (NI), the number of observations (NO), and where the
data are stored (FI). The last line tells PRELIS to output (OU) a sample co-
variance matrix (CM) from the data described in the preceding line. The output
file will be created in the same folder as the syntax file.

Table 1

Factor loadings and communalities for the EFA example

Population Values Sample Estimates (N ¼ 200)

MV lj1 lj2 lj3 h2
j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ ĥ

2

j

1 .6 0 0 .36 .61 �.02 .07 .41

(.06) (.07) (.07)

2 .6 0 0 .36 .63 �.03 .04 .40

(.06) (.07) (.07)

3 .6 0 0 .36 .48 �.12 .23 .33

(.07) (.08) (.08)

4 .7 0 0 .49 .71 .05 �.02 .52

(.06) (.06) (.06)

5 .7 0 0 .49 .64 .07 �.05 .42

(.06) (.07) (.07)

6 .7 0 0 .49 .71 .04 �.03 .51

(.06) (.06) (.06)

7 0 .7 0 .49 �.05 .70 .05 .50

(.05) (.06) (.06)

8 0 .7 0 .49 �.08 .81 �.01 .60

(.04) (.05) (.05)

9 0 .7 0 .49 .07 .65 .10 .53

(.05) (.07) (.06)

10 0 .8 0 .64 .04 .81 �.04 .65

(.04) (.05) (.05)

11 0 .8 0 .64 .05 .80 �.03 .65

(.04) (.05) (.05)

12 0 .8 0 .64 .04 .76 �.06 .65

(.04) (.05) (.05)

13 0 0 .6 .36 �.11 .08 .72 .50

(.06) (.06) (.06)

14 0 0 .6 .36 �.02 �.05 .67 .41

(.06) (.06) (.07)

15 0 0 .6 .36 .06 .22 .42 .34

(.07) (.08) (.08)

16 0 0 .8 .64 .03 .10 .65 .50

(.06) (.06) (.06)

17 0 0 .8 .64 .01 .01 .80 .66

(.05) (.05) (.05)

18 0 0 .8 .64 .11 �.06 .75 .61

(.05) (.05) (.06)

Note: MV, measured variable; ljk, true factor loading for MV j on factor k; h2j ; true communality for

MV j; k̂jkðSEÞ; estimated factor loading for MV j on factor k, with its standard error; ĥ
2

j ; estimated

communality for MV j. The estimated loadings have been rotated using the oblique quartimax criterion.
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The second stage is to estimate the CFA model in LISREL. The syntax we used
is given in Appendix A. The first line provides a title (TI) for the output file. The
second line describes the data (DA) being used in terms of number of indicators
(NI), number of observations (NO), number of groups (NG), and the kind of
matrix (MA) that is to be analyzed. The third line specifies the file that contains the
matrix to be analyzed. The next line contains a model statement (MO) that
describes the CFA generally. In addition to indicating the number of MVs to be
modeled (NX) and the number of factors (NK), this line indicates how the factor
loading matrix (LX), error covariance matrix (TD), and the inter-factor correlation
matrix (PH) should be structured. For this example, the error covariance matrix is
diagonal (DI) and freely estimated (FR) and the inter-factor correlation matrix is
standardized (i.e., it has 1’s on the diagonal) and symmetric (ST). The factor-
loading matrix is set to be full (FU) and fixed (FI) meaning there is a complete 18
by 3 loading matrix (K), but none of the loadings are to be estimated. This is not
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Fig. 3. Scree plot for EFA example.

Table 2

Comparisons among EFA models with differing numbers of factors

m w2(df) Max. Residual RMSEA (90% CI)

1 645.64 .33 .14

(135) (.13, .15)

2 300.69 .29 .09

(118) (.08, .10)

3 105.58 .08 .01

(102) (.00, .04)

4 83.59 .09 .00

(87) (.00, .04)

Note: m, number of factors; Max. Residual, maximum absolute correlation residual (range: 0–1);

RMSEA (90% CI), root mean square error of approximation, with 90% confidence interval.
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the model we are interested in, but this is remedied in the next three lines. These
lines, each of which begins with FR, indicate to LISREL which elements of the
factor loading matrix are to be estimated. For instance, LX 3 1 is the factor loading
for the third measured variable on the first factor, found in row 3, column 1 of K.
The last two lines indicate the output desired. The PD line produces a path
diagram of the model being estimated, which is a convenient way to verify that the
model being estimated is the desired model. The final line is an output line (OU),
which defines the structure of the output file (RS prints residuals, ND ¼ 2 sets the
number of decimal places in the output file to two) and indicates which method of
estimation (ME) should be used (ML indicates maximum likelihood).

There were no improper estimates such as negative variances, thus we proceed
to evaluation of model fit. Though LISREL produces numerous global fit sta-
tistics, we followed Hu and Bentler’s (1999) recommendations (described above)
for selecting and evaluating a subset of them. The model fits very well (SRMR:
.04; RMSEA: .00 with 90% CI: .00, .03; TLI: 1.00; CFI: 1.00). LISREL also
provides a great deal of information about residuals which are differences be-
tween the sample covariance matrix and the model-implied covariance matrix
(labeled the ‘‘fitted covariance matrix’’ in the output). Residuals are presented in
both raw and standardized metrics, and plotted several ways. A model that fits
the data well has mostly small residuals that do not show any particular pattern.

The estimated factor loadings, their SEs and the communalities (usually
referred to as squared multiple correlations in a CFA context) are given in
Table 3. Correlations among factors and their SEs were: r12 ¼ .43 (.07), r13 ¼ .37
(.07), and r23 ¼ .54 (.06). The estimates match the true values reasonably well;
accuracy improves with larger samples. LISREL provides t-statistics for testing
whether each factor loading or inter-factor correlation is significantly different
from 0. All the estimates were significant (a ¼ .05) for this example.

8.3. CFA with categorical MVs using Mplus

The data for this example were simulated using Mplus from a model with three
correlated factors and 18 MVs (N ¼ 400). As before, there were six indicators for
each factor. The variables are binary (coded 0 or 1), thus each one has a single
threshold parameter. The population thresholds, factor loadings and commu-
nalities are given in Table 4. Population correlations among factors were:
r12 ¼ .3, r13 ¼ .5, and r23 ¼ .4.

The Mplus syntax we used for the CFA is given in Appendix B. Following the
title is the DATA line that specifies a path for the raw data file. The VARIABLE
command specifies names for the variables. For the correct analysis, it is ex-
tremely important to indicate here that the MVs are categorical. The MODEL
statement specifies the model. BY indicates a directional path and WITH requests
estimation of a correlation or covariance. In the context of CFA, relationships
between MVs and factors are directional paths; thus, ‘‘f1 BY y1-y6’’ indicates that
factor 1 should load on MVs y1, y2, y3, y4, y5, and y6. An asterisk is used to
override the default method for setting the scale (fixing the first factor loading for
each factor to one) and the last three lines of the MODEL statement fix the factor
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variances to 1. The ANALYSIS line specifies the estimation method; WLSMV is
robust DWLS. Finally, the OUTPUT line controls elements of the output. For
categorical MVs, thresholds are obtained by requesting sample statistics
(SAMPSTAT).

There were no improper estimates such as negative variances and global model
fit was very good (SRMR: .07; RMSEA: .02; TLI: .98; CFI: .98). The estimated

Table 3

Factor loadings and communalities for the CFA example

Sample Estimates (N ¼ 200)

MV l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2
j

1 .60 – – .36

(.07)

2 .58 – – .32

(.07)

3 .57 – – .31

(.07)

4 .65 – – .45

(.07)

5 .66 – – .41

(.07)

6 .79 – – .59

(.07)

7 – .75 – .56

(.06)

8 – .73 – .53

(.06)

9 – .79 – .56

(.07)

10 – .78 – .61

(.06)

11 – .91 – .69

(.06)

12 – .91 – .72

(.06)

13 – – .58 .35

(.07)

14 – – .61 .36

(.07)

15 – – .64 .42

(.07)

16 – – .75 .59

(.06)

17 – – .81 .64

(.06)

18 – – .83 .67

(.06)

Note: MV, measured variable; –, loading was fixed to 0 (not estimated); k̂jkðSEÞ; estimated factor

loading for MV j on factor k, with its standard error; R2
j ; squared multiple correlation for MV j.
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thresholds, factor loadings, their SEs, and the squared multiple correlations are
given in Table 5. Correlations among factors and their SEs were: r12 ¼ .48 (.08),
r13 ¼ .48 (.08), and r23 ¼ .41 (.07). The estimates are fairly close to the generating
values. All of the loadings and inter-factor correlations were significantly
(a ¼ .05) different from 0 for this example.

For comparison, the analysis was redone using classic WLS (with a full weight
matrix). The only change needed in the Mplus input file is the name of the
estimator in the ANALYSIS statement. There were no improper estimates or
other estimation difficulties, but global model fit declined quite a bit (SRMR: .12;
RMSEA: .05; TLI: 88; CFI: .90) compared to the robust DWLS solution. WLS
estimates of the thresholds, factor loadings, and communalities are given in
Table 5. Correlations among factors and their SEs were: r12 ¼ .49 (.05), r13 ¼ .55
(.05), and r23 ¼ .49 (.04). Two-thirds of the robust DWLS factor loadings are
closer to the true values than the WLS estimates. This is consistent with Flora and
Curran’s (2004) finding that robust DWLS performs better than WLS in smaller
(realistic) sample sizes.

9. Additional resources

This has been an introduction to EFA and CFA, with brief mention of the closely
related procedures PCA and MIRT. For additional information, readers are
referred to several textbooks on FA and related methods (Bartholomew and

Table 4

Population parameters for the CFA example with categorical MVs

MV tj lj1 lj2 lj3 h2j

1 �.5 .5 0 0 .25

2 0 .5 0 0 .25

3 .5 .5 0 0 .25

4 �.5 .6 0 0 .36

5 0 .6 0 0 .36

6 .5 .6 0 0 .36

7 �.5 0 .6 0 .36

8 0 0 .6 0 .36

9 .5 0 .6 0 .36

10 �.5 0 .7 0 .49

11 0 0 .7 0 .49

12 .5 0 .7 0 .49

13 �.5 0 0 .5 .25

14 0 0 0 .5 .25

15 .5 0 0 .5 .25

16 �.5 0 0 .7 .49

17 0 0 0 .7 .49

18 .5 0 0 .7 .49

Note: MV, measured variable; tj, true threshold for MV j; ljk, true factor loading for MV j on factor k;

h2j ; true communality for MV j.
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Knott, 1999; Bollen, 1989; Brown, 2006; Comrey and Lee, 1992; Gorsuch, 1983;
McDonald, 1985; Thissen and Wainer, 2001). Many special issues in FA were not
mentioned here, such as multiple group analyses, hierarchical FA, and missing
data. Some of these topics are covered in the texts listed above, but developments
are ongoing and the methodological literature should be consulted for the most
current developments in FA.

Table 5

Factor loadings, thresholds, and communalities for the CFA example with categorical MVs

Robust DWLS WLS

MV t̂j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2
j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2

j

1 �.52 .45 – – .20 .48 – – .23

(.08) (.06)

2 �.03 .49 – – .24 .50 – – .25

(.07) (.05)

3 .38 .42 – – .17 .62 – – .38

(.08) (.06)

4 �.55 .52 – – .27 .59 – – .35

(.08) (.05)

5 �.01 .55 – – .31 .64 – – .41

(.07) (.05)

6 .43 .64 – – .41 .66 – – .44

(.08) (.06)

7 �.44 – .67 – .45 – .74 – .54

(.06) (.04)

8 .06 – .59 – .35 – .57 – .33

(.06) (.04)

9 .43 – .71 – .51 – .82 – .67

(.06) (.04)

10 �.62 – .65 – .43 – .79 – .62

(.06) (.04)

11 .04 – .77 – .59 – .84 – .70

(.05) (.03)

12 .52 – .78 – .61 – .74 – .54

(.06) (.04)

13 �.46 – – .61 .37 – – .66 .43

(.06) (.04)

14 �.01 – – .58 .34 – – .73 .53

(.06) (.04)

15 .53 – – .53 .28 – – .57 .32

(.08) (.05)

16 �.57 – – .59 .35 – – .72 .52

(.06) (.04)

17 �.01 – – .73 .54 – – .89 .80

(.05) (.03)

18 .53 – – .69 .48 – – .86 .74

(.07) (.04)

Note: MV, measured variable; ŝj ; estimated threshold for MV j; k̂jkðSEÞ; estimated factor loading for

MV j on factor k, with its standard error; R2
j ; squared multiple correlation for MV j.
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Appendix A:. PRELIS andLISREL code for the CFA example with continuousMVs

PRELIS Code

PRELIS code to get covariance matrix for
FA chapter continuous CFA example
DA NI ¼ 18 NO ¼ 200 FI ¼ ‘***insert your directory here***/conFA-2.dat’
OU CM ¼ conFA-2.cm

LISREL Code

TI FA chapter continuous CFA example
DA NI ¼ 18 NO ¼ 200 NG ¼ 1 MA ¼ CM
CM ¼ conFA-2.cm
MO NX ¼ 18 NK ¼ 3 LX ¼ FU,FI TD ¼ DI,FR PH ¼ ST
FR LX 1 1 LX 2 1 LX 3 1 LX 4 1 LX 5 1 LX 6 1
FR LX 7 2 LX 8 2 LX 9 2 LX 10 2 LX 11 2 LX 12 2
FR LX 13 3 LX 14 3 LX 15 3 LX 16 3 LX 17 3 LX 18 3
PD
OU RS ND ¼ 2 ME ¼ML

Appendix B:. Mplus code for CFA example with categorical MVs

TITLE: CFA with categorial measured variables in Mplus
DATA: FILE IS catFA.dat;
VARIABLE: NAMES ARE y1-y18;

CATEGORICAL ARE y1-y18;
MODEL: f1 BY y1-y6;

f2 BY y7-y12;
f3 BY y13-y18;
f1 WITH f2 f3;
f2 WITH f3;
f1 BY y1*.5;
f2 BY y7*.5;
f3 BY y13*.5;
f1@1;
f2@1;
f3@1;

!ANALYSIS: ESTIMATOR ¼WLS;
ANALYSIS: ESTIMATOR ¼WLSMV;
OUTPUT: SAMPSTAT;

References

Bartholomew, D.J., Knott, M. (1999). Latent Variable Models and Factor Analysis, 2nd ed. Oxford

University Press, New York.

Factor analysis and related methods 391



Bartlett, M.S. (1950). Tests of significance in factor analysis. British Journal of Psychology: Statistical

Section 3, 77–85.

Bentler, P.M. (1989). EQS: Structural Equations Program Manual. BMDP Statistical Software, Los

Angeles.

Bentler, P.M. (1990). Comparative fit indices in structural models. Psychological Bulletin 107, 238–246.

Bentler, P.M. (1995). EQS Structural Equations Program Manual. Multivariate Software, Encino, CA.

Bentler, P.M., Bonett, D.G. (1980). Significance tests and goodness-of-fit in the analysis of covariance

structures. Psychological Bulletin 88, 588–606.

Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An

application of the EM algorithm. Psychometrika 46, 443–459.

Bock, R.D., Gibbons, R., Muraki, E.J. (1988). Full information item factor analysis. Applied Psy-

chological Measurement 12, 261–280.

Bock, R.D., Gibbons, R., Schilling, S.G., Muraki, E., Wilson, D.T., Wood, R. (2002). TESTFACT 4

[Computer Software]. Scientific Software International, Inc., Chicago, IL.

Bollen, K. (1988). A new incremental fit index for general structural equation models. Paper presented at

Southern Sociological Society Meeting, Nashville, TN.

Bollen, K. (1989). Structural Equations with Latent Variables. Wiley, New York.

Brown, T.A. (2006). Confirmatory Factor Analysis for Applied Research. Guilford Press, New York.

Browne, M.W. (1982). Covariance structures. In: Hawkins, D.M. (Ed.), Topics in Applied Multivariate

Analysis. Cambridge University Press, Cambridge, pp. 72–141.

Browne, M.W. (1984). Asymptotic distribution free methods in the analysis of covariance structures.

British Journal of Mathematical and Statistical Psychology 37, 127–141.

Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate

Behavioral Research 21, 230–258.

Browne, M.W., Cudeck, R. (1993). Alternative ways of assessing model fit. In: Bollen, K.A., Long, J.S.

(Eds.), Testing Structural Equation Models. Sage, Newbury Park, CA, pp. 136–162.

Browne, M.W., Cudeck, R., Tateneni, K., Mels, G. (2004). CEFA: Comprehensive Exploratory

Factor Analysis, Version 2.00 [Computer software and manual]. Retreived from

http://faculty.psy.ohio-state.edu/browne/software.php.

Browne, M.W., Mels, G., Coward, M. (1994). Path analysis: RAMONA. In: Wilkinson, L., Hill, M.A.

(Eds.), Systat: Advanced Applications. SYSTAT, Evanston, IL, pp. 163–224.

Cattell, R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1, 245–276.

Cattell, R.B. (1978). The Scientific Use of Factor Analysis. Plenum, New York.

Chou, C.P., Bentler, P.M., Satorra, A. (1991). Scaled test statistic and robust standard errors for non-

normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical

and Statistical Psychology 44, 347–357.

Comrey, A.L., Lee, H.B. (1992). A First Course in Factor Analysis. Erlbaum, Hillsdale, NJ.

Crawford, C.B., Ferguson, G.A. (1970). A general rotation criterion and its use in orthogonal rota-

tion. Psychometrika 35, 321–332.

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological

Bulletin 105, 317–327.

Cudeck, R. (1991). Noniterative factor analysis estimators with algorithms for subset and instrumental

variable selection. Journal of Educational Statistics 16, 35–52.

Curran, P.J., Bollen, K.A., Chen, F., Paxton, P., Kirby, J.B. (2003). Finite sampling properties of the

point estimators and confidence intervals of the RMSEA. Sociological Methods and Research 32,

208–252.

Curran, P.J., West, S.G., Finch, J.F. (1996). The robustness of test statistics to nonnormality and

specification error in confirmatory factor analysis. Psychological Methods 1, 16–29.

DiStefano, C. (2002). The impact of categorization with confirmatory factor analysis. Structural

Equation Modeling 9, 327–346.

Embretson, S.E., Reise, S.P. (2000). Item Response Theory for Psychologists. Lawrence Erlbaum

Associates, Mahwah, NJ.

Edwards, M.C. (2006). A Markov chain Monte Carlo approach to confirmatory item factor analysis.

Unpublished doctoral dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC.

C. M. Woods and M. C. Edwards392

http://faculty.psy.ohio-state.edu/browne/software.php


Flora, D.B., Curran, P.J. (2004). An empirical evaluation of alternative methods of estimation for

confirmatory factor analysis with ordinal data. Psychological Methods 9, 466–491.

Fornell, C., Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables

and measurement error. Journal of Marketing Research 18, 39–50.

Gibbons, R.D., Hedeker, D.R. (1992). Full-information item bi-factor analysis. Psychometrika 57,

423–436.

Gorsuch, R. (1983). Factor Analysis, 2nd ed. Erlbaum, Hillsdale, NJ.

Guilford, J.P. (1954). Psychometric Methods, 2nd ed. McGraw-Hill, New York.

Guttman, L. (1940). Multiple rectilinear prediction and the resolution into components. Psycho-

metrika 5, 75–99.

Hatcher, L. (1994). A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation

Modeling. SAS, Cary, NC.

Hendrikson, A.E., White, P.O. (1964). PROMAX: A quick method for rotation to oblique simple

structure. British Journal of Statistical Psychology 17, 65–70.

Holzinger, K.J., Swineford, F. (1937). The bi-factor model. Psychometrika 2, 41–54.

Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika 30,

179–185.

Hu, L., Bentler, P.M. (1998). Fit indices in covariance structure modeling: Sensitivity to underpa-

rameterized model misspecification. Psychological Methods 3, 424–453.

Hu, L., Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conven-

tional criteria versus new alternatives. Structural Equation Modeling 6, 1–55.

Hu, L., Bentler, P.M., Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted?

Psychological Bulletin 112, 351–362.

Insightful Corporation (2005). S-PLUS Version 7.0 for Windows (Computer Software). Insightful

Corporation, Seattle, Washington.

Jennrich, R.I., Sampson, P.F. (1966). Rotation for simple loadings. Psychometrika 31, 313–323.
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Abstract

Structural equation modeling (SEM) is a multivariate statistical technique for

testing hypotheses about the influences of sets of variables on other variables.

Hypotheses can involve correlational and regression-like relations among

observed variables as well as latent variables. The adequacy of such hypotheses

is evaluated by modeling the mean and covariance structures of the observed

variables. After an introduction, we present the statistical model. Then we

discuss estimation methods and hypothesis tests with an emphasis on the

maximum likelihood method based on the assumption of multivariate normal

data, including the issues of model (parameter) identification and regularity

conditions. We also discuss estimation and testing with non-normal data and

with misspecified models, as well as power analysis. To supplement model

testing, fit indices have been developed to measure the degree of fit for a SEM

model. We describe the major ones. When an initial model does not fit well,

Lagrange Multiplier (score) and Wald tests can be used to identify how an

initial model might be modified. In addition to these standard topics, we discuss

extensions of the model to multiple groups, to repeated observations (growth

curve SEM), to data with a hierarchical structure (multi-level SEM), and to

nonlinear relationships between latent variables. We also discuss more practical

topics such as treatment of missing data, categorical dependent variables, and

software information.

1. Models and identification

1.1. Introduction

Structural equation modeling (SEM) is a multivariate statistical technique
designed to model the structure of a covariance matrix (sometimes the structure
of a mean vector as well) with a relatively few parameters, and to test the
adequacy of such a hypothesized covariance (mean) structure in its ability to
reproduce sample covariances (means). An interesting model would be well
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motivated substantively and provide a parsimonious and adequate representation
of the data. SEM emerged from several different modeling traditions, e.g., mul-
tiple regression, path analysis, exploratory factor analysis (Lawley and Maxwell,
1971), confirmatory factor analysis (Jöreskog, 1969), and simultaneous equation
models in econometrics. It is meant to be a unifying methodology that can handle
these various models as special cases, as well as generalized models that are hard
or impossible to handle with earlier methods. Initially, SEM was developed in the
social sciences, especially in psychology and sociology, where it is still popular
(e.g., MacCallum and Austin, 2000). However, it has become employed as a
useful research tool in a variety of other disciplines such as education and
marketing to more medically oriented fields such as epidemiology, imaging, and
other biological sciences (see e.g., Batista-Foguet et al., 2001; Bentler and Stein,
1992; Davis et al., 2000; Dishman et al., 2002; Duncan et al., 1998; Hays et al.,
2005; Peek, 2000; Penny et al., 2004; Shipley, 2000; van den Oord, 2000).

Numerous texts have been written on SEM. Introductory-level textbooks
include Byrne (2006), Dunn et al. (1993), Kline (2005), Loehlin (2004), Maruyama
(1998), Raykov and Marcoulides (2006). The most well-known intermediate-level
text is Bollen (1989). Two more advanced overviews are those of Bartholomew
and Knott (1999) and Skrondal and Rabe-Hesketh (2004). Some collections of
articles on a variety of topics related to SEM can be found in Berkane (1997),
Marcoulides and Schumacker (1996, 2001), and Schumacker and Marcoulides
(1998). The most complete and somewhat technical overview is given by the 18
chapters in Lee’s (2007) Handbook of Structural Equation Models.

Structural models are often represented by a path diagram in which squares
represent observed variables, ovals represent hypothesized latent variables, uni-
directional arrows represent regression-type coefficients, and bidirectional arrows
represent unanalyzed correlations or covariances. Any such diagram is precisely
synonymous with a set of equations and variance and covariance specifications
(see e.g., Raykov and Marcoulides, 2006 (Chapter 1) for more details). In this
section we concentrate on the algebraic and statistical representation.

1.2. Structural equation models

By late 1970s, full SEM formulations were given by several authors. The earliest
and most widely known is the factor analytic simultaneous equation model based
on the work of Jöreskog, Keesling, and Wiley (see Bentler, 1986 for a history).
It is widely known as the Lisrel model, after Jöreskog and Sörbom’s (1979, 1981)
computer program. Another approach is the Bentler–Weeks model (Bentler and
Weeks, 1980). These models are formally equivalent, though differing in apparent
mathematical structure. We start with the Bentler–Weeks structure. Let n be a
vector of independent variables and g be a vector of dependent variables, where
‘‘independent’’ variables may be correlated but, unlike dependent variables, are
not explicit functions of other variables. The structural equation that relates these
variables is

g ¼ LgþMn, (1)
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where L and M are coefficient matrices. Elements of these matrices are known as
path coefficients, and would be shown as unidirectional arrows in a diagram.
Note that this allows dependent variables to be influenced not only by inde-
pendent variables, as in regression and linear models in general, but also by other

dependent variables. Let us denote B ¼
L 0

0 0

� �
; C ¼

M

I

� �
; and m ¼

g

n

 !
;

where I is the identity matrix of an appropriate order. Then (1) can be expressed
in an alternative form

m ¼ Bm þ Cn. (2)

Now assume that I–B is non-singular so that the inverse of I–B exists, then

m ¼ ðI � BÞ�1Cn. (3)

This gives an expression of all the variables as a linear combination of the
independent variables. For generality, we allow both independent and dependent
variables to be observed variables, in the data file, as well as hypothesized latent
variables such as factors, residuals, and so on. Thus, we introduce the matrix G
whose components are either 1 or 0 which connects n to the observed variables x
such that x ¼ Gn. Let l ¼ E(x), lx ¼ E(n), R ¼ Cov(x), and U ¼ Cov(n). Various
covariances fij are shown as two-way arrows in path diagrams. The full mean and
covariance structure analysis model (MCSA) follows as:

Mean structure : l ¼ GðI � BÞ�1Clx (4)

Covariance structure : R ¼ GðI � BÞ�1CUC0ðI � BÞ�1
0

G 0. (5)

When the mean structure is saturated, i.e., l does not have a structure as given
by (4), then we may consider only the covariance structure (5). This explains the
name covariance structure analysis (CSA) as another generic name for SEM in
which means are ignored.

In the above, there is no obvious use of latent variables. Bollen (2002) provides
a review of several definitions of such variables. Among these, Bentler’s (1982)
approach (see also Bentler and Weeks, 1980) is the clearest to differentiate a latent
variable model from a measured variable model. In this approach, the ranks
or dimensionality of U and R are compared. If dim(U) 4 dim(R), i.e., the
dimensionality of the independent variables exceeds that of the data variables, the
model is a latent variable model. This means that the measured variables x may
be generated by the n, but the n cannot be generated by the x. This clarifies some
traditional controversies in the field, e.g., it follows immediately that principal
components analysis is not a latent variable model, since the principal compo-
nents exist in the space of measured variables; and similarly that factor analysis,
although typically talked about as a dimension-reducing method, actually is a
dimension-inducing method since the space of factors is at least the number of
variables plus one.
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In a simple variant of the factor analytic simultaneous equation model,
the measurement model, a factor analysis model, relates observed to latent
variables via

x ¼ lþ Knþ e. (6)

Here K is a matrix of factor loadings, n a vector of factors, and e a vector of
residuals often known as unique variates. The simultaneous equation model
relates the latent variables to each other via

n ¼ Bnþ f, (7)

where B is a coefficient matrix and f a vector of residuals. Equation (7) allows any
factor xi to be regressed on any other factorxj : Assuming no correlations between
n, f, e, and a full rank (I –B), we can rewrite

n ¼ ðI � BÞ�1f, (8)

x ¼ lþ KðI � BÞ�1fþ e. (9)

If the means are unstructured, l ¼ E(x). With a structure, we take l ¼ 0 in (9)
and let lz ¼ E(f), and with the covariance matrix of the f and the e given as Uz

and W, respectively, the mean and covariance structure of the model are given as:

l ¼ KðI � BÞ�1lz, (10)

R ¼ KðI � BÞ�1UzfðI � BÞ�1g0K0 þW. (11)

This representation makes it easy to show that the confirmatory factor analysis
model

R ¼ KUzK
0
þW (12)

can be obtained as a special case by setting B ¼ 0.
These two representation systems can also be made even more abstract. Con-

sidering the elements of the matrices in (4)–(5) or (10)–(11) as generic parameters
arranged in the vector h, we may write the SEM null hypothesis as l ¼ l(h) and
R ¼ R(h). The statistical problem is one of estimating the unknown parameters in
h, and evaluating whether the population means l and covariances R are con-
sistent with the null hypothesis or whether l 6¼ l(h) and/or R 6¼R(h). This notation
can be made even more compact by arranging b ¼ {l0, vech(R)0}0, where vech(A)
vectorizes the lower or upper triangle of a symmetric matrix A, and writing
b ¼ b (h). When only a covariance structure is of interest, we may write r ¼ r(h),
where r ¼ vech(R). We use this notation extensively.

1.3. Model identification

Clearly SEM models can have many parameters, and hence, the identification of
parameters in the model is an important issue. Model identification is discussed in
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detail in Bollen (1989) and especially in Bekker et al. (1994). The concept of model
degrees of freedom is essential to understand identification. Let p be the number
of observed variables. The number of non-redundant elements in the mean vector
and covariance matrix is p+p(p+1)/2. Then the degrees of freedom in SEM is
given by df ¼ p(p+1)/2+p – q1 for MCSA; df ¼ p(p+1)/2 – q2 for CSA, where q1
and q2 are the number of parameters to be estimated. When the model df is
positive, that is, when the number of non-redundant elements in the means and
covariance matrix exceed the number of parameters, the model is said to be over-

identified; when the model df is negative, the model is said to be under-identified;
and when the model df is exactly zero, the model is said to be just-identified. Here,
note that over-identification does not necessarily guarantee that the model can be
identified. Over-identified models, if identified, are testable; under-identified
models cannot be tested; and just-identified models also cannot be tested but
simply represent a mapping of the data into an equivalent model structure.

Generic necessary conditions for model identification are given in many
introductory textbooks (e.g., Raykov and Marcoulides, 2006). These are as
follows:

(i) There are constraints to determine the scale of each of independent latent
variables, which is typically done by either setting one of the coefficients to a
fixed constant for each latent independent variable, or setting the variance of
each to a fixed constant.

(ii) df needs to be non-negative (dfZ0, that is, the model is not under-identified).
(iii) There are at least two (sometimes three) observed variables for each latent

variable.

Note that the above three generic conditions are necessary but not sufficient
conditions. Therefore, satisfying these conditions does not necessarily guarantee
model identification. As we discuss next, identification serves as one of the
regularity conditions for estimation of parameters.

2. Estimation and evaluation

2.1. Regularity conditions

The following regularity conditions are typical.

(i) Compactness: The true parameter vector h0 belongs to a compact subset of
the multi-dimensional (q-dimensional) Euclidian space, where q is the
number of parameters; h0AH CRq.

(ii) Identification: The model structure is identified; b(h) ¼ b(h0) implies h ¼ h0.
(iii) Differentiability: b(h) is twice continuously differentiable.
(iv) Rank condition 1: The matrix of partial derivatives _b ¼ @bðhÞ=@h0 is of full

rank.
(v) Rank condition 2: The covariance matrix of (xi

0 {vech((xi–l0)(xi–l0)
0)}0)0 is of

full rank.
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Note that (1) Conditions (i) and (ii) are required for the consistency of the
parameter estimates; (2) Conditions (iii) and (iv) are required for asymptotic
normality; (3) Condition (v) is needed for the parameter estimates or the test
statistics for the overall model to have proper asymptotic distributions; and (4)
Condition (v) is typically satisfied in real data unless there are artificial depend-
encies among variables. These conditions imply that the information matrix is
positive definite. In practice, rank deficiency in the estimated information matrix
provides a clue as to lack of identification of the model (see e.g., Browne, 1984;
Shapiro, 1984; Kano, 1986; Yuan and Bentler, 1997a for further discussions on
regularity conditions in SEM).

2.2. Estimation methods and the corresponding fit functions

(1) Estimation methods: Based on a sample of size n, we may estimate the
unstructured population mean vector and covariance matrix by x̄ and S.
Currently, there are four major estimation methods in SEM based on these
unstructured estimates. They are: (i) LS (least squares), (ii) GLS (generalized
least squares), (iii) ML (maximum likelihood), and (iv) ADF (asymptotic
distribution free) (Browne, 1984). The first three are variants of methods
routinely used in other areas of statistics such as multiple regression. The LS
method is distribution free. The GLS and ML method are based on the
assumption of multivariate normality of the variables to be analyzed. The
ADF method, a minimum w2 method (see Ferguson, 1958, 1996), was devel-
oped to provide correct statistics regardless of the distribution of variables.

(2) Fit functions: For each estimation method there is a so-called fit function or
discrepancy function to be minimized using some algorithm. The fit functions
for MCSA are:
(i) LS : FLS ¼ ðx̄� lðhÞÞ0ðx̄� lðhÞÞ þ ð1=2ÞtrðS � RðhÞÞ2; where tr(A) is the

trace operator of a square matrix A.
(ii) GLS : FGLS ¼ ðx̄� lðhÞÞ0S�1ðx̄� lðhÞÞ þ ð1=2ÞtrðRðhÞS�1 � IpÞ

2;
(iii) ML : FML ¼ ðx̄� lðhÞÞ0RðhÞ�1ðx̄� lðhÞÞ þ trðSRðhÞ�1Þ �

log jSRðhÞ�1j � p; where |A | is the determinant of a matrix A.
(iv) ADF : FADF ¼ ðt � bðhÞÞ0V̂

�1
ðt � bðhÞÞ;

where t ¼ ðx̄0; s0Þ0; s ¼ vechðSÞ; and V is the asymptotic covariance matrix of t

which is expressed as a partitioned matrix
V1 V12

V21 V2

 !
; where V1 ¼ R, the

elements of V12 are E{(xi–mi) (xj–mj) (xk–mk)}, V21 ¼ V 012; and the elements of V2

are E{(xi–mi) (xj–mj) (xk–mk) (xl–ml)}–sijskl (cf., Bentler, 1995, pp. 211–212).
Clearly, the ADF method assumes the existence of the finite fourth-order mo-
ments. Since these may be hard to estimate, the use of ADF requires a huge
sample size (see e.g. Hu et al., 1992).

Clearly these fit functions simplify in CSA without a mean structure. For (i)–
(iii), in CSA the first term can be dropped, since with a ‘‘saturated’’ mean struc-
ture, l̂ ¼ x̄: In CSA with ADF, the fit function in (iv) is reduced to FADF ¼

ðs� rðhÞÞ0V̂
�1

2 ðs� rðhÞÞ:
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2.3. Maximum likelihood estimation with normal data

Because a maximum likelihood estimator (MLE) is known to have some good
properties, we further discuss parameter estimation and model evaluation by ML.
First, we summarize the results for ML with normal data. Under the null
hypothesis of correct model structure:

(i) Test statistic: The test statistic

TML ¼ ðn� 1ÞFML (13)

is known to converge in distribution to a w2 distribution with df ¼ p(p+1)/
2+p – q1 for MCSA and with df ¼ p(p+1)/2 – q2 for CSA, where n is the
sample size.

(ii) Asymptotic normality: When the data are from a multivariate normal distri-
bution with true population mean vector and true population covariance
matrix, the estimators are consistent and asymptotic normal, that is,ffiffiffi

n
p
ðĥ� h0Þ ! Nð0;XMLÞ, (14)

where the covariance matrix is XML ¼ ð _b
0
Wn _bÞ�1 with the weight matrix

Wn ¼
R�1 0

0 W

 !
with W ¼ ð1=2ÞD0pðR

�1  R�1ÞDp; where the duplication

matrix Dp (Magnus and Neudecker, 1999) is defined such that vec(R) ¼
Dpvech(R). To compute MLEs we need to employ some algorithm for op-
timization, see e.g., Lee and Jennrich (1979) and Yuan and Bentler (2000b),
among others.

Test statistics based on the other estimation methods are also possible. The
simplest case is with GLS, where TGLS ¼ (n–1)FGLS. Browne (1974) showed that
for CSA with normal data, TGLS and TML are asymptotically equivalent. This was
extended to the MCSA by Yuan and Chan (2005), who showed that the asymp-
totic equivalence of TGLS and TML does not depend on the distribution of data
but on the correctness of the model structure. That is, the asymptotic equivalence
holds for MCSA as long as the model is specified correctly. Similarly, the
estimators ĥML and ĥGLS are asymptotically equivalent.

2.4. Maximum likelihood estimation with non-normal data

(1) Consistency and asymptotic normality: It is natural to question whether ML is
still valid if the data are not from a multivariate normal distribution. It has
been shown that:
(i) Consistency: The parameter estimates are still consistent as long as b(h) is

identified and correctly specified.
(ii) Asymptotic normality: With non-normal data, asymptotic normality still

holds with a modified covariance matrix of the estimator as follows:ffiffiffi
n
p
ðĥ� h0Þ ! Nð0;XSWÞ, (15)
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with the sandwich-type covariance matrix

XSW ¼ ð
_b0W

n _bÞ�1ð _b
0
WnVWn _bÞð _b

0
Wn _bÞ�1, (16)

where V and W� were defined above. The sandwich-type covariance
matrix was originated in Huber (1967) and it has been used in SEM by
many researchers (e.g., Bentler, 1983; Bentler and Dijkstra, 1985; Browne,
1984; Browne and Arminger, 1995; Satorra and Bentler, 1994; Shapiro,
1983; Yuan and Bentler, 1997b). Note that when the data are from
a multivariate normal distribution, W� ¼ V�1 in Eq. (16) and XSW is
reduced to XML in Eq. (14).

(2) Satorra–Bentler rescaled statistic: For CSA (i.e., with saturated means) with
correctly specified models, TML can be approximated by a weighted sum of
independent w2 distributions with 1 degree of freedom, that is

TML !
Xdf

i¼1

kiw2ið1Þ as n!1, (17)

where ki’s are the nonzero eigenvalues of UV2, with

U ¼W �W _rð _r0W _rÞ�1 _r0W , (18)

(cf. e.g. the appendix of Yuan et al., 2002). When data are normal, the weights ki’s
are all 1 and TML approaches a w2 distribution with df ¼ p(p+1)/2–q2. For CSA,
Satorra and Bentler (1988, 1994, 2001) observed the relation trðUV 2Þ ¼

Pdf
i¼1ki

and proposed

TRML ¼ TML=k̂ with k̂ ¼ trðÛV̂2Þ=df , (19)

which is known as the Satorra–Bentler rescaled statistic. Simulation studies
(Curran et al., 1996; Hu et al., 1992; Yuan and Bentler, 1998a) have shown that
this rescaled statistic works quite well under a variety of conditions. Technically,
however, the Satorra–Bentler rescaled statistic only corrects the scaling such that
the expected ML test statistic matches the degrees of freedom of the model, i.e.,
E(TML) ¼ df. It does not correct the distributional shape to that of w2 (Yuan and
Bentler, 1998a; Bentler and Yuan, 1999). Satorra and Bentler also proposed an
adjusted statistic that corrects the variance in addition to the mean.

Similarly to CSA, for MCSA with correctly specified models, TML can be
approximated by the weighted sum of independent w2 distributions with 1 degree
of freedom, with the weights being the nonzero eigenvalues of U*V where

Un ¼Wn �Wn _bð _b
0
Wn _bÞ�1 _b

0
Wn (20)

(Yuan and Bentler, 2006). Thus the Satorra–Bentler rescaled statistic for MCSA
can be defined as a simple extension of that for CSA, that is, TML ¼ TML=k̂

n with
k̂n
¼ trðÛ

n

V̂Þ=df with df ¼ p(p+1)/2+p – q1. Clearly this is of the same form as
in CSA.
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(3) Corrected ADF and F-statistics: With normal distribution-based MLE from
non-normal data, Browne (1984) proposed a residual-based ADF statistic in
the context of CSA. Unlike the Satorra–Bentler rescaled statistic, the residual-
based ADF statistic asymptotically follows a w2 distribution regardless of the
distribution form of the data. However, like the ADF statistic, the residual-
based ADF statistic needs a huge sample size to have its behavior described by
a w2 distribution. In the context of MCSA, a corrected ADF statistic and an
F-statistic were developed by Yuan and Bentler (1997a) and Yuan and Bentler
(1999c), respectively. Their residual-based versions were given in Yuan and
Bentler (1998a). All the four statistics are asymptotically distribution free and
also perform well with finite sample sizes that are commonly encountered in
practice (Bentler and Yuan, 1999).

(4) Finite mixtures: When the distribution is very different from normality, use of
finite mixtures may be appropriate. See e.g., Yung (1997) and Hoshino (2001)
on this point. Finite mixture SEMs have become very popular (e.g., Lubke
and Muthén, 2005), but they are problematic to use and can falsely discover
typologies when none exist (Bauer and Curran, 2003, 2004).

2.5. Robustness

Although we made a distinction between methods based on normal distribution
theory and distribution-free methods, there are times where normal theory sta-
tistics can be used because they are robust to violation of distributional assump-
tions. Anderson and Amemiya (1988) and Amemiya and Anderson (1990)
established the asymptotic robustness of SEM in the factor analysis context,
namely that when (i) factors and error vector are independent and (ii) the
elements of the error vector are also independent, then TML asymptotically
follows a w2 distribution and information-based standard errors for factor load-
ings will be correct. The results were generalized in various direction by Browne
and Shapiro (1988), Kano (1992), Mooijaart and Bentler (1991), Satorra (1992,
2002), Satorra and Bentler (1990), and Yuan and Bentler (1999a, 1999b).
Unfortunately, there are two problems in applications. It is hard to know whether
these independence conditions are met in any real data situation. Also, this is
an asymptotic theory, and it is hard to know when it will work with moderate
sample sizes.

Another approach to estimation with non-normal data is to employ a method
that does not make a strong assumption such as multivariate normality. Histor-
ically, elliptical distributions provided the first generalization of non-normality
used in SEM (e.g., Bentler and Berkane, 1985; Browne and Shapiro, 1988; Kano
et al., 1993; Shapiro and Browne, 1987; Tyler, 1983; see Fang et al., 1990, on
elliptical distributions). Elliptical distributions include heavy-tailed distributions
with different degrees of multivariate kurtosis (Mardia, 1970) such as the
multivariate t-distribution, however, they have a drawback of not allowing any
skewed distributions. A more general distribution that allows heterogeneous
kurtosis parameters also has been developed for CSA (Kano et al., 1990).
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In classical statistics, case weighting to achieve robust statistics has a long
history (see e.g. Huber, 1964, 1981; Hampel et al., 1986). This methodology has
been extended to SEM (Yuan and Bentler, 1998c). A promising approach to
robust procedures in SEM is based on M-estimators. Maronna (1976) obtained
the properties of the M-estimators for the population mean vector and covariance
matrix. The two commonly used weight functions for the M-estimators are (i)
Huber-type weights and (ii) weights based on multivariate t-distribution. The
robust transformation by Yuan et al. (2000) is a useful robust procedure based on
the M-estimator approach that can be applied to SEM (see also Yuan et al., 2004,
and the appendix of Yuan, 2005). Their robust transformation can be used in
a variety of situations (e.g., Hayashi and Yuan, 2003). Concretely speaking the
M-estimators are defined as follows: Let

dðxi;l;RÞ ¼ ½ðxi � lÞ0R�1ðxi � lÞ�1=2, (21)

with

l ¼
Xn

i¼1

u1ðdiÞxi=
Xn

i¼1

u1ðdiÞ, (22)

R ¼
Xn

i¼1

u2ðd
2
i Þðxi � lÞðxi � lÞ0=n: (23)

The weight functions are defined through a tuning parameter r that gives the
percentage of influential cases we want to control, and r is a constant determined
through Pðw2p4r2Þ ¼ r: Then the weight functions u1 and u2 are given by

u1ðdiÞ ¼ 1 if di � r;

r=di if di4r;
(24)

u2ðdiÞ ¼ fu1ðdiÞg
2=j, (25)

where j is a constant determined by r through Efw2pu2ðw2pÞg ¼ p: Note that equa-
tions (22) and (23) can be solved by iteration, and let m̂ and Ŝ be the solution of
(22) and (23), respectively. Yuan et al. (2004) proposed to choose r based on
empirical efficiency by applying the bootstrap to the transformed sample (Yuan
et al., 2000)

xðpÞi ¼
ffiffiffiffiffiffi
u2i

p
ðxi � l̂Þ, (26)

where u2i ¼ u2fd2ðxi; l̂; R̂Þg; the optimal r corresponds to the most efficient
parameter estimates. Yuan et al. (2000) and Yuan and Hayashi (2003) proposed
alternative rationales for choosing rU Other approaches to robust SEM are
developed in Yuan and Bentler (1998b, 2000b) and Yuan et al. (2004). For other
forms of M-estimator, see e.g., Campbell (1980).
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2.6. Misspecification and power

(1) Model misspecification: Any model is only an approximation to the truth.
This implies that we inevitably encounter misspecified models in SEM.
Misspecified models are known to create: (i) biases to parameter estimates;
(ii) inconsistent standard errors; and (iii) an invalid asymptotic distribution
of the w2 test statistic (White, 1982). A brief summary of research on model
misspecification in SEM is as follows:
(i) Consistency: Many parameter estimates in CSA and MCSA are still con-

sistent even when the model is misspecified (Yuan et al., 2003; Yuan and
Bentler, 2006).

(ii) Convergence in distribution: The test statistics under misspecified models
can be approximated by the non-central w2 distribution. However, a
problem in this approximation is that it requires the assumption of a
sequence of local alternative hypotheses, which may not be realistic in
practice. Alternatively, we can employ the asymptotic normal distribution
(Vuong, 1989; Yanagihara et al., 2005; Yuan et al., 2007). Based on
the approach by Vuong (1989), Yuan et al. (2007) derived the following
normal approximation:ffiffiffi

n
p
ðTML=n� mÞ ! Nð0;o2

MLÞ, (27)

where m ¼ FML+tr(U*V)/n and o2
ML is quite involved; the formulas for U*

and o2
ML are given in Yuan et al. (in press). Here, note that the second

term tr(U*V)/n substantially improves the normal approximation. For
additional recent research, see Li and Bentler (2006).

(2) Power: Misspecification of the model means that the null hypothesis b ¼ b(y)
on the mean and covariance structure is wrong. Thus, it is tightly connected
with the concept of power. There are two main approaches to obtaining
power in SEM:
(i) Non-central w2 distribution: Among the approaches to obtain power, the

most common approach is based on a non-central w2 distribution. The ref-
erences include Satorra and Saris (1985); Saris and Satorra (1993); Kim
(2005); MacCallum et al. (1996); Hancock (2001). The Satorra and Saris
(1985) approach requires a specification of the model under the alternative
hypothesis, which can be quite complicated in a heavily parameterized
model. Later they relaxed the requirement (Saris and Satorra, 1993).
MacCallum et al. (1996) developed an approach where the degree of
misspecification can be measured by the RMSEA fit index (see below),
which does not require specification of specific alternative values for various
parameters. In addition to testing the standard exact fit null hypothesis, they
also discussed assessment of ‘‘close’’ fit. Statistical justifications for such
approach are only recently being developed (Li and Bentler, 2006).

(ii) Bootstrap approach: A problem in using the non-central w2 distribution to
evaluate power is that the meaning of a non-centrality parameter is not
clear when the behavior of the test statistic cannot be described by a w2

variates (Yuan and Marshall, 2004). Because of its flexibility, the
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bootstrap has frequently been used in SEM (Beran and Srivastava, 1985;
Bollen and Stine, 1993; Yung and Bentler, 1996; Yuan and Hayashi,
2006), and recently, it has been used to develop a promising approach to
power (Yuan and Hayashi, 2003). On the bootstrap in general, see e.g.,
Beran (1986) or Davison and Hinkley (1997). According to Yuan and
Hayashi (2003), for data sets with heavy tails, the bootstrap can be applied
to a transformed sample by a downweighting procedure as in (26) (Yuan
et al., 2000), which has the advantage of not requiring the assumption that
the data come from a multivariate normal distribution.

Besides methods based on the non-central w2 distribution or the bootstrap,
there are other approaches to power such as simulation (see e.g., Muthén and
Muthén, 2002, and Mooijaart, 2003).

2.7. Fit indices

Besides the test statistics T, there exist numerous so-called fit indices to measure
the degree of overall fit of a model to data. w2 tests inherently have the following
two major problems in practice. The first problem is that T ¼ (n�1)F increases as
n increases. As a result, any model structure null hypothesis such as (12) will tend
to be rejected when the sample size n gets large enough, yet the model may be
good enough for practical purposes. Another problem is that in SEM, the role of
null and alternative hypothesis is reversed compared to classical hypothesis test-
ing. As the positer of a model (such as (12)), we hope to retain the null hypothesis.
Because of these shortcomings, fit indices based on test statistics have been de-
veloped. The statistical properties of some fit indices are known (e.g., Ogasawara,
2001), and simulation studies are needed to fully understand the behaviors of
various fit indices (see e.g., Hu and Bentler, 1998, 1999). While many fit indices
have been proposed, only a few are frequently used (McDonald and Ho, 2002)
and we limit our discussion to those.

There are several ways to classify fit indices (e.g., Tanaka, 1993). Recently,
Yuan (2005) classified fit indices based on their distributional assumptions. For
convenience, we classify fit indices into the following four categories: (i) residual-
based; (ii) independence-model-based; (iii) root mean square error of approxi-
mation; and (iv) information-criterion-based fit indices. The first two types are
only appropriate to covariance structures.

(1) Residual-based fit indices (see e.g., Jöreskog and Sörbom, 1981): The follow-
ing three are all the functions of the residuals S � RðĥÞ:
(i) Standardized root mean square residual (SRMR): As the name shows,

SRMR is the square root of the sum of squares of the residuals in a
correlation metric. SRMR is given by

SRMR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pðpþ 1Þ

X
i�j

fsij � sijðĥÞg
2=siisjj

s
, (28)
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where sijðĥÞ is the (i, j) element of RðĥÞ: Obviously, when the value of
SRMR is small and close to zero, the fit is good.

(ii) Goodness of fit index (GFI): GFI has been compared to a squared multiple
correlation in multiple regression. GFI is given by

GFI ¼ 1�
tr½fRðĥÞ�1ðS � RðĥÞÞg2�

tr½fRðĥÞ�1Sg2�
. (29)

When the value of GFI is close to 1, the fit is good.
(iii) Adjusted goodness of fit index (AGFI): AGFI corresponds to the squared

multiple correlation adjusted for degrees of freedom. AGFI is given by

AGFI ¼ 1�
pðpþ 1Þð1� GFIÞ

pðpþ 1Þ � 2q2
. (30)

When the value of AGFI is close to 1, the fit is good. AGFI is always
less than or equal to GFI.

(2) Independence-model-based fit indices: The independence model is defined as
model in which the covariance structure is diagonal: RI ¼ diag(s11,y, spp).
Clearly the independence model is the smallest (i.e., most constrained) model
in SEM. In contrast, the largest model is the saturated model (Bentler and
Bonett, 1980). The idea of these 0–1 fit indices is to locate the current model
along a line between the independence model and the saturated model, where
0 is a model no better than the independence model and 1 is a model as good
as the saturated model. Let TM and TI be the test statistics under the current
model and the independence model, respectively, and let dfM and dfI be the
associated degrees of freedom.
(i) Normed fit index (NFI; Bentler and Bonett, 1980): NFI is given by the

relative location of the current model between the saturated model with
TS ¼ 0 and the independence model TI:

NFI ¼ 1�
TM

T I
. (31)

NFI ranges between 0 and 1, and a value of NFI close to 1 means a
good fit. An advantage of this index is that it can be defined even if T is
only a descriptive statistic that has no known distribution.

(ii) Non-normed fit index (NNFI; Bentler and Bonett, 1980; Tucker and
Lewis, 1973): Originally, Tucker and Lewis (1973) proposed what is now
called the Tucker–Lewis index (TLI) in the context of exploratory factor
analysis. NNFI is an extension of TLI to SEM. When the sample size n is
not large, NFI is known to have a drawback of not approaching 1 even if
the current model is correct. NNFI corrects this drawback by introducing
the model degrees of freedom, as follows:

NNFI ¼ 1�
ðTM=dMÞ � 1

ðT I=dIÞ � 1
. (32)
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When the current model is correct, the expected value of TM should be
close to its degrees of freedom dfM. Thus, TM/dfM should be close to 1.
However, NNFI can exceed 1.

(iii) Comparative fit index (CFI; Bentler, 1990): Bentler (1990) proposed to use
population non-centrality parameters to define an index like (31):

CFI ¼ 1�
tM
tI

. (33)

In practice, CFI is estimated using t̂M ¼ maxfTM � df M; 0g and t̂I ¼
maxfTM � df M;T I � df I; 0g: Obviously, CFI is always between zero and
1. It avoids the underestimation of NFI and the overestimation of NNFI.
In this category of fit indices, CFI is the most frequently reported one.

(3) Root mean square error of approximation (RMSEA; Steiger and Lind, 1980;
Browne and Cudeck, 1993): First introduced by Steiger and Lind (1980) for
exploratory factor analysis, the RMSEA became popular due to Browne and
Cudeck (1993). As a population index it is given as

RMSEApop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tM=df

p
, (34)

which can be interpreted as the square root of population misfit per degree of
freedom. When the value of RMSEA is small, the fit is good, and for the same
degree of misfit as measured by tM, models with higher df fit better. In prac-
tice, RMSEA is computed as

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfðTM � df MÞ=ðn � df MÞ; 0g

p
. (35)

Yuan (2005) pointed out that an implicit assumption in RMSEA is that TM

under the alternative hypothesis is distributed as a non-central w2 with the
non-centrality parameter tM equal to the sample size n times the value meas-
ured by the fit function. For this to be true, we need to assume that the
concept of a sequence of local alternative hypotheses makes sense. However,
this holds only when the true population covariance matrix is sufficiently close
to the hypothesis R(h). According to Yuan (2005), the distribution of the
sample RMSEA is unknown in general. Any probability or confidence inter-
val attached to RMSEA, as printed out in software, has little justification for
real data or even simulated data from a normal distribution. Nonetheless,
applied researchers keep using it in practice to assess the fit of their model.

(4) Information-criterion-based fit indices: The goodness of fit of several different
models can be compared with the information criteria AIC (e.g., Akaike,
1974, 1987), CAIC (Bozdogan, 1987), and BIC (Schwarz, 1978), defined as
follows:

AIC ¼ TML þ 2q, (36)

CAIC ¼ TML þ ð1þ log nÞq, (37)
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BIC ¼ TML þ ðlog nÞq, (38)

respectively, where q is the number of parameters (either q1 or q2 depending
on the model). Assuming that the model makes sense theoretically, the model
with the smallest information criterion may be chosen.

2.8. Modification of the model

When an initial model has a poor fit, it may be desirable to modify the model to
improve the fit. In principle, for nested models this can be accomplished by a
model comparison procedure based on the w2 difference test such as TD ¼ TML1–
TML2, where TML1 is the test statistic for a more restricted model and TML2 is the
test for a more general model. However, this would require specifying various
pairs of models and estimating both models in a pair. In SEM, two types of well-
known tests, the Lagrange Multiplier (LM) or score test and the Wald test, are
frequently used in addition or instead of a difference test. They only require
estimation of one model, either the more restricted model in the case of the LM
test, or the more general model in case of the Wald test. More importantly, both
tests are available in an exploratory methodology where a search procedure can
be used to find alternative parameters that may influence model fit (see e.g., Lee
and Bentler, 1980; Bentler and Dijkstra, 1985; Lee, 1985; Bentler, 1986; Satorra,
1989; Chou and Bentler, 1990, 2002).

(1) LM test or Score test: When we would like to know which paths may be added
to improve the fit of a model, i.e., which restricted parameters in a model
should perhaps be freed and estimated, we can employ the score test (Rao,
1947, 1973) or its equivalent, the LM test (Aitchison and Silvey, 1958). When
considering a single parameter to free, asymptotically the LM test follows a w2

distribution with 1 df (Satorra, 1989). A large w2 indicates that the restriction
is not consistent with the data, that a better model most likely can be obtained
when the parameter is freed, and that the model test statistic (e.g., TML) then
would decrease by an amount approximately equal to the LM test value. Then
the model can be re-estimated, and the procedure repeated. However, the tests
can also be applied sequentially before re-estimating the model. In this way it
is a multivariate LM test with df equal to the number of restrictions being
tested. The multivariate test can be implemented in a forward stepwise pro-
cedure where the parameter making the biggest improvement in fit is added
first, a next parameter is added that yields the largest increment in fit after
controlling the influence of the first, etc. (Bentler, in press). For a comparison
of these two approaches, see e.g., Green et al. (1999). In some SEM software,
the LM test is called the modification index (Sörbom, 1989). Under the null
hypothesis that the model differentiating parameters are zero in the popu-
lation, LM tests are asymptotically w2 distributed, but this may not be true
when applied in a search methodology. In small samples, parameters may be
chosen that capitalize on chance, i.e., the method may identify restrictions to
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release that do not hold up well in cross-validation (e.g., MacCallum et al.,
1992).

(2) Wald test: If we have a model that fits but seems to have unnecessary
parameters, standard errors can be used to find and eliminate particular
nonsignificant parameters. The Wald test (Wald, 1943) is a multivariate gen-
eralization that allows testing a set of parameters simultaneously to see if they
are sufficiently unimportant that they could be eliminated. Again this meth-
odology has been implemented in a search fashion. The procedure corre-
sponds to backward elimination in multiple regression, that is, the least
significant parameter is removed first, residuals are computed, then next least
significant parameter is removed, and so on until a set is obtained that is
simultaneously not significant. This implies that removal of those parameters
from the model may increase the test statistic (e.g., TML), but only by a small
amount. Like the LM test, under the null hypothesis that the model param-
eters are zero in the population, and with an a priori selection of parameters to
test, the Wald test asymptotically follows the w2 distribution with either 1 df or
as many df’s as there are parameters being tested (see e.g., Satorra, 1989).
Again, however, this test procedure can be misleading in small samples when
used empirically to search for unimportant parameters.

(3) A word of caution: The asymptotic distribution of the difference test TD in
SEM was studied theoretically by Steiger et al. (1985). In theory, the more
general model need not be true for the distribution of TD to be asymptotically
w2. However, recent research has shown that when the more general model is
false, tests such as TD perform very badly in small to medium sized samples
and cannot be relied upon (Yuan and Bentler, 2004a; Maydeu-Olivares and
Cai, 2006). Clearly the same caution should be used with LM and Wald tests.
This is not a trivial matter because in practice, even the best model may not fit
statistically (see fit indices above).

3. Extensions of SEM

3.1. Extensions

So far, we have discussed SEM for the simplest case of only linear latent variable
models for one standard sample from a population. However, the SEM paradigm
has been extended in many different directions so that more complicated model
and data structures can be handled effectively. This includes the ability to handle
incomplete data, nonlinear relations among latent variables, multiple samples,
hierarchical data structures, categorical variables, and so on. Here we just give a
flavor of some of these developments.

3.2. Multi-group SEM

The most typical extension of SEM is to the multiple-group case, where parts of
models or entire models may be held to be equal across groups in order to
determine similarities or differences among samples or populations. A typical

K. Hayashi et al.410



example is the two-group case, where males vs. females may be compared. Multi-
group SEM was originated by Jöreskog (1971) and Sörbom (1974), and has been
further developed by Bentler et al. (1987), Lee and Tsui (1982), and Muthén
(1989a, 1989b). Yuan and Bentler (2001) gave a unified approach to multi-group
SEM under non-normality and with missing data. Thus, we follow their notation.

(1) Test statistic and fit function: Suppose we have m groups with sample sizes nj,
j ¼ 1,y,m. Let N ¼ n1 þ � � � þ nm be the total sample size including all the m

groups. The parameters from the m groups can be arranged as
h ¼ (h1

0,y, hm
0)0. Then the test statistics is given by

Tm
ML ¼ N � F m

ML, (39)

where

Fm
ML ¼

Xm

j¼1

nj

N
ð½l̂j � ljðhjÞ�

0R�1j ðhjÞ½l̂j � ljðhjÞ�Þ

þ tr½R̂jR
�1
j ðhjÞ� � log jR̂jR

�1
j ðhjÞj � pÞ ð40Þ

is a weighted sum of the fit functions from each group. Obviously, when there
are no constraints on parameters, the degrees of freedom is m times the
degrees of freedom for the model for each group. More typically, the fit
function will be optimized under r constraints in the form of h(h) ¼ 0, and the
df will be adjusted accordingly. In addition to likelihood ratio tests of nested
models, multi-group version of the Satorra–Bentler rescaled statistic (Satorra,
2000) and the sandwich-type covariance matrix exist to handle distributional
violations. In addition, normal theory or generalized LM tests can be used to
test the significance of the constraints.

(2) Constraints and invariance: As noted, multi-group SEM typically will involve
constraints on the parameters because it is natural to evaluate whether path
coefficients are the same among m groups. If we can assume the existence of
the same latent variable(s) among the groups in the populations, we say that
factorial invariance exists in the populations (see e.g., Meredith, 1993, and
Millsap, 1997, on factorial invariance). However, there are different levels of
factorial invariance (Horn et al., 1983). For example, when the test using the
test statistic of the form (39) (without any equality constraints among the
groups) is not rejected, we say that we could not reject configural invariance.
When the structure of path coefficients is identical across groups in the pop-
ulations, we say that metric invariance holds. We can put equality constraints
also on the residual variances and/or factor correlations among the groups
and can test for the factorial invariance under stronger conditions. A concrete
example of these ideas is the confirmatory factor model, where each group has
a structure such as (12). If the structure of factor loadings is equal across
groups, we have metric invariance even if the remaining parameter matrices
differ. Equality of the factorial structure implies that the same latent factors
are measured in each group.
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(3) Mean structure: When considering a factor model such as (6) for each group,
it is possible to fix l and K as common across all groups, but to have
E(n) ¼ lx differ across groups. This implies that the same latent factors are
being measured in the groups, but that they differ in their level on the trait.
For example, a natural question to ask might be whether there is any sig-
nificant difference in factor means between males vs. females. Because factor
means can have any location unit, one group’s vector of factor means lx is set
to zero. Without such a constraint, the model is usually non-identified.

3.3. Growth curve models

In medical and epidemiological research, many research designs are longitudinal
in nature and the consistency or change of individuals across time is a key focus.
We can imagine a line or curve connecting all the repeated observations of a given
individual across time, and dozens or hundreds of such lines or curves to rep-
resent the entire sample. When the repeated measures are obtained a few to a
dozen times, such data can be analyzed using SEM as a procedure to characterize
mean trends in these curves as well as individual differences and their antecedents,
correlates, or consequences. In this field, the methodology is known as growth
curve modeling, see e.g., Bentler (2005) or Stoel (2003) for summaries, or Bollen
and Curran (2006) and Duncan et al. (2006) for text-length treatments. In the
simplest model setup, this methodology represents a special case of (4)–(5) or
(6)–(11) and it amounts to an application of MCSA. For example, we may take
x ¼ l+Kn+e, but consider l ¼ 0 so that the mean information is carried by lx.
Then there are some features unique to growth curve SEM that are worth noting.

(1) The xi will represent a quantitative variable repeatedly measured across time,
and the latent factors n are interpreted as representing important features of
the shapes of the growth curves across time. There are many ways to code
shapes, but a standard one is to consider the starting point or ‘‘intercept,’’ the
linear trend (commonly referred to as ‘‘slope’’), or a higher order curve feature
such as a ‘‘quadratic’’ trend. When the repeatedly measured variable repre-
sents a substantive construct (such as ‘‘depression’’), the factors represent time
trends in that construct (e.g., ‘‘depression’’).

(2) A given latent factor, say the slope nj, has scores for every individual in the
sample. Each of those scores represents the given trend in scores for that
individual, e.g., for slope it can be considered to be a coefficient to represent
that person’s linear trend across time. Some persons may be growing rapidly,
and others not at all, and these individual differences show up in the variance
of nj. The corresponding factor mean lx(j) represents the average trend in the
data, e.g., it would be the group average slope or linear trend. Predictors,
correlates, and consequences of nj can also be determined.

(3) Since factor loadings are weights attached to the factors to predict a variable,
those for a given factor, such as the jth column of K, contains weights that
represent time. Unlike standard factor analysis, the coefficients in K are taken
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to be known a priori in accord with the coding of time. Different factors code
different aspects of time, such as the starting point, or linear or quadratic
changes across time. In particular, (i) the path coefficients from the intercept
factor to the observed variables are set to an equal constant, typically to 1;
(ii) the factor loadings for the linear slope factor are set proportional to time
elapsed. For example, if the time differences are equal among the observed
variables, the path to the initial measure may take the value of 0, that to the
second measure the value of 1, that to the third measure gets the value of 2,
etc.; (iii) likewise, paths from the quadratic factor may be coded as (02, 12,
22,y) ¼ (0, 1, 4,y); (iv) because raw polynomial coefficients become very
large as time elapses and as the degree of polynomials increase, standardized
coefficients can be used. For example, for three equally spaced observed var-
iables, the coefficients from the intercept, linear, and quadratic factors are
(0.577, 0.557, 0.555), (�0.707, 0, 0.707), and (0.408, �0.816, 0.408), respec-
tively. This is one example of orthogonal polynomials (see e.g., Maxwell and
Delaney, 2004, Chapter 6); (v) alternative approaches to the linear slope fac-
tor exist, such as spline factors by Meredith and Tisak (1990) and the piece-
wise linear model (Raudenbush and Bryk, 2002, p. 178). Also, since a model
with fixed nonzero factor loadings may be hard to fit, researchers sometimes
free these loadings. This leads to a different interpretation of time trends, and
thus needs to be done with caution (see e.g., Bentler, 2005).

3.4. Multilevel SEM

Multilevel analysis, also called hierarchical linear modeling, is a statistical tech-
nique for analyzing data collected from a hierarchical sampling scheme such as
level-1 observations (e.g., students) nested within level-2 observations (e.g.,
classes). The number of levels can be extended, though a large sample size at the
highest level is required for stable estimation. Most multi-level analyses are two-
level. Some general references for multi-level analysis include Goldstein (2003),
Raudenbush and Bryk (2002), and Reise and Duan (2003). SEM can be used to
estimate parameters for multi-level data, and this approach is especially useful
when latent variables are involved, e.g., Bentler and Liang (2003), Bentler et al.
(2005), du Toit and du Toit (2002), Goldstein and McDonald (1988), McDonald
and Goldstein (1989), Lee (1990), Lee and Poon (1998), Lee et al. (1995), Lee and
Shi (2001), Lee and Song (2001), Liang and Bentler (2004), Muthén (1994, 1997),
Poon and Lee (1994), and Yuan and Bentler (2002, 2003, 2004b).

According to Liang and Bentler (2004) and Bentler et al. (2005), two-level
SEM can be formulated as

zg

ygi

 !
¼

zg

vg

 !
þ

0

vgi

 !
, (41)

where zg (p2� 1) is a vector of i.i.d. level-2 observations (g ¼ 1,y,G), and ygi

(p1� 1) is a vector of level-1 observations (i ¼ 1,y,Ng) from the same cluster or
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group (level-2 unit), and p ¼ p1+p2. Under the model, the observed ygi are
decomposed into a part exhibiting between-cluster variation vg and a part
exhibiting within-cluster variation vgi.

Note that for a fixed group g, ygi are i.i.d., while for all i’s and g’s, ygi are not
independent. In Eq. (41), we typically assume: (i) zg and vg are independent of vgi;
(ii) zg and vg are correlated. Let us introduce further notation: lz ¼ E(zg),
ly ¼ E(ygi) ¼ E(vg), Rzz ¼ Cov(zg), RB ¼ Cov(vg), RWi ¼ Cov(vgi) typically as-
sumed to be homogeneous across clusters with RWi ¼ RW, and Rzy ¼ Cov(zg,
ygi) ¼ Cov(zg, vg). Under a SEM structure, we can further structure the within-
cluster covariance matrix, for example, as a confirmatory factor model (see (12))
as in:

Rw ¼ KW UW K0W þWW . (42)

More generally, the means and covariances in multi-level SEM are l ¼
lz

ly

 !
;

~RB ¼
Rzz Rzy

Ryz RB

 !
; and RW, and any of these vectors and matrices can be further

structured as in (4)–(5) or (10)–(11).
Parameter estimation methods such as ML have been developed for multilevel

SEM. For ML estimation based on Gauss–Newton or Fisher scoring algorithms,
see du Toit and du Toit (2002), Goldstein and McDonald (1988), Lee (1990), and
McDonald and Goldstein (1989). Muthén (1994, 1997) proposed an approximate
ML estimator commonly called Muthén’s ML, or MUML. MUML has the
advantage of easier calculation and faster convergence than full ML estimation.
When level-1 samples are equal in size, MUML is equivalent to full ML esti-
mation. Yuan and Hayashi (2005) analytically studied the statistical properties of
MUML and identified further conditions for MUML to be close to ML. The EM
algorithm (Dempster et al., 1977) also has been applied by Raudenbush (1995)
and Lee and Poon (1998). The approach of Lee and Poon (1998) was further
extended by Bentler and Liang (2003) and Liang and Bentler (2004). Finally, just
as ML test statistics in simple SEM can lead to distorted w2 tests and standard
error estimates under non-normality, the same can occur if level-1 or level-2
observations are not multivariate normal. Corrected test statistics for this situ-
ation, and the study of robustness of multilevel SEM can be found in Yuan and
Bentler (2003, 2004b, 2005a, 2005b).

3.5. Nonlinear SEM

In multiple regression, the dependent variable can be a nonlinear function of the
independent variables by the use of polynomial and/or interaction terms. This is
straightforward. On the contrary, in SEM it has been a difficult task to connect a
dependent latent variable with independent latent variables in a nonlinear fash-
ion. Efforts to construct and estimate a nonlinear SEM have been made for
the last 20 years. Early works include Kenny and Judd (1984), Bentler (1983),
Mooijaart (1985), and Mooijaart and Bentler (1986). The Kenny–Judd model, a
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particular simple nonlinear model that includes an interaction term, has been
intensively studied. More recent works include Bollen (1996), Bollen and Paxton
(1998), Jöreskog and Yang (1996), Klein and Moosbrugger (2000), Lee et al.
(2004), Lee and Zhu (2000, 2002), Marsh et al. (2004), Wall and Amemiya (2000,
2001, 2003), Yang Jonsson (1998). The Bollen–Paxton and Klein–Moosbrugger
approaches seem to be especially attractive. The Wall–Amemiya approach seems
to be the most theoretically defensible under a wide range of conditions, since it
yields consistent estimates under distributional violations. The Bayesian
approaches of Lee and his colleagues are the most promising for small samples.
However, to the best of the authors’ knowledge, no general SEM software
incorporates the Wall–Amemiya or Lee approaches.

4. Some practical issues

4.1. Treatment of missing data

Missing data are encountered frequently in data analysis, and this problem cer-
tainly also arises in the context of SEM. Rubin (1976) and Little and Rubin
(2002) are general references on the missing data problem, while Allison (2002)
provides a non-technical account. It is useful to discuss this topic by considering
Rubin’s (1976) missing data mechanisms: (1) MCAR (missing completely at ran-
dom): Missingness of the data is independent of both the observed and the miss-
ing values; (2) MAR (missing at random): Missingness of the data is independent
of the missing values but can depend on the observed values; (3) NMAR (not
missing at random): Misssingness depends on the missing values themselves.
While unprincipled methods such as listwise deletion require MCAR data for
appropriate inference, most methodological developments on missing data in
SEM focus on the normal theory ML procedure because it allows the weaker
MAR mechanism. When the data are from a multivariate normal distribution
and the missing data mechanism is either MCAR or MAR, the MLE is consistent
and asymptotically normal. However, note that MAR mechanism may not be
ignorable when using the wrong density to perform the ML estimation. Yuan
(2006) employed the normal density to model a non-normal distribution with
missing data and gave sufficient conditions under which consistent MLE will be
guaranteed when data are MAR.

The references on missing data related to ML include Arbuckle (1996), Jams-
hidian and Bentler (1999), Lee (1986), Muthén et al. (1987), and Tang and Bentler
(1998). When missingness occurs in the context of non-normal data, the classical
ML methodology has to be extended to provide corrections to test statistics and
standard errors. References include Arminger and Sobel (1990), Savalei and
Bentler (2005), Yuan and Bentler (2000a), and Yuan (2006) mentioned above.

Because of its importance in the missing data context, we describe one
approach using the EM algorithm (Dempster et al., 1977) to obtaining MLE in
this context. Let xi be the ith case including both observed variables xio and
missing variables xim. That is, xi ¼ (xio

0, xim
0)0. Corresponding to the partition of
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xi, let l ¼ (lo
0, lm

0)0 and R ¼
Roo Rom

Rmo Rmm

 !
be the partitioned population mean

vector and the covariance matrix.

(1) E-step: Then, under the normal distribution assumption, the conditional
expectation of E(xim|xio) and E(ximxim

0|xio) are given by:

EðximjxioÞ ¼ lm þ RmoR
�1
oo ðxio � loÞ, (43)

Eðximx0imjxioÞ ¼ ðRmm � RmoR
�1
oo RomÞ þ EðximjxioÞEðximjxioÞ

0. (44)

These Eqs (43) and (44) are incorporated in

EðxijxioÞ ¼ ðx
0
io;EðximjxioÞ

0
Þ
0, (45)

Eðxix
0
ijxioÞ ¼

xiox0io xioEðximjxioÞ
0

EðximjxioÞx
0
io Eðximx0imjxioÞ

 !
, (46)

respectively.
(2) M-step: Let x̄ ¼ ð1=nÞ

Pn
i¼1EðxijxioÞ and S ¼ ð1=nÞ

Pn
i¼1Eðxix

0
ijxioÞ � x̄ x̄0:

Then the M-step consists of minimizing the ML fit function:

FML ¼ ðx̄� mðyÞÞ0SðyÞ�1ðx̄� mðyÞÞ þ trðSSðyÞ�1Þ � log jSSðyÞ�1j � p (47)

with respect to h. Further details can be found in Jamshidian and Bentler
(1999). More general methods based on Markov chain Monte Carlo
(MCMC) methods (e.g., Lee et al., 2003; Song and Lee, 2002) hold promise
for improved inference in small samples. Robert and Casella (2004) provide
an overview of MCMC methods.

It would be desirable to be able to evaluate whether data are MCAR, MAR, or
NMAR. With regard to MCAR, it is possible to evaluate whether the various
patterns of missing data are consistent with sampling from a single normal
population. This can be done by testing homogeneity of means, covariances, or
homogeneity of both means and covariances (Kim and Bentler, 2002). It is diffi-
cult to find general approaches to testing MAR and NMAR, although specific
models for NMAR have been proposed and evaluated (Tang and Lee, 1998;
Lee and Tang, 2006).

4.2. Treatment of categorical dependent variables

So far, we have assumed that the observed variables are continuous. This may not
always hold true in practice. Categorical variables are frequently used in medical
and epidemiological research. First of all, note that no special methods are needed
if the categorical variables are independent variables. It is common that inde-
pendent variables are categorical in multiple regression, and SEM can handle
such variables by dummy coding as is done in multiple regression. Second, if a
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dependent categorical variable is ordered and has at least 4 or 5 categories as in a
typical Likert scale, treating it as a continuous variable will create few serious
problems (e.g., Bentler and Chou, 1987). The remaining case is when a dependent
categorical variable is either binary or with three categories. Even three-category
data treated continuously can perform well enough (Coenders et al., 1997), but we
do not recommend it as routine practice. General accounts on how to treat such
dependent categorical variables in the context of exploratory factor analysis, and
hence to SEM more generally, are given by Flora and Curran (2004), Jöreskog
and Moustaki (2001), and Moustaki (2001). Approaches can be categorized into
two major types (see Jöreskog and Moustaki, 2001).

(1) Underlying variable approach: The idea that the observed correlation between
categorical variables does not optimally represent the correlation between
continuous latent variables that may have given rise to the observed categories
is about a century old. The tetrachoric correlation was developed to describe
the correlation between two underlying continuous normal variables that are
categorized into binary variables. Extensions of tetrachorics to polychoric and
polyserial correlations (see Poon and Lee, 1987) provided the foundation for
an SEM approach (Muthén, 1978, 1984). In this approach either a sample
polychoric or polyserial correlation between variables is computed from
bivariate marginal likelihoods for given thresholds, which are estimated from
the univariate marginal distribution. After polychoric or polyserial correla-
tions have been computed, their asymptotic covariance matrix is computed
and used in an ADF-type estimation method to estimate the covariance
structure. Because ADF requires large sample sizes, inefficient estimates such
as least squares estimates can be computed, and the results corrected for
misspecification using Satorra–Bentler type procedures. Related approaches
were given by Jöreskog (1994), Lee et al. (1990, 1992, 1995), and Lee and Song
(2003). This methodology is implemented in most major SEM software.

(2) Generalized latent variable model approach: This approach stems from the
models for educational tests called the item response theory (Baker and Kim,
2004). In this approach, conditional on the latent variables, the response model
is identical to a generalized linear model (McCullagh and Nelder, 1989). The
linear latent predictors are then connected with a dependent variable via a
link function, which takes care of the categorical nature of the dependent
variable. References on this approach include Bartholomew and Knott (1999),
Maydeu-Olivares (2001, 2005), and Skrondal and Rabe-Hesketh (2004).

4.3. Further practical information

(1) Software: Finally, we provide some practical information. Because of the
complexity of optimization algorithm(s) required in SEM, we recommend
that applied researchers use existing SEM software such as Amos (http://
www.spss.com/amos/), EQS (Bentler, in press; http://www.mvsoft.com/), Lis-
rel (Jöreskog and Sörbom, 2001; http://www.ssicentral.com/), Mplus (Muthén
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and Muthén, 2001; http://www.statmodel.com/), or SAS Proc Calis (http://
www.sas.com/). It is possible to learn to use the software of choice from the
associated program manuals or from some textbooks mentioned in the in-
troduction. Both sources provide many examples of worked problems. Amos
and EQS are especially easy to learn to use due to their graphical interface
that allows model specification via path diagrams.

(2) Computational difficulties: We do not want to overemphasize the ease of use of
SEM. A well thought-out model with many variables can be difficult to fit
because such a model may be misspecified in hundreds of ways. When a model
is complex, and starting values are poor, the iterative calculations may not be
able to optimize the statistical function involved, i.e., non-convergence may
occur. Also, a related practical problem may be that one or more residual
variances may be estimated negatively or held to a zero boundary, called an
improper solution (or a Heywood case; see e.g., Boomsma, 1985, Chen et al.,
2001, Kano, 1998, Rindskopf, 1984, or van Driel, 1978). In these situations,
simplifying the model, improving start values, or other strategies such as
fitting submodels may be needed to provide meaningful as well as statistically
adequate solutions. In general, SEM modeling will require subject-matter
experts to cooperate with statistical experts.
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Statistical Modeling in Biomedical Research:
Longitudinal Data Analysis

Chengjie Xiong, Kejun Zhu, Kai Yu and J. Philip Miller

Abstract

This chapter discusses some major statistical methods for longitudinal data

analysis in biomedical research. We have provided a detailed review to some of

the most used statistical models for the analyses of longitudinal data and rel-

evant design issues based on these models. Our focus is on the conceptualization

of longitudinal statistical models, the assumptions associated with them, and

the interpretations of model parameters. It is not our intention to present the

detailed theory on statistical estimations and inferences for these models in this

chapter. Instead, we have presented the implementations for some of these basic

longitudinal models in SAS through real-world applications.

1. Introduction

Why should longitudinal studies in biomedical research be conducted? The
answer to this question depends on the study objectives in biomedical research.
There is a fundamental difference between a longitudinal study and a cross-
sectional study. Cross-sectional studies are those in which individuals are
observed only once. Most surveys are cross-sectional, as are studies to construct
reference ranges. Longitudinal studies, however, are those that investigate
changes over time, possibly in relation to an intervention. Therefore, the pri-
mary characteristic of a longitudinal study is that study subjects are measured
repeatedly through time. The major advantage of a longitudinal study is its ca-
pacity to separate what in the context of population studies are called cohort and
age effects (Diggle et al., 2002). Outcome variables in the longitudinal studies may
be continuous measurements, counts, dichotomous, or categorical indicators, and
in many cases, outcomes may even be multivariate as well. Covariates in the
longitudinal studies may also be continuous measurements, counts, dichotomous,
or categorical indicators, and in many cases, covariate may be time varying as
well. As an example, in the study of healthy ageing and Alzheimer’s disease (AD),

429

dx.doi.org/10.1016/S0169-7161(07)27014-2.3d


the understanding of natural history of AD requires a longitudinal design and
the corresponding appropriate analysis. One of the primary objectives in these
studies is to model the cognitive function as a function of baseline age, the
time lapse from the baseline, the disease status, and other possible risk factors.
For the purpose of demonstration, we consider a simple case and let Y(a,t) be
the cognitive function at time lapse t from the baseline (i.e., t ¼ 0 at baseline)
for a subject whose baseline age is a. Assume that the expected value of
Y(a,t) is a linear function of both baseline age a and the time lapse t from the
baseline, i.e.,

EY ða; tÞ ¼ b0 þ b1aþ b2t.

The standard interpretation of b1 is the expected change of cognitive function at
the baseline (or at the same time t during the longitudinal course) for two subjects
whose baseline age is 1 year apart. The standard interpretation of b2 is the
expected change of cognitive function per time unit for the same subject during
the longitudinal course of the study. The crucial difference between b1 and b2 is
that b1 measures a between-subject or a cross-sectional change, whereas b2
measures a within-subject or a longitudinal change. If only cross-sectional cog-
nitive measures are available, i.e., the study is measured only at baseline, then
t ¼ 0 and EY ða; tÞ ¼ b0 þ b1a: Therefore, any statistical inferences from the
cross-sectional data can only be made on b1, i.e., the cross-sectional rate of
change. On the other hand, if longitudinal cognitive measures are available, then
statistical inferences can be made on both b1 and b2. Therefore, longitudinal
studies enable not only the estimation of cross-sectional rate of change based on
baseline age, but also the estimation of the rate of intra-individual change based
on the time lapse in the study.

Another main study objective for a longitudinal study is to relate intra-subject
rate of change over time to individual characteristics (e.g., exposure, age, etc.), or
to an experimental condition. In the above example, studying the healthy ageing
and AD, many potential risk factors in addition to baseline age could affect not
only the cognitive status of subjects at baseline but also the rate of cognitive
decline after the baseline. These risk factors range from demographics such as
gender and education to genetic status (i.e., Apolipoprotein E genotypes) and to
relevant biomarkers and imaging markers. In addition, the stage or the severity of
AD could also be an important factor affecting the rate of further cognitive
decline. In general, therapeutic trials of AD are longitudinal, and the most crucial
scientific question to be addressed in these trials is whether the therapeutic treat-
ment is efficacious in slowing the cognitive and functional decline of AD patients.
Therefore, the rate of cognitive decline in AD clinical trials is modeled as a
function of treatment received. More specifically, let bt2 be the expected rate of
cognitive decline over time for subjects randomly assigned to receive a therapeutic
treatment, and let bc2 be the expected rate of cognitive decline over time for
control subjects. The longitudinal nature of the study allows the statistical test
on whether bt2 is the same as bc2and the statistical estimation on the difference
between these two rates of cognitive decline.
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As in all biomedical studies, there are two major statistical components in
longitudinal studies: statistical design and statistical analysis. This chapter will
review some of the most used statistical models for the analyses of longitudinal
data and relevant design issues based on these models. Throughout this chapter,
we will focus on the conceptualization of basic longitudinal statistical models, the
basic assumptions these models are based on, and the interpretations of model
parameters. It is not our intention to present the detailed theory on statistical
estimations and inferences based on these models. Instead, we will present the
implementations for some of these basic longitudinal models in SAS through
real-world applications. For detailed statistical theory on the parameter estima-
tion and inferences from these models, readers are referred to some of the
excellent references in longitudinal statistical methods such as Diggle et al. (2002),
Fitzmaurice et al. (2004), Verbeke and Molenberghs (2000), and Singer and
Willett (2003).

2. Analysis of longitudinal data

The defining characteristic of longitudinal data analysis is the fact that the
response variable or variables are repeatedly measured on the same individuals
over time and therefore the resulting responses on the same individuals are
statistically correlated. Whereas much of the focus in the analysis of longitudinal
data is on the mean response over time, the correlation among the repeated
measures plays a crucial role and cannot be ignored. Generally, there are two
approaches for modeling the mean response over time. The first approach is the
analysis of response profile in which repeated measures analysis of variance or
covariance serves as special examples. The important feature of analysis of
response profile is that it allows for an unstructured pattern of mean response
over time, i.e., no specific time trend is assumed. Because the analysis of response
profile treats times of measurements as levels of a discrete study factor, it is
especially useful when the objective of the study is to make statistical inferences
at individual times or to compare mean responses among different time points.
On the other hand, this approach to the analysis of longitudinal data is generally
only applicable to the case when all individuals under study are measured at the
same set of time points and the number of time points is usually small compared
to the sample size.

Another common approach to analyze longitudinal data is based on a par-
ametric growth curve for the mean response over time. Because this approach
assumes a parametric function of time, it generally has the advantage of a much
smaller number of parameters in the model as compared to the analysis of
response profile and provides a very parsimonious summary of trend over time in
the mean response, and therefore is especially useful when the objective of the
study is to make statistical inferences on certain parameters from the parametric
curve. As an example, if a linear trend is appropriate to model the mean response
over time, two parameters, the intercept and the slope over time, completely
characterize the entire mean response over time. Because the slope parameter
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measures the rate of change in mean response over time, it could be the primary
interest in the statistical inference. In contrast to the analysis of response profile,
the longitudinal analysis based on a parametric or semi-parametric growth curve
does not require the study subjects be measured at the same set of time points,
nor even the same number of repeated measures among different subjects.

2.1. Analysis of response profiles

When all individuals under study are measured at the same set of time points, the
vector of longitudinal means over time is usually called the mean response profile.
The analysis of response profiles is especially useful when there is a one-way
treatment structure and when there is no pilot information on the mean response
profiles over time among different treatment groups. This method assumes
no specific structure on the mean response profile and nor on the covariance
structure of the repeated measures.

Assume a longitudinal study in which the treatment factor has a total of u

levels and the response variable Y is measured at each of the n time points. For the
ith treatment group, i ¼ 1,2,y, u and kth time point, i ¼ 1,2,y, v, let mik be the
mean of the response variable. Let mi ¼ ðmi1;mi2; . . . ;mivÞ

t (superscript t stands for
the matrix transpose) be the response profile for the ith treatment group. In
general, the most important question in this type of longitudinal study is whether
the response profiles are parallel among different treatment groups, which are the
same as whether there exists an interaction between the treatment factor and the
time factor. Mathematically, let di

¼ mi � m1 ¼ ðdi1; di2; . . . ; divÞ
t be the vector of

mean difference profile between the ith treatment group and the first treatment
group (i.e., the reference group). If there is no interaction between the treat-
ment factor and the time factor, then the hypothesis H0 : di1 ¼ di2 ¼ � � � ¼ div

holds for i ¼ 2; 3; . . . ; u: The test of this hypothesis has a degree of freedom equal
to (u�1)(v�1). Notice that the null hypothesis of no interaction between the
treatment factor and the time factor is equivalent to

H0 : D ¼ ðd22; d23; . . . ; d2v; d32; d33; . . . ; d3v; . . . ; du2; :du3; . . . ; duvÞ
t
¼ 0,

where dik ¼ dik � di1; i ¼ 2; 3; . . . ; u; and k ¼ 2; 3; . . . ; v:
When analyzing response profiles, it is generally assumed that the response

vector Y j ¼ ðy1; y2; . . . ; yvÞ
t follows a multivariate normal distribution (Graybill,

1976) and that the covariance matrix of response vector Y j ¼ ðyi; y2; . . . ; yvÞ
t is

unstructured, although it is required to be symmetric and positive-definite. When
longitudinal data are observed, the maximum likelihood (ML) estimates or the
restricted maximum likelihood (REML) estimates D̂ ¼ ðd̂22; d̂23; . . . ; d̂2v; d̂32;
d̂33; . . . ; d̂3v; . . . ; d̂u2; :d̂u3; . . . ; d̂uvÞ

t can then be obtained (Diggle et al., 2002).
Further, assume that the covariance matrix of D̂ can be estimated by ŜD̂: Then the
test of interaction effect between the treatment factor and the time factor can be
carried out through the standard Wald test by computing

w2 ¼ D̂
t X̂

D̂

� ��1
D̂.

C. Xiong et al.432



At a significance level of að0oao1Þ; this test rejects the null hypothesis when
w24w2a ðu� 1Þðv� 1Þð Þ; where w2a ðu� 1Þðv� 1Þð Þ is the upper 100a% percentile of
the w2 distribution with (u�1)(v�1) degrees of freedom.

Likelihood-ratio test can also be used to test the interaction effect between the
treatment factor and the time factor. This requires fitting two models with and
without the constraint of the null hypothesis. Without the constraint (also called
the full model), this amounts to the standard sampling theory of multivariate
normal distributions, and the likelihood function Lfull can be readily computed
through the standard ML estimates of mean response vector and covariance ma-
trices. Under the null hypothesis (also called the reduced model), another max-
imization procedure is needed to find the ML estimates of mean response vector
and covariance matrices, and the likelihood function Lreduced under the null
hypothesis can be obtained. Finally, the likelihood-ratio test of interaction effect
between the treatment factor and the time factor can be carried out by computing

LRT ¼ 2 logðLfullÞ � 2 logðLreducedÞ,

and further by comparing it to the upper 100a% percentile of the w2 distribution
with (u�1)(v�1) degrees of freedom. Depending on the results from the statistical
test on the interaction effect between the treatment factor and the time factor,
one can proceed to test the main effects for both the treatment factor and the
time factor, as well as the pairwise comparisons between different levels of the
treatment factor at given time points and between different levels of the time factor
at given treatment levels.

An analysis of response profiles can be implemented in SAS through the
following codes, where TREATMENT is the classification variable of the treat-
ment factor, TIME is the classification variable for the time factor, and ID is the
identification for subjects under the study:

PROC MIXED DATA ¼ ; CLASSES ID TREATMENT TIME;
MODEL Y ¼ TREATMENT TIME TREATMENT*TIME;
REPEATED TIME/TYPE ¼ UN SUBJECT ¼ ID R RCORR;
LSMEANS TREATMENT TIME TREATMENT*TIME/PDIFF;
RUN;

When the number of time points is relatively large, the omnibus test with
(u�1)(v�1) degrees of freedom on the interaction effect might become rather
insensitive to the specific departures from parallelism and therefore have a rather
low statistical power to detect the treatment differences. There are several differ-
ent ways that more powerful tests on the interaction effect could be derived. In a
two-arm randomized clinical trial consisting of a novel therapeutic treatment and
a placebo, by the nature of randomization, the treated group and the placebo
group should have the same mean response at the baseline. Therefore, it might
make sense to examine the treatment difference by comparing the difference
between the mean response over all time points beyond the baseline and the mean
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response at the baseline. More specifically, if there are 6 time points used in the
study (coded as 1,2,3,4,5,6 with 1 ¼ baseline), one would assess the effect of the
novel treatment (coded as 2) as compared to the placebo (coded as 1) by testing
H0 : ððm22 þ m23 þ m24 þ m25 þ m26Þ=5Þ � m21 ¼ ððm12 þ m13 þ m14 þ m15 þ m16Þ=5Þ �
m11: This test has 1 degree of freedom and can be implemented by the following
SAS codes with a CONTRAST statement. (The CONTRAST statement could
differ depending on how these factors are coded in SAS, but option E should
clearly indicate whether a correct CONTRAST statement was written (SAS
Institute, Inc., 1999).)

PROC MIXED DATA ¼ ; CLASSES ID TREATMENT TIME;
MODEL Y ¼ TREATMENT*TIME/NOINT;
REPEATED TIME/TYPE ¼ UN SUBJECT ¼ ID R RCORR;
CONTRAST ‘1 DF INTERACTION TEST’
TREATMENT*TIME 1 -0.2 -0.2 -0.2 -0.2 -0.2 -1 0.2 0.2 0.2 0.2 0.2/E;
RUN;

In addition to the insensitivity of the general test with (u�1)(v�1) degrees of
freedom on the interaction effect to specific departures from the parallelism, the
analysis of response profiles has other limitations in the analyses of longitudinal
data despite the fact it is relatively simple to understand and easy to implement.
The primary limitation of this approach is the requirement that all individuals
under study be measured at the same set of time points, which prevents the use of
the method in unbalanced and incomplete longitudinal studies. Another limita-
tion is the fact that the analysis does not take into account of the time ordering of
the repeated measurements from the same subjects, resulting in a possible loss of
power in the analysis. Further, when the number of time points is relatively large,
the analysis requires the estimation of a large covariance matrix, which also partly
explains the fact the omnibus test with (u�1)(v�1) degrees of freedom on the inter-
action effect has a rather low statistical power to detect the treatment differences.

2.2. Repeated measures analysis of variance

When a longitudinal study has a simple and classical design in which all subjects are
measured at the same set of time points, and the only covariates which vary over
time do so by design, the repeated measure analysis of variance can be used. The
rationale for the repeated measures analysis of variance is to regard time as a within-
subject factor in a hierarchical design which is generally referred to as a split-plot
design in agricultural research. Unlike the analysis of response profiles in which the
covariance matrix from the repeated measures from the same subjects are generally
assumed unstructured, the repeated measures analysis of variance allows much
simpler covariance matrix structure for the repeated measures over time. However,
the usual randomization requirement in a standard split-plot design is not available
in the longitudinal design because allocation of times to the multiple observations
from the same subjects cannot be randomized. Therefore, it is necessary to assume
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an underlying model for the longitudinal data, which is essentially a special case of
the general linear mixed models to be discussed in the next section.

Assume again that the covariate (i.e., the study conditions or treatments) takes
a total of u possibilities and the response variable Y is measured at a total of v

time points. The repeated measures analysis of variance models the response yijk

for the jth subject at the ith study condition and the kth time point as

yijk ¼ mik þ pij þ eijk,

where mik is the mean response for the ith study condition or treatment at the kth
time point, pij represents the subject error, and eijk the time interval error. The
standard assumptions made to this type of models are that pij are independent
and identically distributed as Nð0; s2pÞ; eijk are independent and identically dis-
tributed as Nð0; s2eÞ; and that eijk’s and pij’s are statistically independent. Let
Y ij ¼ ðyij1; yij2; . . . ; yijvÞ be the vector of the repeated measures for the jth subject
under the ith study condition. Under the above assumptions, it is straightforward
to derive the covariance matrix of Yij as

CovðY ijÞ ¼

s2p þ s2e s2p . . . s2p
s2p s2p þ s2e . . . s2p
. . . . . . . . . . . .

s2p s2p . . . s2p þ s2e

0BBBB@
1CCCCA.

This covariance structure is called the structure of compound symmetry, which
further implies that the correlation between any two repeated measures from the
same subject j is CorrðY ijk;Y ijk0 Þ ¼ s2p=ðs

2
p þ s2eÞ:

The above assumptions on the variance components pij and eijk will guarantee
that the usual F-tests from a standard two-way analysis of variance of a split-plot
design are still valid to test the main effect of study conditions and the main effect
of the time intervals, as well as the interaction effect between the study conditions
and the time intervals. The more general assumptions required for the usual F-tests
from a standard two-way analysis of variance to be valid requires certain forms
of the covariance matrix of the measurement errors of the time intervals and of
the covariance matrix of the error terms of the subjects assigned to a given
study conditions. This form is called the Huynh–Feldt (H–F) condition (Huynh
and Feldt, 1970). A covariance matrix S of dimension v by v satisfies the H–F
condition if S ¼ lIv þ gJt

v þ Jvgt; where Iv is the v by v identity matrix, Jv a
v-dimensional column vector of 1’s, l an unknown constant, and g a v-dimensional
unknown column vector of parameters. The following SAS code can be used
to fit the above model (where GROUP is the classification variable of study
conditions):

PROC MIXED DATA ¼ ; CLASS GROUP ID TIME;
MODEL Y ¼ GROUP TIME GROUP*TIME;
RANDOM ID(GROUP);
RUN;
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The covariance structure of compound symmetry may be inappropriate in lon-
gitudinal studies because of the constant correlation between any two repeated
measures from the same subjects regardless of their time distance between the re-
peated measures. Many other covariance structures on the repeated measures have
been proposed, most of which are motivated by the standard time series analyses
and therefore might be more appropriate in longitudinal data. For example, in the
following autoregressive error structure, the covariance matrix is proportional to

X
¼

1 r . . . rv�1

r 1 . . . rv�2

. . . . . . . . . . . .

rv�1 rv�2 . . . 1

0BBBB@
1CCCCA

for some �1oroþ 1: This covariance matrix represents the fact that the more
two repeated measures are apart in time, the less correlation are between them.
Unfortunately, when such covariance matrix is assumed for the within-subject error
terms on the repeated measures, the H–F condition generally no longer holds. When
the H–F condition is not satisfied, the statistical comparison on the study conditions
(i.e., the whole plot analysis in the standard two-way analysis of variance from a
split-plot design) from the usual analysis of variance is still accurate and valid. The
inferences from the within-subject comparisons, however, can only be approximated
through various appropriate F-tests or t-tests. These are especially true for the tests
of the main effect on time and the interactive effect between the study condition and
the time factor. Multiple approximations to these tests can be used, for example,
Box’s correction method (Box, 1954), and those based on the Satterthwaite’s
approximation (Satterthwaite, 1946) to the denominator degrees of freedoms in
F- and t-tests. Other types of covariance matrix on the errors of the time intervals
can also be fitted to this model in SAS. SAS also provides several different options
for approximating the degrees of freedoms when approximate F-tests are needed.

The following SAS code fits the repeated measures analysis of variance model
with autoregressive within-subject error structure and the approximate F- and
t-tests based on Satterthwaite’s method:

PROC MIXED DATA ¼ ; CLASS GROUP ID TIME;
MODEL Y ¼ GROUP TIME GROUP*TIME/DDFM ¼ SATTERTH;
RANDOM ID(GROUP);
REPEATED TIME/SUBJECT ¼ ID TYPE ¼ AR;
RUN;

2.3. General linear models and general linear mixed models

2.3.1. General linear models for longitudinal data

General linear models and general linear mixed models are statistical method-
ologies frequently used to analyze longitudinal data. These models recognize the
likely correlation structure from the repeated measurements on same subjects
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over time. The general linear models are built on either explicit parametric models
of the covariance structure of repeated measures over time whose validity can be
checked against the available data or, where possible, to use methods of inference
which are robust to misspecification of the covariance structure. Unlike the
analysis of response profiles and repeated measures analysis of variance, the
general linear models and general linear mixed models do not require that
the longitudinal design be balanced or completed. In many cases, especially when
the sample size is relatively small or moderate with many covariate variables,
a parametric structure also need to be imposed on the covariance matrix of
repeated measurements over time. Many different types of covariance structures
have been used in the general linear models. In general, there are essentially two
most popular ways to build a structure into a covariance matrix: using serial
correlation models, and using random effects. The uniform correlation model
assumes a positive correlation between any two measurements on the same sub-
ject. In contrast, the exponential correlation model (also called the first-order
autoregressive model, Diggle, 1990) assumes an exponential decay toward 0 for
the correlation between two measurements on the same subject as the time
separation between the two measurements increases. The covariance structure
of repeated measures based on random effects depends on the design matrix
associated with the random effects.

Let Y j ¼ ðyj1; yj2; . . . ; yjkj
Þ
t be the vector of longitudinal observations for the

variable of interest on the jth subject over kj different time points Tj ¼

ðtj1; tj2; . . . ; tjkj
Þ
t: Notice that here we allow not only different numbers of time

points but also different design vector over time among different subjects. Let
X jk ¼ ðxjk1;xjk2; . . . ;xjkpÞ

t be the p by 1 vector of covariates associated with the
kth measurement on the jth subject. Notice here that the vector of covariates
could be time dependent. Let X j ¼ ðX j1;X j2; . . . ;X jkj

Þ
t be the design matrix of the

jth subject. In longitudinal data analyses, it is generally assumed that Xj contains
Tj itself and possibly some other covariates. The most general assumptions of a
general linear model is

(1) ðY 1;X 1Þ; ðY 2;X 2Þ; . . . ; ðY n;X nÞ are stochastically independent, which, in the
case of fixed design matrix by design, is equivalent to ðY 1;Y 2; . . . ;Y nÞ that are
independent, where n is the sample size of subjects under study;

(2) Given Xj, EY j ¼ X jb; where b is a p by 1 column vector of regression
coefficients, and covðY jÞ ¼ Sj :

2.3.2. Random effects models and general linear mixed models

A general way of introducing a covariance structure on repeated measurements is
through the two-stage random effects models. When study subjects are sampled
from a population, various aspects of their behavior may show stochastic var-
iation between subjects. The simplest example of this is when the general level of
the response profile varies between subjects, that is, some subjects are intrinsically
high responders, others low responders. The two-stage random effect model
(Diggle, 1988; Laird and Ware, 1982; Vonesh and Carter, 1992) allows the
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individual-specific response profile or ‘growth curve’ for each study subject at the
first stage. The second stage of the two-stage random effects models introduces
the between-subjects variation of the subject-specific effects and the population
parameters of the subject-specific effects. The entire process leads to the devel-
opment of the general linear mixed models. The ML estimates, the REML
estimates, and the method-of-moment estimators are used to estimate the regres-
sion parameters in general linear mixed models. In addition, the general linear
mixed models not only provide the best linear unbiased estimator (BLUE)
(Graybill, 1976) for any estimable contrast of the regression parameters, but also
estimate the subject-specific effects through the best linear unbiased predictor
(BLUP) (Harville, 1977).

The major advantages of using random effects model is both to provide a way
of modeling correlation among repeated measures from the same subjects and to
derive good estimates to the subject-specific random effects. First, random effects
are useful when strict measurements protocols in biomedical studies are not
followed or when the design matrix on time was irregularly spaced and not con-
sistent among subjects. Although many times biomedical studies are not designed
this way, it can happen because of protocol deviation, bad timing, or missing
data. Therefore the covariance matrix in the vector of longitudinal measurements
might then depend on the individual subjects. Random effects model can handle
this type of dependence in a very natural way. More specifically, the two-stage
random effects models first assume that given the subject-specific design matrix Zj

of dimension kj� q and the subject-specific regression coefficients bj of dimension
q� 1,

Y j ¼ Zjbj þ ej,

where ej follows a multivariate normal distribution with a mean vector of 0’s and
a covariance matrix equal to s2Ikj�kj

(Ikj�kj
is the identity matrix of dimension kj).

At the second stage, given subject-level covariates Aj of dimension q� p and
another set of regression coefficients b of dimension p� 1, the variation among
subject-specific regression coefficients bj is modeled by another linear function of
subject-level covariates as

bj ¼ Ajbþ bj,

where bj follows another multivariate normal distribution with a mean vector
of 0’s and a covariance matrix D of dimension q. Other standard assumptions
about the two-stage random effects model are that the vectors ðY j ;Zj ;AjÞ are
independent among a sample of size n, j ¼ 1; 2; . . . ; n; and that ej and bj are
statistically independent, j ¼ 1; 2; . . . ; n: Notice that the design matrix Aj at
the second stage is between-subjects and typically time independent, whereas the
design matrix Zj at the first stage is within-subjects and could be time dependent.
In fact, Zj usually specifies some type of growth curve model over time, such as
linear or quadratic or spline functions.

An intuitive way to think of the two-stage random effects models in a lon-
gitudinal design is that each subject has his or her own ‘growth curve’ which is
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specified by the subject-specific regression coefficients bj in the model from the
first stage, and the population means of subject-specific regression coefficients bj

are given by the model at the second stage, which depends on the between-
subjects covariates Aj. Combining the model from Stage 1 and that from Stage 2
in the two-stage random effects models, it follows that

Y j ¼ X jðAjbþ bjÞ þ ej,

i.e.,

Y j ¼ ðX jAjÞbþ Zjbj þ ej.

This final model is a special case of the general linear mixed model formulation
which has the following general form:

Y j ¼W jbþ Zjbj þ ej,

where bj follows a multivariate normal distribution with a mean vector of 0’s and
a covariance matrix D of dimension q, ej follows another multivariate normal
distribution with a mean vector of 0’s and a covariance matrix Rj, Wj and Zj are
the design matrices associated with the fixed and random effects, respectively.
Although Rj could assume different structures, it is generally assumed the diag-
onal matrix s2Ikj

; where Ikj
is the identity matrix of dimension kj. Under this

assumption, eji’s could be interpreted as measurement errors. Other standard
assumptions about the general linear mixed model are that, given Wj, ej, and Yj

are statistically independent, j ¼ 1; 2; . . . ; n: In the general linear mixed models,
coefficients b are called the vector of fixed effects, which are assumed the same for
all individuals and can be interpreted as the population parameters. In contrast to
b, bj are called random effects and are comprised of subject-specific regression
coefficients, which, along with the fixed effects, describe the mean response for the
jth subject as

EðY jjbjÞ ¼W jbþ Zjbj.

It is also straightforward to derive that

EðY jÞ ¼W jb,

and

Sj ¼ CovðY jÞ ¼ ZjDZt
j þ Rj.

Weighted least squares estimation and the ML or REML methods through the
EM algorithm (Patterson and Thompson, 1971; Cullis and McGilchrist, 1990;
Verbyla and Cullis, 1990; Tunnicliffe-Wilson, 1989; Dempster et al., 1977; Laird
and Ware, 1982; Vonesh and Carter, 1992) are used to estimate the mean response
and the covariance parameters. Software is readily available for ML and REML.
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2.3.3. Predictions of random effects

In many longitudinal biomedical studies, subject-specific growth curve on re-
peated measures could be crucial information not only for investigators to under-
stand the biological mechanism of the diseases under study, but also for clinicians
to better predict the disease progression and eventually offer better care to the
patients. Under the framework of the general linear mixed model, it is possible
to obtain estimates to the subject-specific effects, bj. The estimate to bj, along
with the estimates to the fixed effects, b, subsequently provides an estimate to the
subject-specific longitudinal trajectories, W jbþ Zjbj :

The prediction of random effects can be best understood in the framework of
Bayesian analysis when each random effect is treated as a random parameter
whose prior is a multivariate normal distribution with a mean vector of 0’s and a
covariance matrix D. Given the vector of responses Y j ¼ ðyj1; yj2; . . . ; yjkj

Þ
t; it is

well known (Graybill, 1976) that the best predictor of bj is the conditional
expectation of the posterior distribution:

b̂j ¼ EðbjjY jÞ.

The well-known Bayesian Theorem then implies that the conditional distribution
of bj, given Y j ¼ ðyj1; yj2; . . . ; yjkj

Þ
t; is another normal distribution with mean

m̂bj
¼ DZt

jS
�1
j ðY j �W jbÞ

and covariance matrix

Sbj
¼ CovðbjjY jÞ ¼ D�DZt

jS
�1
j ZjD.

Because m̂bj
is a linear function of the response vector Y j ¼ ðyj1; yj2; . . . ; yjkj

Þ
t; and

it can be shown that m̂bj
is also an unbiased predictor to bj and has the minimum

variance in the class of unbiased linear predictors of bj, m̂bj
is therefore a BLUP of

bj. Because m̂bj
is also a function of unknown parameters b, D, and Sj ; the ML or

REML estimates to these parameters can be used to obtain the empirical BLUP
of bj as

b̂j ¼ D̂Zt
jŜ
�1

j ðY j �W jb̂Þ.

Obtaining a valid estimate to the covariance matrix of the empirical BLUP b̂j

turns out to be more challenging. A simple replacement of unknown parameters
by their estimates in Sbj

would underestimate the variability because of the
ignorance to the uncertainty in the estimate of b. Notice that

Covðb̂j � bjÞ ¼ D�DZt
jS
�1
j ZjDþDZt

jS
�1
j W j

�
Xn

j¼1

W t
jS
�1
j W j

 !�1
W t

jS
�1
j ZjD.

The standard error of the empirical BLUP b̂j can be obtained by substituting the
ML or REML estimates for the unknown parameters in Covðb̂j � bjÞ: Finally, the
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predicted growth curve for the jth subject is

Ŷ j ¼W jb̂þ Zjb̂j,

which can be rewritten as

Ŷ j ¼ R̂jŜ
�1

j

� �
W jb̂þ Ikj

� R̂jŜ
�1

j

� �
Y j.

Therefore, the predictor of individual growth curve Yj can be conceptualized as a
weighted sum between the population mean growth curve W jb̂ and the observed
growth curve Y j ¼ ðyj1; yj2; . . . ; yjkj

Þ
t; which indicates some type of ‘shrinkage’

(James and Stein, 1961) for the predictor of individual growth curve Yj toward the
population mean growth curve W jb̂: The degree of ‘shrinkage’ that is reflected by
the weights depends on Rj and Sj : In general, when the within-subject variability,
Rj, is large relative to the between-subject variability, more weight is given to the
population mean growth curve W jb̂ than to the individual growth curve Y j ¼

ðyj1; yj2; . . . ; yjkj
Þ
t: On the other hand, when the between-subject variability is large

relative to the within-subject variability, more weight is assigned to the individ-
ually observed growth curve than to the population mean growth curve W jb̂:

We now present some applications of general linear mixed models in biomed-
ical applications, especially in the study of AD. AD is a neurodegenerative disease
which is characterized by the loss of cognitive and functional ability. It is the most
common of the degenerative dementias affecting up to 47% of the population
over the age of 85 (Evans et al., 1989; Herbert et al., 1995; Crystal et al., 1988;
Katzman et al., 1988; Morris et al., 1991). Many neuropsychological measures
and staging instruments have been used to describe the longitudinal disease pro-
gression. For example, the severity of dementia can be staged by the clinical
dementia rating (CDR) according to published rules (Morris, 1993). A global
CDR is derived from individual ratings in multiple domains by an experienced
clinician such that CDR 0 indicates no dementia and CDR 0.5, 1, 2, and 3
represent very mild, mild, moderate, and severe dementia, respectively. A major
interest in longitudinal AD research is to estimate and compare the rate of cog-
nitive decline as a function of disease severity and other possible risk factors such
as age, education, and the number of Apolipoprotein E4 alleles.

Example 1. Random intercept and random slope model at different

stages of AD.

Let Y j ¼ ðyj1; yj2; . . . ; yjkj
Þ
t be the vector of longitudinal observations for the

cognitive function on the jth subject over kj time points Tj ¼ ðtj1; tj2; . . . ; tjkj
Þ
t (i.e.,

TIME). Suppose that the growth curve over time is approximately linear for each
stage of the disease as measured by CDR and that subjects stayed at the same
CDR stage during the longitudinal follow-up. At the first stage of the two-stage
random effects model, a linear growth curve is assumed for each subject, i.e.,
given the subject-specific intercept and slope over time,

yjk ¼ b0j þ b1j tjk þ ejk,

Statistical modeling in biomedical research 441



for k ¼ 1; 2; . . . ; kj ; or Y j ¼ Ajbj þ ej in the matrix form, where Aj ¼ ðJ TjÞ; J is
the column vector of 1’s, bj ¼ ðb0j b1jÞ; and ej ¼ ðej1; ej2; . . . ; ejkj

Þ
t: At the second

stage, the subject-specific intercept and slope are modeled as functions of pos-
sible subject-level covariates. Because it has been well established in the liter-
ature that the rate of cognitive decline in AD is associated with the disease
severity at the baseline (Storandt et al., 2002), one such subject-level covariate
could be the baseline disease severity as measured by CDR. Therefore, one can
model the subject-specific intercept and slope separately as a function of CDR
in a standard analysis of variance (ANOVA) model (Milliken and Johnson,
1992), i.e.,

b0j ¼ b0CDR þ b0j ,

b1j ¼ b1CDR þ b1j .

One difference between here and the standard ANOVA model is that two var-
iables (the intercept and the slope) are conceptualized from the same subjects.
Therefore a correlation structure is usually required to account for the possible
correlation between the intercept and the slope from the same subjects. These
are generally done by assuming that the error vector bj ¼ ðb0j b1jÞ

t follows a
normal distribution with mean vector of 0’s and a covariance matrix D which
could be assumed completely unstructured (i.e., specified by the option
TYPE ¼ UN) or with certain structured form. The above model can be easily
implemented in SAS with the following codes:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR TIME CDR*TIME /DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

It is important to understand the hypothesis that each term in the model is
testing. The term CDR*TIME is testing the hypothesis that the mean slopes are
the same across all baseline CDR groups, whereas the term CDR is testing
whether the mean intercepts at TIME ¼ 0 (i.e., the baseline) are the same across
the CDR groups. The term TIME is testing the main effect of the slope over time
across the CDR groups, which can in general only be interpreted if the test on
CDR*TIME is not statistically significant.

If the estimates to the mean intercepts and mean slopes for each CDR and
subject-specific predictions to the random effects are needed, the following SAS
code can be used:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR CDR*TIME/NOINT S DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN SOLUTION;
RUN;
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One needs to be careful about the interpretation of the output from this new
set of codes. The term CDR*TIME is no longer testing the hypothesis that the
mean slopes are the same across all CDR groups, but the hypothesis that all mean
slopes across CDR groups are simultaneously equal to 0. Likewise, the term CDR
is no longer testing whether the mean intercepts at TIME ¼ 0 are the same across
the CDR groups, but whether all the mean intercepts are simultaneously equal to
0. Some of these hypotheses tested by this new set of codes might not be
scientifically interesting, but the set of codes does offer the valid estimates to the
fixed effects and random effects.

Example 2. Random intercept and random slope model at different stages of

AD adjusting for the baseline age.

In Example 1, a random intercept and random slope model was used to describe
the growth curve of cognitive decline across different stages of AD. It is also well
known that baseline age is an important risk factor for the cognitive decline. An
extended two-stage random effects model can be used to describe the rate of cog-
nitive decline as a function of both baseline CDR and baseline age (i.e., AGE). The
first stage of this model will be the same as the first stage of the model introduced in
Example 1. At the second stage, where the subject-specific intercept and slope are
modeled as functions of possible subject-level covariates, one can conceptualize
both the subject-specific intercept and subject-specific rate of cognitive decline for
each CDR stage as a linear function of baseline age in a standard analysis of
covariance (ANOCOVA) model (Milliken and Johnson, 2001), i.e.,

b0j ¼ b0CDR þ g0CDR �AGEþ b0j,

b1j ¼ b1CDR þ g1CDR �AGEþ b1j.

Notice here b0CDR; g
0
CDR are the intercept and slope of the subject-specific intercept

as a linear function of AGE, and b1CDR; g
1
CDR are the intercept and slope of the

subject-specific longitudinal rate of cognitive decline as a linear function of AGE.
Again, a correlation structure is usually required to account for the possible cor-
relation between the intercept and the slope from the first-stage model by assuming
that the error vector bj ¼ ðb0j b1jÞ

t at the second stage of the model follows a
normal distribution with mean vector of 0’s and a covariance matrix D which could
be assumed completely unstructured. The above model can be easily implemented
in SAS by the following code:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR AGE CDR*AGE TIME AGETIME CDR*TIME
CDR*AGETIME /DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

In these codes, AGETIME is the variable created in the data set by multiplying
TIME and AGE. All the terms CDR AGE CDR*AGE in the MODEL statement
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are modeling the intercept part of the cognitive function, whereas all the other
terms in the MODEL statement are modeling the longitudinal rate of the cog-
nitive function. More specifically, the term CDR*AGETIME here tests whether
all g1CDR are the same across different CDR levels, the term CDR*AGE tests
whether all g0CDR are the same across different CDR levels, and the term
CDR*TIME tests whether all b1CDR are the same across different CDR levels.

Different variations and extensions to the above models can also be used.
These include the cases when either the subject-specific intercepts or subject-
specific slopes but not both are assumed random and the other cases when
additional risk factors for AD such as education and the number of Apolipo-
protein E4 alleles are also entered into the model. There are also cases that
additional random effects need to be introduced into the model. For example,
with a multicenter study, centers are usually treated as a random effect to account
for the possible variation among centers and the possible correlation of the
measures for subjects from the same centers.

Example 3. Piecewise random coefficients model in AD.

Piecewise linear growth curves are common in many biomedical applications.
In AD research, it has been well recognized that the rate of cognitive decline
depends on the disease severity at the baseline (Storandt et al., 2002). This further
implies that a simple linear growth curve over time is inappropriate when subjects
make conversions from lower CDR level to higher CDR levels. Again let Y j ¼

ðyj1; yj2; . . . ; yjkj
Þ
t be the vector of longitudinal observations for the cognitive

function on the jth subject over kj time points Tj ¼ ðtj1; tj2; . . . ; tjkj
Þ
t: Assume that

the subject begins with CDR 0 and then converts into CDR 0.5 at time tjk0:5
j
;

1ok0:5
j okj ; the subject goes on at CDR 0.5 and makes another conversion into

CDR 1 at time tjk1
j
; 1 � k0:5

j ok1
j � kj : Suppose that the growth curve over time is

approximately linear at each CDR level. Then at the first stage of a two-stage
random effects model, a piecewise linear growth curve connected at the CDR
conversion times is assumed for each subject, i.e., given the subject-specific
intercept and slopes over time,

yjk ¼ b0j þ b0j tjk þ b0:5j t0:5jk þ b1j t1jk þ ejk,

where t0:5jk ¼ tjk when k 
 k0:5
j ; and t0:5jk ¼ 0 when kok0:5

j ; and t1jk ¼ tjk when k 


k1
j ; and t1jk ¼ 0 when kok1

j : Notice that the parameters in this model indicate
three different rates of cognitive decline at three different CDR levels during the
longitudinal follow-up. b0j represents the slope of cognitive decline at CDR 0,
b0j þ b0:5j represents the slope of cognitive decline at CDR 0.5, and b0j þ b0:5j þ b1j
represents the slope of cognitive decline at CDR 1. Therefore, b0:5j represents the
difference on the slope of cognitive decline between CDR 0.5 and CDR 0, and b1j
represents the difference on the slope of cognitive decline between CDR 1 and
CDR 0.5. At the second stage, the subject-specific intercept and slopes are again
modeled as a function of possible subject-level covariates. Assume that the
subject-specific slopes are to be compared between subjects with at least one
Apolipoprotein E4 allele (i.e., E4 positive) and those without Apolipoprotein E4

C. Xiong et al.444



alleles (i.e., E4 negative). One can then write four analysis of variance models as

b0j ¼ b0E4 þ b0j,

b0j ¼ b0E4 þ b0
j ,

b0:5j ¼ b0:5E4 þ b0:5
j ,

and

b1j ¼ b1E4 þ b1
j .

The variation among subject-specific parameters and the correlation for

within-subject parameters are modeled by assuming bj ¼ b0j b0
j b0:5

j b1
j

� �t

fol-

lows a normal distribution with mean vector of 0’s and a covariance matrix D

which could be assumed completely unstructured. The above model could be
implemented in SAS by the following codes:

PROC MIXED DATA ¼ ; CLASSES ID E4;
MODEL Y ¼ E4 T T0.5 T1 E4*T E4*T0.5 E4*T1;
RANDOM INT T T0.5 T1 /SUBJECT ¼ ID TYPE ¼ UN;
RUN;

In these codes, T, T0.5, and T1 represent tjk, t0:5jk ; and t1jk; respectively. All terms
in above model test specific hypotheses. For example, E4*T0.5 tests whether the
difference on the rate of cognitive decline between CDR 0.5 and CDR 0 is the
same between E4-positive and E4-negative subjects. The following SAS codes give
estimates to the mean intercepts and mean slopes for each CDR level and subject-
specific predictions to the random effects. (The ESTIMATE statement could
differ depending on how these factors are coded in SAS, but option E should
clearly indicate whether a correct ESTIMATE statement was written (SAS
Institute, Inc., 1999.)

PROC MIXED DATA ¼ ; CLASSES ID E4;
MODEL Y ¼ E4 E4*T E4*T0.5 E4*T1/NOINT DDFM ¼ SATTERTH
SOLUTION;
RANDOM INT T T0.5 T1 /SUBJECT ¼ ID TYPE ¼ UN SOLUTION;
ESTIMATE ‘rate at CDR 0.5 for E4 +’ E4*T 1 0 E4*T0.5 1 0/E;
ESTIMATE ‘rate difference by E4 at CDR 0.5’ E4*T 1 -1 E4*T0.5 1 -1/E;
RUN;

The first ESTIMATE statement gives the estimated mean rate of cognitive
decline at CDR 0.5 for subjects with positive E4 (it could be for subjects with
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negative APOE4 depending on the code of APOE4, but the option E should
indicate clearly which one is estimated). The second ESTIMATE statement
estimates the mean difference on the mean rate of cognitive decline at CDR 0.5
between subjects with positive E4 and those with negative E4 and tests whether
the difference is 0. Similar additional ESTIMATE statements can be written to
estimate the rate of cognitive decline at CDR 1 and test whether a difference exists
between E4-positive and E4-negative subjects.

2.4. Generalized linear models for longitudinal data

The generalized linear models for longitudinal data extend the techniques of
general linear models. They are suited specifically for non-linear models with
binary or discrete responses, such as logistic regression, in which the mean
response is linked to the explanatory variables or covariates through a non-linear
link function (McCullagh and Nelder, 1989; Liang and Zeger, 1986; Zeger and
Liang, 1986). Several approaches have been proposed to model longitudinal data
in the framework of generalized linear models. The marginal models for longi-
tudinal data permit separate modeling of the regression of the response on ex-
planatory variables, and the association among repeated observations of the
response for each subject. They are appropriate when inferences about the pop-
ulation averages are the focus of the longitudinal studies. For example, in an AD
treatment clinical trial, the average difference between control and treatment is
the most important, not the difference for any single subject. Marginal models are
also useful in AD epidemiological studies. It could help to address what the age-
specific prevalence of AD is, whether the prevalence is greater in a specific sub-
population, and how the association between a specific sub-population and the
AD prevalence rate changes with time. The techniques of generalized estimating
equations (GEEs) can be used to estimate the regression parameters in the mar-
ginal models (Liang and Zeger, 1986; Gourieroux et al., 1984; Prentice, 1988;
Zhao and Prentice, 1990; Thall and Vail, 1990; Liang et al., 1992; Fitzmaurice
et al., 1993). The approach of random effects models in the setup of generalized
linear model allows the heterogeneity among subjects in a subset of the entire set
of the regression parameters. Two general approaches of the estimation are used
in the random effects models. One is to find the marginal means and variance of
the response vector and then apply the technique of GEE (Zeger and Qaqish,
1988; Gilmore et al., 1985; Goldstein, 1991; Breslow and Clayton, 1993; Lipsitz
et al., 1991). The other is the likelihood approach (Anderson and Aitkin, 1985;
Hinde, 1982) or the penalized quasi-likelihood (PQL) approach (Green, 1987;
Laird, 1978; Stiratelli et al., 1984; McGilchrist and Aisbett, 1991; Breslow and
Clayton, 1993). Another generalized linear model is the transition model for
which the conditional distribution of the response at a time given the history of
longitudinal observations is assumed to depend only on the prior observations
with a specified order through a Markov chain. Full ML estimation can be used
to fit the Gaussian autoregressive models (Tsay, 1984), and the conditional
ML estimation can be used to fit logistic and log-linear models (Korn and
Whittemore, 1979; Stern and Coe, 1984; Zeger et al., 1985; Wong, 1986; Zeger
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and Qaqish, 1988). A comprehensive description of various models for discrete
longitudinal data can be found in Molenberghs and Verbeke (2005).

2.4.1. Marginal models and generalized estimating equations

In many biomedical applications the longitudinal responses are not necessarily
continuous, which imply that the general linear models and general linear mixed
models might not apply. For example, the presence or absence of depression and
the count of panic attacks during certain time interval are all likely response
variables of scientific interest. When the longitudinal responses are discrete,
generalized linear models are required to relate changes in the mean responses to
covariates. In addition, another component is needed to introduce the within-
subject associations among the vector of repeated responses. Marginal models are
one of these choices.

We again let Y j ¼ ðyj1; yj2; . . . ; yjkj
Þ
t be the vector of longitudinal observations

for the response variable on the jth subject over kj time points Tj ¼

ðtj1; tj2; . . . ; tjkj
Þ
t: Let X jk ¼ ðxjk1;xjk2; . . . ; xjkpÞ

t be the p by 1 vector of covariates
associated with the kth measurement on the jth subject. Notice here that the
vector of covariates could be time dependent. Let X j ¼ ðX j1;X j2; . . . ;X jkj

Þ
t be the

design matrix of the jth subject. A marginal model for longitudinal data specifies
the following three components:

(1) The conditional expectation of Yjk, given Xjk, is assumed to depend on the
covariates through a given link function g, i.e.,

EðY jkjX jkÞ ¼ mjk

and

gðmjkÞ ¼ X t
jkb,

where b is a p by 1 vector of unknown regression parameters.
(2) The conditional variance of Yjk, given Xjk, is assumed to depend on the mean

according to some given ‘variance function’ V, i.e.,

VarðY jkjX jkÞ ¼ fV ðmjkÞ,

where f is an additional parameter.
(3) The conditional within-subject association among repeated responses, given

the covariates, is assumed to depend on an additional set of parameters a,
although it could also depend on the mean parameters.

The first two conditions in a marginal model are standard requirements from
a generalized linear model (McCullagh and Nelder, 1989) relating the marginal
means to a set of covariates at each individual time point. The third condition is
in addition to the standard assumptions in generalized linear model, which makes
the application of generalized linear model to longitudinal data possible. Notice
that even if all three components are completely specified in a marginal model, the
model still does not completely specify the joint distribution of the vector of
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repeated measures on the response variable. In fact, it will be clear later that
such a complete specification of joint distribution is not needed to obtain valid
asymptotic statistical inferences to the regression parameters b. The following are
several examples of marginal models for longitudinal data.

Example 1: In the case of continuous response variables, the standard repeated
measure analysis of variance models and the two-stage random effects models are
special cases of marginal models. Here the link function is the simple identity
function, i.e., gðmjkÞ ¼ mjk; and the variance function is constant 1, i.e., V ¼ 1.
The conditional within-subject association is described by correlations among
repeated measures of the response, which are independent of the mean para-
meters.

Example 2: In a longitudinal study to examine the longitudinal trend on the
probability of depression and to relate this probability to other covariates such as
gender and education, the occurrence of depression is longitudinally observed.
Because Yjk is binary and coded as 1 when depression occurs and 0 otherwise, the
distribution of each Yjk is Bernoulli which is traditionally modeled through a
logit- or probit-link function, i.e., the conditional expectation of Yjk, given Xjk, is
EðY jkjX jkÞ ¼ PrðY jk ¼ 1jX jkÞ ¼ mjk; and the logit-link function links mjk with
covariates by

ln
mjk

1� mjk

 !
¼ X t

jkb.

The conditional variance of Yjk, given Xjk, is given by the ‘variance function’,

VarðY jkjX jkÞ ¼ mjkð1� mjkÞ,

i.e., f ¼ 1. The conditional within-subject association among repeated responses,
given the covariates, is usually specified by an unstructured pairwise odds ratio
between two repeated responses,

ak1k2
¼

PrðY jk1
¼ 1;Y jk2

¼ 1ÞPrðY jk1
¼ 0;Y jk2

¼ 0Þ

PrðY jk1
¼ 1;Y jk2

¼ 0ÞPrðY jk1
¼ 0;Y jk2

¼ 1Þ
.

Example 3: In many studies of AD, psychometric tests are generally used to
assess subjects’ cognition longitudinally. One of these tests records the number of
animals that the subject can name within a given period of time. This type of
count data could be modeled by a Poisson distribution, using a log-link function.
More specifically, the conditional expectation of Yjk, given Xjk, is EðY jkjX jkÞ ¼

mjk; and is assumed to depend on the covariates through the log-link function,

lnðmjkÞ ¼ X t
jkb.

The conditional variance of Yjk, given Xjk, is given by the Poisson ‘variance
function’,

VarðY jkjX jkÞ ¼ mjk,
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i.e., f ¼ 1. The conditional within-subject association among repeated responses,
given the covariates, is usually specified by unstructured pairwise correlations
between two repeated responses,

ak1k2
¼ CORRðY jk1

;Y jk2
Þ.

This marginal model is sometimes referred to a log-linear model.
When a marginal model is specified, the estimation of the model parameters is

generally done through the GEE instead of the standard inferences based on the
ML estimates. Part of the reason that a standard ML approach is not used here is
that the marginal model fails to specify the joint distribution on the vector of
repeated responses and therefore a likelihood function is not available. The basic
idea of GEE is to find b that minimizes the following generalized sum of square
(also called the objective function):X

j

½Y j � mj�
tV�1j ½Y j � mj�,

where mj is the vector of expectations of repeated responses for the jth subject
which is a function of the regression parameters b. Vj is called the ‘working’
covariance matrix of Yj and is given by

Vj ¼ A
1=2
j CORRðY jÞA

1=2
j ,

where A
1=2
j is the diagonal matrix such that ðA

1=2
j Þ

2
¼ Aj ; and Aj the diagonal

matrix consisting of the variance of Yjk, and CORRðY jÞ the correlation matrix of
Yj depending on the set of parameters a’s (also possibly b’s). The reason that Vj is
called the ‘working’ covariance matrix of Yj is that it is not necessarily the same as
the true covariance matrix of Yj. The mathematical minimization of the above
objective function is equivalent to finding b that solves the following GEEs:X

j

Dt
jV
�1
j ½Y j � mj� ¼ 0;

where

Dj ¼

@mj1=@b1 @mj1=@b2 . . . @mj1=@bp

@mj2=@b1 @mj2=@b2 . . . @mj2=@bp

. . . . . . . . . . . .

@mjkj
=@b1 @mjkj

=@b2 . . . @mjkj
=@bp

0BBBB@
1CCCCA

is called the derivative matrix of mj with respect to the regression parameters b.
Notice that mjk ¼ g�1ðX t

jkbÞ; where g�1 is the inverse of the link function g.
Although the derivative matrix is only a function of the regression parameters,
the GEEs involve not only the regression parameters b but also the parameters a
and f. The latter are usually called nuisance parameters because they generally
are not the major interest in biomedical research, but they play important roles
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in the inferential process. In general, the GEEs have no closed form solutions
with a non-linear link function, and therefore require an iterative algorithm to
approximate the solutions. The standard two-stage iterative algorithms are avail-
able for these computations and can be found in the literature (Fitzmaurice et al.,
2004). These iterative algorithms begin with some seed estimates to parameters a
and f, and then estimate regression parameters b by solving the system of GEEs
at the first stage. At the second stage of the iterative algorithms, the current
estimates of b’s are used to update the estimates of a and f. These two-stage
processes are iterated until computational convergence is achieved. These
algorithms are also implemented in many standard statistical software packages.

Assume that b̂ is the final solution of b to the GEEs after the two-stage
iterative algorithm converges. The most appealing part of a marginal model is the
fact that b̂ is a consistent estimator, i.e., when the sample size is sufficiently large,
b̂ approaches the true regression parameters b. This is true even when the within-
subject associations have been incorrectly specified in the marginal model. In
other words, as long as the mean component of the marginal model is correctly
specified, b̂ will provide valid statistical inferences. Another important appealing
property of GEE estimate b̂ is the fact that it is almost as efficient as the MLE
estimate, especially in the generalized linear mixed models for continuous out-
come variable under the assumption of multivariate normality over repeated
measures. Similar to the standard asymptotic properties of ML estimates, when
the sample size is sufficiently large, b̂ follows an asymptotically multivariate
normal distribution with mean b and a covariance matrix which can be estimated
by the so-called ‘sandwich’ estimator

Ŝ ¼ B̂
�1

M̂B̂
�1
,

where B̂ ¼ SjD̂
t

j V̂
�1

j D̂j and M̂ ¼ SjD̂
t

j V̂
�1

j ½Y j � m̂j�½Y j � m̂j�
tV̂
�1

j D̂j ; and the esti-
mates D̂j ; V̂ j ; and m̂j are obtained by replacing b, a, and f by their GEE estimates
from Dj, Vj, and mj, respectively.

For the statistical inferences about the regression parameters b, valid standard
errors can be obtained based on the above sandwich estimator Ŝ ¼ B̂

�1
M̂B̂

�1
: In

fact, both GEE estimate of b and the sandwich estimator to Cov(b̂) are robust in
the sense that it is still valid even if the within-subject associations have been
incorrectly specified in the marginal model. This does not imply that it is not
necessary to try to specify correctly the within-subject associations in the marginal
model. In fact, the correct modeling or approximation to the within-subject as-
sociations is important as far as the efficiency or the precision on the estimation of
regression parameters b is concerned. It can be mathematically proved that the
optimum efficiency in the estimation of regression parameters b can be obtained
when the working matrix Vj is the same as the true within-subject association
among repeated responses. On the other hand, the sandwich estimate is most
appropriate when the study design is almost balanced and the number of subjects
is relatively large and the number of repeated measures from the same subject is
relatively small, especially when there are many replications on the response
vectors associated with each distinct set of covariate values. When the
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longitudinal study designs severely deviate from these ‘ideal’ cases, the use of
sandwich estimator for the statistical inferences might be problematic, in which
case, the specification of the entire model over the repeated measures might be
desired and therefore the effort to specify the correct covariance matrix become
necessary.

The following is a SAS code to obtain GEE for Example 2 above in which the
longitudinal trend on the probability of depression is modeled as a function of
gender and time through the logit-link function. The occurrence of depression
is treated as binary and longitudinally observed. The option LOGOR specifies
the possible working covariance structure based on log odds ratio for the
within-subject responses:

PROC GENMOD DESCENDING DATA ¼ ;
CLASSES ID GENDER;
MODEL DEPRESSION ¼ GENDER TIME GENDER*TIME/
DIST ¼ BINOMIAL LINK ¼ LOGIT;
REPEATED SUBJECT ¼ ID/WITHINSUBJECT ¼ TIME LOGOR ¼ ;
RUN;

2.4.2. Generalized linear mixed effect models

The basic conceptualization of the generalized linear mixed effects models is quite
similar to that of the general linear mixed effects models, although there are
crucial differences in the parameter interpretations of these models. More spe-
cifically, a generalized linear mixed effects model for longitudinal data assumes
the heterogeneity across subjects in the study in the entire set or a subset of the
regression coefficients. In other words, the entire set or a subset of the subject-
specific regression coefficients are assumed to be random variables across study
subjects which follow a univariate or a multivariate normal distribution.

The generalized linear mixed effects models can also be thought of following a
standard two-stage paradigm in which the first stage specifies a conditional dis-
tribution for each response Yjk. More specifically, at the first stage, it is assumed
that conditional on the subject-specific random effect bj and covariates Xjk, the
distribution of Yjk belongs to a very wide family of distributions called the
exponential family. The exponential family covers essentially all the important
distributions used in biomedical applications. These distributions include, but are
not limited to, the normal distribution, the binomial distribution, and the Poisson
distribution. Let

mjk ¼ EðY jkjbj ;X jkÞ.

The conditional variance of Yjk is given through some known variance function V

VarðY jkjbj ;X jkÞ ¼ fV ðmjkÞ.

Further, conditional on the random effect bj and covariates Xjk, Yjk’s are assumed
independent. The conditional mean of Yjk is linked to a linear predictor through a
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given link function g

gðmjkÞ ¼ X t
jkbþ Zt

jkbj.

The final assumption on generalized linear mixed models is about the
distribution for the random effects. It is common to assume that bj follows a
multivariate normal distribution with a mean vector of 0’s and a covariance
matrix D and is independent of covariates Xjk.

The primary difference between a generalized linear mixed model and a mar-
ginal model is that the former completely specifies the distribution of Yj while the
latter does not. It is also clear that the general linear mixed model is a special case
of the generalized linear mixed models. However, the interpretations of regression
parameters are also different between the marginal models and the generalized
linear mixed models. Because the mean response and the within-subject associ-
ation are modeled separately, the regression parameters in a marginal model are
not affected by the assumptions on the within-subject associations, and therefore
can be interpreted as population averages, i.e., they describe the mean response in
the population and its relations with covariates. As an example, a marginal model
can be used in a longitudinal study to examine the longitudinal trend on the
probability of depression and to relate this probability to other covariates
such as gender. Because Yjk is binary and coded as 1 when depression occurs
and 0 otherwise, the distribution of each Yjk can be modeled through a logit-
link function, i.e., the conditional expectation of Yjk, given time (i.e., tjk)
and gender (coded numerically as GENDER), is EðY jkjX jkÞ ¼ PrðY jk ¼ 1jX jkÞ ¼

mjk; and

ln
mjk

1� mjk

 !
¼ b0 þ tjkb1 þGENDER�b2.

The parameter b’s here have the standard population averaged interpretations.
b2 is the log odds ratio of depression between the two genders at a given time
point, and b1 is the log odds ratio of depression for each unit increase of time
for a given gender. On the other hand, in a generalized linear mixed model with
time (i.e., tjk) and gender through the same logit link, assuming a random
coefficient for the intercept and the regression coefficient (i.e., the slope) before
time,

ln
PðY jk ¼ 1jbj ;GENDERÞ

1� PðY jk ¼ 1jbj ;GENDERÞ

� �
¼ b0 þ tjkb1 þGENDER�b2 þ b0j þ tjkb1j,

where ðb0j ; b1jÞ
t follows a bivariate normal distribution. The regression parameters

b’s now describe the subject-specific mean response and its association with
covariates. b1 is the subject-specific log odds ratio of depression for each unit
increase of time because ðb0j ; b1jÞ

t; the random effects from the individual, and
gender are fixed for the subject. The interpretation of b2 has to be extrapolated
because gender is a between-subject covariate and it is impossible to change it
within a subject. Therefore, b2 can only be interpreted as the log odds ratio
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of depression between two subjects of different genders who happen to have
exactly the same random effects ðb0j ; b1jÞ

t: A SAS code to implement the above
generalized linear mixed effects model is given below:

PROC GLIMMIX DATA ¼ ; CLASSES ID GENDER;
MODEL DEPRESSION ¼ GENDER TIME/DIST ¼ BINOMIAL
LINK ¼ LOGIT;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

Much of the difference in the interpretation of the regression parameters be-
tween a marginal model and a generalized linear mixed effects model is due to the
fact that the former directly specifies EðY jkjX jkÞ; whereas the latter specifies
EðY jkjX jk; bjÞ instead. When there is an identical link, both approaches become
equivalent based on the fact EðY jkjX jkÞ ¼ Ebj

½EðY jkjX jk; bjÞ�; and the interpre-
tation of regression parameters in the generalized linear mixed model can also be
made in terms of population averages. When the link function is non-linear,
however, the interpretations for the regression parameters in generalized linear
mixed models are distinct from those in the marginal models. These distinctions
allow different scientific questions to be addressed in longitudinal biomedical
studies. Because of the subject-specific feature on the regression coefficients at
least to within-subject covariates or time-varying covariates, the generalized lin-
ear mixed effects models are most useful when the primary scientific objective is to
make inferences about individuals rather than the population averages in the
longitudinal studies.

2.5. Missing data issues

Missing data arise in the analysis of longitudinal data whenever one or more of
the sequences of measurements from subjects within the study are incomplete,
in the sense that the intended measurements are not taken, are lost, or are
otherwise unavailable. Missing data occur in almost all longitudinal studies, and
they cause not only technical difficulties in the analysis of such data, but also
deeper conceptual issues as one has to ask why the measurements are missing,
and more specifically whether their being missing has any bearing on the prac-
tical and scientific objectives to be addressed by the data. A general treatment of
statistical analysis with missing data along with a hierarchy of missing data
mechanisms (MDM) has been proposed (Little and Rubin, 2002). MDM is
classified as missing completely at random (MCAR), missing at random
(MAR), or non-ignorable (NI). These are generally described in a designed
study which calls for k planned observations on each subject but lesser than k

are actually observed.
Let Y j ¼ ðyj1; yj2; . . . ; yjkÞ

t be the vector of planned longitudinal measurements
for the variable of interest on the jth subject over k time points. Let I j ¼

ðI j1; I j2; . . . ; I jkÞ
t be the vector of indicators of observations with I ji ¼ 1 if the ith
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measurement is actually observed and I ji ¼ 0 otherwise. Let Xj be the vector of
covariates on the jth subject, and let f ðY jjX j ;bÞ be the conditional density of Yj

given Xj and a set of parameters b, and let f ðI jjY j ;X j ;cÞ be the conditional
density of Ij given ðY j ;X j ;cÞ; where c is the parameters associated with missing
data. The missing responses are said to be MCAR if

f ðI jjY j ;X j ;cÞ ¼ f ðI jjX j ;cÞ,

i.e., given the covariates X j ; the probability of missingness does not depend on
Y j ¼ ðyj1; yj2; . . . ; yjkÞ

t; observed or not. This simply implies that the missingness
is the results of a chance mechanism that does not depend on either observed or
unobserved components of Y j ¼ ðyj1; yj2; . . . ; yjkÞ

t: With missing data MCAR,
it can be mathematically proved that the joint distribution of these observed yji’s
is the same as the ordinary marginal distribution of these observed from Yj. This
then implies that the observed yji’s are just random samples of yji’s, and thus
essentially any method of analysis will yield valid statistical inferences as long as
the distribution satisfies the assumptions under which the method is justified. In a
longitudinal study, if dropout from the study is not related to any factors under
study, the missingness is considered MCAR.

The missing responses are said to be MAR if

f ðI jjY j ;X j ;cÞ ¼ f ðI jjY
o
j ;X j ;cÞ,

where Yo
j is the observed vector of Y j ¼ ðyj1; yj2; . . . ; yjkÞ

t: The MAR implies
that given the covariates, the probability of missingness depends only on the
observed yji’s, but not on the missing values. With missing data MAR, it is no
longer true that the joint distribution of these observed yji’s is the same as the
marginal distribution of these observed from Yj. However, it can be concluded
that the contribution of the jth subject to the full likelihood as a function of b is
proportional to the ordinary marginal distribution of these observed from Yj as
long as b and c do not share any parameters, or in another word, are func-
tionally distinct. The implication of this result is that, as far as the statistical
inferences of b are concerned, any likelihood-based methods are still valid as
long as the distribution satisfies the assumptions under which the method is
justified. Examples of MAR include the cases when a study protocol requires
that subjects be removed from the study once the value of an outcome variable
falls outside of a normal range, which implies that the missingness is related to
the observed components only. In summary, whether missing data are MCAR
or MAR, standard likelihood procedures can be applied to the observed
data without worrying about the effect of missing to the validity of the
statistical inferences. It is in this sense that both MCAR and MAR are called
ignorable.

The missing responses are said to be NI or not missing at random (NMAR)
if f ðI jjY j ;X j ;cÞ depends on the missing data, although it may or may not
depend on Yo

j : In a longitudinal study of cognitive function for Alzheimer’s
patients, the missing responses are NI if patients are not able to complete the
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cognitive and psychometric tests because their cognition is severely impaired.
Several other examples of NI can also be found in Diggle and Kenward (1994).
With missing data NI, special attention should be paid to the case when
non-likelihood-based statistical inferential procedures are used. Likelihood-
based inferential procedures can still be used, but generally this can only be
done with the specification of the MDM. The validity of such likelihood-based
inference methods depends on the validity of these specifications of MDM,
f ðI jjY j ;X j ;cÞ; which are generally not verifiable based on the collected data. NI
missingness is also sometimes called informative, indicating the crucial role of
the MDM in the analyses of this type of missing data. Other approaches have
also been available in the literature that tried to relax the requirement on the
precise specification of MDM when missingness is NI. Little (1993) discussed
pattern-mixture models, a broad class of models that do not require precise
specification of the MDM. Little and Wang (1996) extended the simple pattern-
mixture model developed in Little (1994) to repeated-measures data with
covariates. Little (1995) developed a model-based framework for repeated-
measures data with dropouts, and placed existing literature within this frame-
work.

The details on the analyses of missing data can be found in Little and
Rubin (2002). Little and Raghunathan (1999) compared ML and summary
measures approaches to longitudinal data with dropouts in a simulation study.
There is also an important distinction between intermittent missing and drop-
out in the analysis, where the latter refers only to missing all measurements
after a certain time point. If the intermittent missing values arise from a
known censoring mechanism, for example, if all values below a known thresh-
old are missing, the EM algorithm (Dempster et al., 1977) provides a possible
theoretical framework for the analysis, but practical implementation for a
realistic range of longitudinal data seems to be rather difficult (Laird, 1988).
When the intermittent missing values do not arise from censoring, it may be
reasonable to assume that they arise from mechanisms unrelated to the meas-
urement process, and therefore are MCAR or MAR. In such cases, all like-
lihood-based inferences would be valid. Dropouts do not arise as a result of
censoring mechanism applied to individual measurements. Often a subject’s
withdrawal is for reasons directly or indirectly related to the measurement
process. Methods are also proposed for the statistical test of MDM (Diggle,
1989; Ridout, 1991; Cochran, 1977; Barnard, 1963). The modeling of the
dropout process (Diggle and Kenward, 1994; Wu and Carroll, 1988; Wu and
Bailey, 1989) highlights the practical implications of the distinctions between
MCAR, MAR, and informative dropouts and provides a possible framework
for routine analysis of longitudinal data with dropouts. Although complete
generality in dealing with missing values in longitudinal data is not available
as yet, one should be very aware of the fact that in general likelihood-based
inferences will no longer be valid when the MDM is NI. The sensitivity anal-
ysis has also been recommended as a necessary step to help the analysis of
missing data.
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3. Design issues of a longitudinal study

In this section we focus on the response variables which are of continuous type,
although the case when the longitudinally measured response variable is binary or
ordinal can be worked out in a similar fashion.

As stated earlier, the major objective of a longitudinal study is to study the rate
of change over time on response variables. There are different designs that can be
used when planning a longitudinal study. The determination of sample sizes and
the corresponding statistical powers are some of the most important issues when
designing a longitudinal study. The answers to these questions depend on several
factors: the primary hypotheses/objectives of the study, the statistical models used
for analyzing the longitudinal data, the significance level of the primary statistical
test or the confidence level of the confidence interval estimate to the rate of
change over time, the statistical power desired for a statistical test, or the degree
of accuracy in the confidence interval estimate to the rate of change. Most of
times, analysis of response profiles, repeated measures analysis of variance,
and the general linear mixed models are the major statistical models used for
determining the sample sizes of longitudinal studies when the primary outcome
variable is of continuous type.

When no parametric forms are assumed for the mean response profiles which
are estimated and compared based on the analysis of response profiles or the
repeated measures analysis of variance, the methods of sample size determination
can be based on the standard analysis of response profiles and repeated measures
analysis of variance. In a longitudinal study to compare multiple treatment groups
over time, if repeated measures analysis of variance is used under the assumption
that the covariance matrices of the measurement errors of the time intervals and
the error terms of the subjects assigned to a given study conditions satisfy the H–F
condition (Huynh and Feldt, 1970), the sample size determination can be further
based on the F-tests or t-tests from a standard two-way analysis of variance
(Chow and Liu, 2003) based on appropriate statistical tests on the primary
hypothesis of the study. We consider here several types of longitudinal studies
which are analyzed by the general linear mixed effects models in which a linear
growth curve over time is assumed, one is to estimate the rate of change over time,
and the other is to compare two subject groups on the rate of change over time.

Case 1. Estimating a single rate of change over time.

The simplest longitudinal study design is an observational study for which
study subjects are followed for a certain period of time. This type of longitudinal
study can be used to estimate the rate of change for the outcome variable over a
certain time period. In many of these observational studies, the most important
objective is to achieve an accurate estimate to the rate of change over time on
some important measures for a population of subjects. Suppose that a sample of
size n will be used in the study for which each subject is planned to take k repeated
measures of the response variable at time points t1; t2; . . . ; tk: Let Y j ¼

ðyj1; yj2; . . . ; yjkÞ
t be the vector of longitudinal measurements of the jth subject.

For simplicity, we assume that changes in the mean response can be modeled by a
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linear trend over time and therefore the slope over time can be used to describe
the rate of change. The major objective here is to obtain an accurate confidence
interval estimate to the mean slope over time for the population of subjects under
study. Recall that the two-stage random effects model assumes an individual
growth curve for each subject at Stage 1

Y ji ¼ b0j þ b1j ti þ eji,

where eji’s are assumed to be independent and identically distributed as a normal
distribution with mean 0 and variance s2e : At Stage 2, the subject-specific rates of
change b1j’s are assumed to follow another normal distribution with mean b1 and
variance s2b and are independent of eji’s (the distribution of b0j need not be used
here). The major interest is in the estimation of mean change of rate b1 in the
population. The simple least square estimate to the subject-specific rate of change
for the jth subject is

b̂1j ¼

Pk
i¼1

ðti � t̄ÞY ji

Pk
i¼1

ðti � t̄Þ2
,

where t̄ ¼ Sk
i¼1ti=k: Notice that b̂1j follows a normal distribution with mean b1

and variance s2, where

s2 ¼ s2e
Xk

i¼1

ðti � t̄Þ2

( )�1
þ s2b.

Therefore a 100(1�a)% ð0oao1Þ confidence interval for b1 based on a sample of
size n is b̄1 � za=2ðs=

ffiffiffiffiffi
nÞ

p
; where

b̄1 ¼

Pn
j¼1

b̂1j

n
.

This gives the sample size required for achieving a confidence interval estimate of
b1 with a margin of error 7d as

n ¼
ðza=2sÞ

2

d2
.

If the longitudinal study is unbalanced or incomplete in which different study
subjects may have different design vectors of times or even different number
of time points, similar sample size formula could be derived under certain
convergence assumptions on the design vectors of times.

Case 2. Estimating the difference of two rates of change over time.

A comparative longitudinal study compares the longitudinal courses of
one or more response variables over two or more techniques, treatments, or
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levels of a covariate. In many clinical trials that evaluate the efficacy of one
or more therapeutic treatments for a disease such as AD, a comparative longi-
tudinal design is likely used to compare the treatments with placebo on the rate
of change over time for a primary endpoint. Here we consider estimating the
difference on the rates of change for the primary endpoint between the
treated group and the placebo. The random coefficients model in this case
assumes that the subject-specific slope b1j follows a normal distribution with
mean bt and variance s2bt when the subject belongs to the treated group and
another normal distribution with mean bc and variance s2bc when the subject belongs
to the control group. Similar to Case 1, when the subject belongs to the treated
group, b̂1j follows a normal distribution with mean bt and variance s2t ; where

s2t ¼ s2e
Xk

i¼1

ðti � t̄Þ2

( )�1
þ s2bt.

When the subject belongs to the control group, b̂1j follows another normal
distribution with mean bc and variance s2c ; where

s2c ¼ s2e
Xk

i¼1

ðti � t̄Þ2

( )�1
þ s2bc.

Therefore a 100(1�a)% ð0oao1Þ confidence interval for the difference bt � bc
on the mean rates of change over time between the treated group and the control

group is b̄t � b̄c � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2t =ntÞ þ ðs2c=ncÞ

q
; where

b̄i ¼

Pni

j¼1

b̂1j

ni

for i ¼ t, c, and nt, nc are the sample size for the treated group and the control
group, respectively. Let l ¼ nt=nc be the sample size ratio between two subject
groups. This confidence interval also yields the sample sizes for the two study groups
required for achieving a confidence interval estimate of bt � bc with a margin of
error 7d as

nc ¼
s2t
l
þ s2c

� �
za=2

d

� �2
,

and nt ¼ lnc:

Case 3. Testing a hypothesis on the difference of two rates of change over time.

Along the similar arguments made in Case 2, the test statistic for testing H0 :
bt ¼ bc against Ha : bt � bc ¼ Da0 is

z ¼
b̄t � b̄cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t =ntÞ þ ðs2c=ncÞ

q .
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The test statistic follows a standard normal distribution when the null
hypothesis is true. The test therefore rejects the null hypothesis when jzj4za=2
at a significance level of a ð0oao1Þ: The power of the test, as a function
of D is given by

PðDÞ ¼ 1� F za=2 �
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t =ntÞ þ ðs2c=ncÞ

q
0B@

1CA
þ F �za=2 �

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2t =ntÞ þ ðs2c=ncÞ

q
0B@

1CA.

Therefore, the sample sizes required to achieve a statistical power of
(1�g)ð0ogo1Þ is the solution to nt and nc such that

PðDÞ ¼ 1� g.

Notice that in all these sample size formulas, the length of the study, the number
of repeated measures on the response variable, and the time spacing of the
repeated measures all impact the statistical power through the quantity

f ðt1; t2; . . . ; tkÞ ¼
Xk

i¼1

ðti � t̄Þ2.

Because this quantity is inversely related to the variance of the estimated subject-
specific rate of change over time, the larger the quantity is, the smaller the var-
iance for the estimated subject-specific slope is, the more accurate the confidence
interval estimates to the mean slopes are, and the more powerful the statistical test
is for comparing the two mean rates of changes over time between the treated
group and the control group. Therefore, an optimal design should in theory
maximize the quantity f ðt1; t2; . . . ; tkÞ over the choice of k; t1; t2; . . . ; tk:Notice that
tk � t1 is the entire duration of the study. Although theoretically it should be
chosen to maximize f ðt1; t2; . . . ; tkÞ; many economic and logistic and subject mat-
ters factors constrain the choice of tk � t1: In addition, the validity of the assumed
statistical model also constrains the choice of tk � t1 in the sense that a linear
growth over time might not be a reasonable assumption with a very long study
duration, which is especially the case in the study of cognitive decline in Al-
zheimer’s patients. Similarly, the number of repeated measures in a longitudinal
study might also be constrained by many practical factors and cannot be freely
chosen by the designers of the study. As a result, many longitudinal studies are
restricted to relatively short duration with a predetermined number of repeated
measures which is not chosen statistically based on an optimal design. Given that
tk � t1 and k are typically chosen by some non-statistical reasons, the optimal
design now relies on the choice of time spacing to maximize f ðt1; t2; . . . ; tkÞ: It can
be mathematically proved that with an even k, f ðt1; t2; . . . ; tkÞ is maximized when
k/2 observations are taken at baseline t1 and the other k/2 taken at the final time
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point tk for each study subject. This mathematically optimal design, however, is
not only impractical in many longitudinal studies but also completely erases the
ability of verifying the validity of the linear growth curve based on the collected
data. Therefore optimal longitudinal designs are sometimes based on further
assumptions on the spacing of design vector of times. For example, if the
researchers would want to design an equally spaced longitudinal study, then

f ðt1; t2; . . . ; tkÞ ¼
ðtk � t1Þ

2kðk þ 1Þ

12ðk � 1Þ
.

This function indicates the relevant influence of tk � t1 and k on the sample size
computations. In general, if the linear growth curve is a valid statistical model
and that the logistic and practical factors allow, an increase of either the study
duration or the frequency of repeated measures will decrease the within-subject
variability and improve the precision of parameter estimates or the statistical
power in the test on the rate of change over time.

Missing data almost always happen in longitudinal studies. In general, the
impact of missing data on sample size determination is difficult to quantify pre-
cisely because of the complexity in the patterns of missingness. The simplest
conservative approach to account for the missing data in sample size determi-
nation is to first compute the sample sizes required assuming all subjects have the
complete data, and then adjust the sample sizes based on an estimated rate of
attrition accordingly.
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Design and Analysis of Cross-Over Trials

Michael G. Kenward and Byron Jones

Abstract

This chapter provides an overview of recent developments in the design and

analysis of cross-over trials. We first consider the analysis of the trial that

compares two treatments, A and B, over two periods and where the subjects are

randomized to the treatment sequences AB and BA. We make the distinction

between fixed and random effects models and show how these models can easily

be fitted using modern software. Issues with fitting and testing for a difference

in carry-over effects are described and the use of baseline measurements is

discussed. Simple methods for testing for a treatment difference when the data

are binary are also described. Various designs with two or more treatments but

with three or four periods are then described and compared. These include the

balanced and partially balanced designs for three or more treatments and de-

signs for factorial treatment combinations. Also described are nearly balanced

and nearly strongly balanced designs. Random subject-effects models for the

designs with two or more treatments are described and methods for analysing

non-normal data are also given. The chapter concludes with a description of the

use of cross-over designs in the testing of bioequivalence.

1. Introduction

In a completely randomized, or parallel group, trial, each experimental unit is
randomized to receive one experimental treatment. Such experimental designs are
the foundation of much research, particularly in medicine and the health sciences.
A cross-over trial is distinguished from such a parallel group study by each unit,
or subject, receiving a sequence of experimental treatments. Typically however the
aim is still to compare the effects of individual treatments, not the sequences
themselves. There are many possible sets of sequences that might be used in a
design, depending on the number of treatments, the length of the sequences and
the aims of the trial.
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A cross-over trial allows the calculation of within-subject treatment compar-
isons and so is able to make such comparisons with comparatively high precision,
provided the response being measured is at least moderately highly correlated
within an individual subject. This potential gain in precision comes with a price
however. Obviously such a design cannot be used with treatments that irreversibly
change the subject, such as treatments that are curative. Once treatment has
ceased, the subject must return to the original condition, at least approximately.
Hence there is always the possibility when using such a design that some
consequence of earlier treatment may still be influential later in the trial. In the
cross-over context this is called a carry-over effect. This potential source of bias is
akin to confounding in an epidemiological study and implies that to some extent
the analysis of data from a cross-over trial will inevitably rely more on assump-
tions and modelling, and less directly on the randomization, than a conventional
parallel group study.

This issue is particularly apparent in the so-called two-period two-treatment or
2� 2 design. This is the simplest, and arguably the most commonly used design,
in a clinical setting. In this design each subject receives two different treatments
which we conventionally label as A and B. Half the subjects are randomized to
receive A first and then, after a suitably chosen period of time, cross over to B.
The remaining subjects receive B first and then cross over to A. Because this
particular design is so commonly used, and because it raises very special issues in
its own right, we devote the next section of this chapter specifically to it. There are
many other so-called higher-order designs, with more than two periods, and/or
treatments and/or sequences and we consider the choice of such designs and the
analysis of continuous data from such designs in Section 3. Data from cross-over
trials are examples of repeated measurements and so raise special issues when
analysed with non-linear models, in particular those commonly used with binary
and categorical data. This has not always been properly appreciated when al-
ternative models have been used for analysing cross-over data, and when results
are compared with those from parallel group studies. We consider the analysis of
such non-normal data in Section 4, together with some issues surrounding this.
Recent developments in the design of cross-over trials are addressed in Section 6.
Two standard references for cross-over trials are Jones and Kenward (2003) and
Senn (2002), and recent reviews are given in Kenward and Jones (1998) and Senn
(1997, 2000).

Cross-over data are examples of repeated measurements. Consequently, a key
concept in the design and analysis of cross-over trials is that of between-subject

and within-subject information. This is most easily conceptualized for continuous
responses. Between-subject information is that contained in the total (or mean)
of the measurements from a subject, while within-subject information is that
contained among all differences among measurements from a subject.

This is reflected in the use of subject-effect models. We introduce these now for
use in later sections, and to set out the notation we will be using.

For a cross-over trial we will denote by t, p and s, respectively, the number of
treatments, periods and sequences. So for example, in a trial in which each subject
received three treatments A, B and C, in one of the six sequences: ABC, ACB,
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BAC, BCA, CAB and CBA, we have t ¼ 3, p ¼ 3 and s ¼ 6. In general, we denote
by yijk the response observed on the kth subject in period j of sequence group i.
It is assumed that ni subjects are in sequence group i. To represent sums of
observations we will use the dot notation, for example:

yij: ¼
Xni

k¼1

yijk; yi:: ¼
Xp

j¼1

yij:; y::: ¼
Xs

i¼1

yi::.

In a similar way, the corresponding mean values will be denoted, respectively as,

ȳij: ¼
1

ni

Xni

k¼1

yijk; ȳi:: ¼
1

pni

Xp

j¼1

yij:; ȳ::: ¼
1

p
P

ni

Xs

i¼1

yi::.

To construct a statistical model we assume that yijk is the observed value of a
random variable Yijk. For a continuous outcome we assume that Yijk can be
represented by a linear model that, in its most basic form, can be written

Y ijk ¼ mþ pj þ td½i;j� þ sik þ eijk, (1)

where the terms in this model are:

m, an intercept;
pj, an effect associated with period j, j ¼ 1,y, p;
td[i,j], a direct treatment effect associated with the treatment applied in period j

of sequence i, d[i,j] ¼ 1,y, t;
sik, an effect associated with the kth subject on sequence i, i ¼ 1,y, s,

k ¼ 1,y, ni;
eijk, a random error term, with zero mean and variance s2.

Sometimes we need to represent a potential carry-over effect in the model. A
simple first-order carry-over effect (that is, affecting the outcome in the following
period only) will be represented by the term ld[i,j�1] where it is assumed that
ld[i,0] ¼ 0. Additional terms such as second-order carry-over and direct treatment-
by-period interaction effects can be added to this model, but such terms are rarely
of much interest in practice.

An important distinction needs to be made between those models in which the
subject effects (the sik) are assumed to be unknown fixed parameters and those in
which they are assumed to be realizations of random variables, usually with zero
mean and variance s2s : The use of the former implies that the subsequent analysis
will use information from within-subject comparisons only. This is appropriate
for the majority of well-designed cross-over trials and has the advantage of
keeping the analysis within the familiar setting of linear regression. There are
circumstances, however, in which the subject totals contain relevant information
and this can only be recovered if the subject effects are treated as random. Such a
model is an example of a linear mixed model and the use of these introduces
some additional issues: properties of estimators and inference procedures are
asymptotic (possibly requiring small-sample adjustments), and an additional
assumption is needed for the distribution of the random subject effects.
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Model fitting and inference for fixed subject-effect models will follow conven-
tional ordinary least squares (OLS) procedures and for random subject-effect
models we will use the now well-established restricted maximum likelihood
(REML) analyses for linear mixed models (see, for example, Verbeke and
Molenberghs, 2000). These analyses can be done relatively simply in several
widely available software packages, examples are SAS procs MIXED and
GLIMMIX, Stata command xtmixed, Splus lme, MLwiN and, for Bayesian
analysis, Win-BUGS (references for all of these are given at the end of this
chapter). The two SAS procedures have the advantage of incorporating the small
sample adjustments introduced by Kenward and Roger (1997). Cross-over trials
can be very small in practice, and it is in such settings that small sample pro-
cedures may be relevant.

2. The two-period two-treatment cross-over trial

In this section, we consider the two-period two-treatment or so-called 2� 2 cross-
over trial. The simplicity of this design, and its relevance for trials with two
treatments, has led to its widespread use in a clinical setting. This simplicity of
design, however, does mask some important issues which discuss below.

2.1. An example

First, we introduce a comparatively simple illustrative example of such a trial
which is taken from Jones and Kenward (2003, Chapter 2). This was a single-
centre, randomized, placebo-controlled, double-blind study to evaluate the effi-
cacy and safety of an inhaled drug (A) given twice daily via an inhaler in patients
with chronic obstructive pulmonary disease (COPD). Patients who satisfied the
initial entry criteria entered a two-week run-in period. Clinic Visit 1 is used to
denote the start of this period. After 13 days they returned to the clinic for a
histamine challenge test (Clinic Visit 2). On the following day (Clinic Visit 3) they
returned to the clinic and following a methacholine challenge test, eligible patients
were randomized to receive either Drug (A) or matching Placebo (B) twice daily
for four weeks. The patients then switched over at Clinic Visit 5 to the alternative
treatment for a further four weeks. The patients also returned to the clinic a day
before the end of each treatment period (Clinic Visits 4 and 6) when repeat
histamine challenge tests were performed. There was a final clinic visit two weeks
after cessation of all treatment (Clinic Visit 8). Patients were instructed to attend
the clinic at approximately the same time of day for each visit.

The primary comparison of efficacy was based on the mean morning expir-
atory flow rate (PEFR) obtained from data recorded on daily record cards. Each
day patients took three measurements of PEFR on waking in the morning, and at
bedtime, prior to taking any study medication. On each occasion the highest of
the three readings was recorded.

Of a total of 77 patients recruited into the study, 66 were randomized to
treatment (33 per sequence group). Ultimately, data on the mean morning PEFR
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(over the treatment days in each period) from 56 patients were obtained: 27 in the
AB group and 29 in the BA group. The data from the patients in the AB sequence
group are given in Table 1, and the data from the BA sequence group are given in
Table 2.

The corresponding group-by-period means are given in Table 3.

2.2. The direct treatment effect

We consider first the analysis of these data under the assumption that there is no
carry-over effect, sequence effect or treatment-by-period interaction. Using the
notation introduced earlier we can write a simple linear model for these data:

Y ijk ¼ mþ pj þ td½i;j� þ sik þ eijk; i ¼ 1; 2; j ¼ 1; 2, (2)

where k ¼ 1,y, 27 in group 1 (AB) and k ¼ 1,y, 29 in group 2 (BA). In this
design, with this model, all the information on the treatment difference td ¼ t1�t2
is within-subject. This implies that it is irrelevant for the analysis whether we use

Table 1

Group 1(AB) mean morning PEFR (L/min)

Subject Number Subject Label Period 1 Period 2

1 7 121.9 116.7

2 8 218.5 200.5

3 9 235.0 217.1

4 13 250.0 196.4

5 14 186.2 185.5

6 15 231.6 221.8

7 17 443.2 420.5

8 21 198.4 207.7

9 22 270.5 213.2

10 28 360.5 384.0

11 35 229.7 188.2

12 36 159.1 221.9

13 37 255.9 253.6

14 38 279.0 267.6

15 41 160.6 163.0

16 44 172.1 182.4

17 58 267.0 313.0

18 66 230.7 211.1

19 71 271.2 257.6

20 76 276.2 222.1

21 79 398.7 404.0

22 80 67.8 70.3

23 81 195.0 223.2

24 82 325.0 306.7

25 86 368.1 362.5

26 89 228.9 227.9

27 90 236.7 220.0

Source: Table reproduced from Jones and Kenward (2003) with the permission of the publisher.
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fixed or random subject effects. The least squares estimator of td is

t̂d ¼
1

2
ȳ11� � ȳ12� � ȳ21� þ ȳ22�

	 

This is the treatment estimator adjusted for period effect. It is sometimes

suggested that a simple unadjusted estimator can be used, possibly after testing

Table 3

The group-by-period means for the mean PEFR data

Group Period 1 Period 2 Mean

1(AB) n1 ¼ 27 ȳ11: ¼ 245:84 ȳ12: ¼ 239:20 ȳ1:: ¼ 242:52
2(BA) n2 ¼ 29 ȳ21: ¼ 215:99 ȳ22: ¼ 230:16 ȳ2:: ¼ 223:08

Mean ȳ:1: ¼ 230:38 ȳ:2: ¼ 234:52 ȳ... ¼ 232:45

Source: Table reproduced from Jones and Kenward (2003) with the permission of the publisher.

Table 2

Group 2(BA) mean morning PEFR (L/min)

Subject Number Subject Label Period 1 Period 2

1 3 138.3 138.6

2 10 225.0 256.2

3 11 392.9 381.4

4 16 190.0 233.3

5 18 191.4 228.0

6 23 226.2 267.1

7 24 201.9 193.5

8 26 134.3 128.9

9 27 238.0 248.5

10 29 159.5 140.0

11 30 232.7 276.6

12 32 172.3 170.0

13 33 266.0 305.0

14 39 171.3 186.3

15 43 194.7 191.4

16 47 200.0 222.6

17 51 146.7 183.8

18 52 208.0 241.7

19 55 208.7 218.8

20 59 271.4 225.0

21 68 143.8 188.5

22 70 104.4 135.2

23 74 145.2 152.9

24 77 215.4 240.5

25 78 306.0 288.3

26 83 160.5 150.5

27 84 353.8 369.0

28 85 293.9 308.1

29 99 371.2 404.8

Source: Table reproduced from Jones and Kenward (2003) with the permission of the publisher.
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for period effect. Given that the trial is designed to allow adjustment for period
differences, and given that sequential testing procedures are best avoided where
possible, such an approach is not recommended. The variance of the treatment
estimator is

Vðt̂dÞ ¼
s2d
4

1

27
þ

1

29

� �
for s2d the variance of a within subject difference Yi1k�Yi2k. That is, in terms of
the earlier definitions, s2d ¼ 2s2: This is estimated in the usual way from a re-
gression residual mean square or pooled variance. Inference about td then uses
the conventional t based pivot

td � t̂dffiffiffiffiffiffiffiffiffiffiffi
V̂ðt̂dÞ

q 	 t54.

In the present example we have t̂d ¼ 10:40 and Vðt̂dÞ ¼ 11:66: Hence a 95%
confidence interval for the average treatment difference is given by

10:40�
ffiffiffiffiffiffiffiffiffiffiffi
11:66
p

� 2:01 or ð3:55; 17:25Þ:

Such statistics are very simply calculated by applying standard t test and con-
fidence interval calculations to the within-subject differences. As an aside, note
that because this test can be formulated as a t test, conventional sample size
calculations can be used in the 2� 2 cross-over setting, provided the variance used
corresponds to within-subject differences.

For the calculated confidence interval we see that there is some evidence that
treatment A, the active drug, is producing greater average lung function.

2.3. Carry-over/treatment-by-period interaction

This analysis above is based on the important assumption that treatment-
by-period interaction, carry-over and sequence effects are all negligible. The
latter effect should be removed through randomization. The first two effects, while
conceptually separate, cannot be distinguished in this design. Suppose that we in-
troduce carry-over into the model. We might use the following extension of (2):

Y ijk ¼ mþ pj þ td½i;j� þ ld½i; j�1� þ sik þ eijk; i ¼ 1; 2; j ¼ 1; 2. (3)

It is easily shown that the least squares estimator of the carry-over effect
l ¼ l1�l2 is then equal to the difference of the subject means:

l̂ ¼
1

2
ȳ11� þ ȳ12� � ȳ21� � ȳ22�

	 

.

This is based wholly on between-subject information, so to derive this estimator
it must be assumed that the subject effects are random. If instead in (3) a treat-
ment-by-period interaction were introduced:

Y ijk ¼ mþ pj þ td½i;j� þ ðptÞjd ½i;j� þ sik þ eijk; i ¼ 1; 2; j ¼ 1; 2, (4)
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the least squares estimator of the interaction effect

fðptÞ11 � ðptÞ12 � ðptÞ21 þ ðptÞ22g

would be proportional to l̂ above. Thus, the two quantities, carry-over and
treatment-by-period interaction, are aliased in this particular design. This is not a
general rule. In higher-order designs such effects may be partially aliased or sep-
arately estimable.

The variance of l̂ is

Vðl̂Þ ¼ s2B
1

27
þ

1

29

� �
for s2B the variance of a subject sum Y i1k þ Y i2k or 2s2 þ 4s2s : t-based inferences
can be made as in the same way as for the treatment effect but based on the sub-
ject sums rather than the differences. Here we obtain a 95% confidence interval
for l of (�43.33, 121.17).

2.4. Preliminary testing and its problems

The existence of a test for the key assumption of carry-over/interaction led early
users to suggest making a preliminary test for this before proceeding to the com-
parison of the direct treatment effects (Grizzle, 1965). The proposed procedure is
as follows. Depending on the result of the carry-over test, one of two different
estimates for a direct treatment difference is used. If the test for a carry-over
difference is not significant, then the t-test above, based on the within-subject
differences is used. If the carry-over test is significant, then the two treatments
are compared using only the Period 1 data, as in a parallel groups design. That is,
using a two-sample t-test comparing the mean of A in Period 1 with the mean of B
in Period 1. This test uses between-subject information, and so negates the
advantages of using a cross-over design.

A first objection to this procedure is the lack of power of the carry-over test.
The ratio of variances of the carry-over and treatment estimators can be written

R ¼ 2þ
r

1� r

for r the within-subject (intraclass) correlation s2s=ðs
2 þ s2s Þ: Cross-over trials are

suited to settings in which this correlation is large and will typically be powered
for the treatment comparison. The resulting power of the carry-over test will then
be very low indeed. For example, in the COPD trial r̂ ¼ 0:945; giving R̂ ¼ 19:2;
implying that the carry-over test is effectively useless. It has been suggested that
because of the low power of this test, it should be made at a less stringent level, for
example 10%. Not only is this typically insufficient to bring the power up to a
worthwhile level, this whole sequential procedure has a more fundamental prob-
lem, as pointed out by Freeman (1989). Because of the dependence between the
preliminary test for carry-over and the first period comparison, the sequential
procedure leads to both bias in the resultant treatment estimator and increases the

Design and analysis of cross-over trials 471



probability of making a Type I error. In other words, the actual significance level
of the direct treatment test is higher than the nominal one chosen for the test.
Although attempts have been made to circumvent this problem, there is no
solution that does not involve introducing information about the carry-over/
treatment-by-period interaction that is not contained in the data. Given that a
cross-over trial will be powered for within-subject estimation of the treatment
effect and so will not have the sensitivity to provide useful information on the
carry-over/treatment-by-period interaction, arguably the best approach to the
problem is to take all practical steps to avoid possible carry-over such as using
wash-out periods of adequate length between the treatment periods and then
assume that this effect is negligible in the analysis. This in turn requires a good
working knowledge of the treatment effects, which will most likely be based on
prior knowledge of the drugs under study, or ones known to have a similar action.

2.5. Use of baseline measurements

In many studies baseline measurements are collected at the end of the run-in and
wash-out periods. Because of the within-subject nature of the analysis these
baselines do not have the usual role familiar from parallel group studies. We label
these X1 and X2, implying that there are now four measurements from each
subject, i.e., from subject ði; kÞ : fxi1k; yi1k; xi2k; yi2kg: In an obvious way we can
write a simple model for the expectations of these variables:

Group 1 (AB) Group 2(BA)

EðX 11kÞ ¼ m� p1 EðX 21kÞ ¼ mþ p1
EðY 11kÞ ¼ m� p2 � t EðY 21kÞ ¼ mþ p2 þ t
EðX 12kÞ ¼ m� p3 � y EðX 22kÞ ¼ mþ p3 þ y
EðY 12kÞ ¼ m� p4 þ t� l EðY 22kÞ ¼ mþ p4 � tþ l

The parameters m, pj, t and l are as defined above. The final parameter y rep-
resents carry-over from the treatment period that is apparent at the end of the
wash-out period. In more general terms, y represents any difference between
groups of the second baseline means and l any direct-by-period interaction,
whether due to carry-over differences or not. There are many ways in which
effects can arise which are aliased with these two parameters. Some authors set
p1 ¼ p2 and p3 ¼ p4. Unless the treatment periods are very short compared with
the wash-out period there seems little justification for this.

It is important at this point to distinguish two types of baseline. (1) The four
measurements may be fairly evenly spaced in time with similar correlations bet-
ween them. (2) Alternatively, the baselines may be made ‘‘close’’ to the response
measurements, relative to the gap between the treatment periods, and change
from these may even be defined as the primary response measurement. Given
the choice of using or not using the baseline measurements, which route should be
taken? This is most easily answered by considering the analysis of change from
baseline, rather than full covariate adjustment. The question then becomes, under
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what circumstances is it more efficient to analyse change from baseline rather
than the response (Y) observations only? The answer depends on the relative sizes
of the correlations within periods and between periods.

We could postulate the following covariance matrix for the four measurements
{X1, Y1, X2, Y2}:

s2

1 r1 r3 r5
r1 1 r2 r4
r3 r2 1 r1
r5 r4 r1 1

266664
377775

Without using baselines, the variance of a within-subject difference is

V ¼ s2ð1� r4Þ.

With baselines, the corresponding variance is

VB ¼ 4s2ð2� 2r1 � r4 � r3 þ r2 þ r5Þ.

If all the correlations were equal (to r40 say, as would be implied by a random
subject effects model)

VB ¼ 4s2ð1� rÞ ¼ 2V .

In other words introducing the baselines doubles the variance of the treatment
estimator. To have smaller variance using the baselines we would need:

V4VB

After some re-arranging, we see that this implies

2r1 þ r341þ r2 þ r5.

This will be true only when the correlations between response and preceding
baseline (r1) and between the two baselines (r3) tend to be large relative to the
other correlations, as in case (2) above.

Using the baselines as covariates will modify this conclusion to some extent,
but the main picture does not alter. For a full discussion see for example Kenward
and Jones (1987).

A simple rule therefore is to ignore baselines for estimating the direct treatment
effect, unless we know that they will be particularly highly correlated with the
associated response measurement (because of the timing of the baseline meas-
urements for example). The reason we gain so little from baseline measurements
in the cross-over setting is that we are already using within-subject information
and so the baselines are not required to explain between-subject variation as in a
parallel group trial. Further, the concept of presenting effects in terms of change
from baseline is less meaningful here as the treatment estimator is already a
within-subject comparison.
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The baselines do provide additional information on the two carry-over
parameters y and l however, in particular allowing the latter to be estimated
using within-subject information. Details are given in Jones and Kenward (2003,
Section 2.10). However, any attempt to use these in a sequential procedure is
likely to run into the same difficulties as those seen earlier.

2.6. Analysis of binary data

A binary observation can take only two values, traditionally labelled 0 and 1;
examples are no/yes, failure/success and no effect/effect. In keeping with standard
practice we shall refer to the responses 1 and 0 as a success and a failure, re-
spectively, and we shall refer to a 2� 2 cross-over with binary data as a binary
2� 2 cross-over. The design of the trial will take exactly the same form as before:
the subjects are divided into Groups 1 and 2 (treatment orders AB and BA,
respectively) and we assume that we have a single observation that takes the value
0 or 1 from each subject in each period.

Consider the following example of safety data from a trial on the disease
cerebrovascular deficiency in which a placebo (A) and an active drug (B) were
compared (Jones and Kenward, 2003, Section 2.13). A 2� 2 design was used at
each of two centres, with 33 and 67 subjects, respectively, at each centre. The
response measured was binary and was defined according to whether an electro-
cardiogram was considered by a cardiologist to be normal (1) or abnormal (0). In
such a trial each subject supplies a pair of observations (0,0), (0,1), (1,0) or (1,1)
where (a,b) indicates a response a in Period 1 and b in Period 2. We can therefore
summarize the data from one 2� 2 trial in the form of a 2� 4 contingency table
as follows for centre 1:

Group (0,0) (0,1) (1,0) (1,1) Total

1(AB) 6 2 1 7 16
2(BA) 4 2 3 8 17

Total 10 4 4 15 33

Table reproduced from Jones and Kenward (2003) with the permission of the publisher.

Several tests can be defined in terms of this table, here we focus on two: the
analogues of the two t-tests presented earlier for direct treatment effect and for
carry-over effect/treatment-by-period interaction. As before we first will make the
assumption that the latter are negligible. We can associate with each entry in the
2� 4 table a probability rij:

Group (0,0) (0,1) (1,0) (1,1) Total

1(AB) r11 r12 r13 r14 1
2(BA) r21 r22 r23 r24 1

Total r.1 r.2 r.3 r.4 2
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The odds in favour of a (1,0) response in Group 1 as opposed to a (0,1) response is
the ratio of probabilities r13=r12: If there were no carry-over difference or direct
treatment effect we ought to get the same odds in Group 2, i.e., r23=r22: If these
two odds were not equal this would indicate that there was a direct treatment
effect. A natural way to express this effect is as the ratio of the odds

ft ¼
r23=r22
r13=r12

¼
r12r23
r13r22

:

This is just the odds-ratio in the 2� 2 contingency table with probabilities pro-
portional to these:

(0,1) (1,0)

Group 1 r12 r13
Group 2 r22 r23

In the absence of a direct treatment effect there should be no evidence of asso-
ciation in this table. This points to a test for the direct treatment effect in terms of
the following 2� 2 contingency table:

(0,1) (1,0) Total

Group 1 n12 n13 m1

Group 2 n22 n23 m2

Total n.2 n.2 m.

where m1 ¼ n12+n13 and m2 ¼ n22+n23. To test for this association we can apply
the standard tests for a 2� 2 contingency table to this table, where evidence of
association indicates a direct treatment effect. This is known as the Mainland–

Gart test. Mainland (1963, pp. 236–238) derived this test using a heuristic argu-
ment based on the randomization of subjects to groups, while Gart (1969) gave a
rigorous derivation in which he conditioned on subject effects in a linear logistic
model for each individual observation in each period. We return to this view later.

For centre 1 we have the following:

(0,1) (1,0) Total

Group 1 2 1 3
Group 2 2 3 5

Total 4 4 8

Any conventional test for association can be used with such a table, but in the
light of the very small numbers we might use Fisher’s exact test for this particular
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example. Unsurprisingly, given the small numbers, the test for direct treatment
effect is far from significant.

Omitting the derivation, which is less direct than for the Mainland–Gart test,
the corresponding test for carry-over/treatment-by-period interaction is given by
the test for association in the 2� 2 table of non-preference responses:

(0,0) (1,1) Total

Group 1 n11 n14 M1

Group 2 n21 n24 M2

Total n.3 n.3 M.

As with a continuous response, such a test will typically have very low power
for trials that are powered for the direct treatment effect.

Both these tests can be derived from a more general framework that we
consider later when we present models and analyses for higher-order designs,
which will also point the way to analyses for count, for ordinal and for nominal
categorical data. The advantage of these two tests is their great simplicity.

3. Higher-order designs

3.1. Higher-order two-treatment designs

As seen in Section 2, the 2� 2 design without baselines does not permit a within-
subjects estimator of the carry-over/treatment-by-period interaction to be
obtained. However, if additional sequences and/or periods are used then this
deficiency can be remedied. For example, extending the design to three periods
means that the following three alternative designs with two sequences may be
used: ABB/BAA; ABA/BAB or AAB/BAA. Assuming the data from the trial are
analysed using the linear model defined in (1) then all three designs are equivalent
in the sense they all give the same estimator of the treatment difference. Suppose,
however, that model (1) is extended to include the carry-over effects of the treat-
ments given in periods j ¼ 2, 3,y, p, as follows:

Y ijk ¼ mþ pj þ td½i;j� þ ld½i;j�1� þ sik þ eijk, (5)

where ld[i,j�1] is the carry-over effect in period j of treatment d [i, j� 1] in period
j� 1.

Then the first design ABB/BAA is superior to the other two as it provides an
estimator of the treatment difference with smallest variance (Jones and Kenward,
2003). Extending the design to four periods ultimately leads to a choice between
the two equivalent designs (under model (1)): AABB/BBAA and ABBA/BAAB.
The latter of these has the further advantage of allowing estimation of the second-
order carry-over difference, although this is unlikely to be of importance in
practice, when care has been taken to allow sufficient wash-out time between the
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periods. Both designs ABB/BAA and ABBA/BAAB are useful designs to use
when testing for bioequivalence, as we will mention in Section 5. Other two-
period designs with more than two sequences are described in some detail in Jones
and Kenward (2003, Chapter 3).

Of course, the merits of the alternative designs depend on the model assumed
for the carry-over effects. We have assumed a simple additive model. For a
criticism of this simple model see Fleiss (1986, 1989). For further discussion see
Senn and Lambrou (1998) and Senn (2002).

3.2. Higher-order designs with more than two treatments

When there are three or more treatments there will be more than one possible
contrast between the treatment effects. The type and number of contrasts of
interest will determine the choice of design that should be used. For example,
suppose t ¼ 4 and all six pairwise comparisons between the treatments are of
interest. Then a variance-balanced design will be the ideal choice, because in such
a design the variance of every estimated pairwise comparison is equal to the same
constant value. Such a design is given in Table 4, which is an example of a so-
called Williams design (Williams, 1949). To calculate the variance of a treatment
contrast we assume here, and in the following, that the fixed-effects model (5)
holds. It should be noted that all the designs considered in this section permit the
treatment contrasts to be estimated using within-subject information and in the
presence of differential carry-over effects. The Williams designs also possess
combinatorial balance in the sense that every treatment follows every other
treatment (except itself) the same number of times. Williams designs can be con-
structed for every value of t: when t is even the design contains t different treat-
ment sequences and when t is odd the design contains 2t different sequences.
Variance-balanced designs for odd t that contain only t different sequences exist
for some values of t, e.g., t ¼ 9, 15 and 27. A design is variance-balanced and
strongly balanced in the combinatorial sense if every treatment follows every
other treatment (including itself) the same number of times. A simple way to
construct such designs is to repeat the last treatment of each sequence in a Will-
iams design. An algorithm for constructing Williams designs was given by Sheehe
and Bross (1961). Williams designs are special cases of sequentially counter bal-
anced Latin squares and Isaac et al. (2001) describe a range of methods for
constructing such designs.

Table 4

Williams design for four treatments

Subject Period

1 2 3 4

1 A D B C

2 B A C D

3 C B D A

4 D C A B
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To fill the gap when sequentially counter balanced squares do not exist for
odd t, Russell (1991) gave a method for constructing ‘‘nearly’’ sequentially coun-
ter balanced squares. In these squares each treatment is preceded by all but
two treatments once, by one of the remaining two twice and not at all by
the remaining treatment. An example of such a design for t ¼ 5 is given in
Table 5.

As already noted, William’s designs for odd t require 2t sequences (except in a
few special cases). To provide additional designs for odd t Newcombe (1996) gave
designs for 3t sequences, made up of three �t Latin squares, such that the se-
quences formed a balanced design. Prescott (1999) later gave a systematic method
of construction of these designs.

The above methods have filled in the gaps left by the Williams designs when the
aim is to construct a balanced design. Bate and Jones (2006) described methods of
constructing ‘‘nearly strongly balanced’’ designs to fill the gaps where no strongly
balanced designs exist.

Often when t is bigger than 4 or 5, it will not be possible to use a design with p

periods. In this situation it may be possible to use a variance-balanced (incom-
plete block) design. Jones and Kenward (2003, Chapter 4) provide a large table of
variance-balanced designs for 3o to 9, for po t, p ¼ t and p4 t.

When a variance-balanced design does not exist for given values of t, p and s,
then a useful alternative may be to use a partially balanced design. In these
designs the variances of the pairwise treatment comparisons are not all equal.
There are various ways of constructing such designs and some of these are de-
scribed by Jones and Kenward (2003, Chapter 4), who also provide a table of the
most useful ones for to 9.

Software to calculate the efficiency of an arbitrary cross-over trial has been
given by Jones and Lane (2004).

When the treatment structure is such that not all pairwise comparisons are
of interest more appropriate designs may exist. For example, control-balanced
designs are suitable for the situation where one treatment (say a control) is to be
compared to all the other treatments. Factorial designs are suitable when the
treatments are structured and made up of the combinations of the levels of two
or more factors. For example, the four treatments in a clinical trial may be made
up of the combinations of the high and low doses of two different drugs. The

Table 5

‘‘Nearly’’ balanced latin square design for five treatments

Subject Period

1 2 3 4 5

1 A B C D E

2 B D E C A

3 C E B A D

4 D C A E B

5 E A D B C
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combination is of interest because there may be a synergistic effect when both
drugs are used together.

Although, the theory of optimal design construction is well developed for the
standard additive model (5) and a few variants (see Stufken, 1996; Afsarinejad
and Hedayat, 2002), there are situations where the theory needs to be replaced by
computer search algorithms. One useful example of such an algorithm has been
described by John et al. (2004).

3.3. Simple analyses for higher-order designs

To illustrate the conventional least squares regression analysis of a design
with four treatments we will use the data given in Table 6, which are taken from
Jones and Kenward (2003). These data were obtained in a trial that compared the
effects of three active drugs A, B, C and a placebo P on blood flow, cardiac
output and an exercise test on subjects with intermittent claudication. The trial
was a single-centre, double-blind trial in which each treatment period lasted a
week and there was a 1-week wash-out period between the active periods. There
was no run-in period. One of the observations taken at the end of each treatment
period was left ventricular ejection time (LVET) and the values recorded on each
subject are given in Table 6. Note that no sequence occurs more than once.

The results obtained from fitting the fixed-effects model (5) are given in Table 7.
The conclusions that may be drawn are that B and C are no different to Placebo,
but A gives a significant improvement over placebo.

3.4. Random subject effects models

One consequence of using fixed subjects effects, as done in the previous section, is
that all treatment information contained in the subject totals is discarded. For the

Table 6

Trial on intermittent claudication, design and LVET measurements (ms)

Subject Sequence Period

1 2 3 4

1 PBCA 590 440 500 443

2 ACPB 490 290 250 260

3 CABP 507 385 320 380

4 BPAC 323 300 440 340

5 PABC 250 330 300 290

6 ABCP 400 260 310 380

7 CPAB 460 365 350 300

8 BCPA 317 315 307 370

9 PBCA 430 330 300 370

10 CBAP 410 320 380 290

11 CAPB 390 393 280 280

12 ACBP 430 323 375 310

13 PBAC 365 333 340 350

14 APBC 355 310 295 330

Source: Table reproduced from Jones and Kenward (2003) with the permission of the publisher.
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typical well-designed higher-order trial there will be little information lost and so
this is usually a sensible route to take. To recover the information in the subject
totals we need to introduce random subject effects. Because such analyses intro-
duce extra assumptions and the use of approximations in the inference procedures
as well, we need to be sure that this extra step is worthwhile, i.e., it should be
considered only when a substantial amount of information is contained in the
subject totals and this will be true, for example, for incomplete designs in which
po t. The 2� 2 design is an extreme example in which all the information on
carry-over effects is contained in the subject totals.

Recall that the model for random subject effects is identical to that introduced
earlier (5):

Y ijk ¼ mþ pj þ td½i;j� þ sik þ eijk,

with the exception that the subject effects sik are now assumed to be random
draws from some distribution, typically the normal, with variance s2s say. For this
random subjects model

V ðY ijkÞ ¼ s2 þ s2s

and

CovðY ijk;Y ij0kÞ ¼ s2s ; for all jaj0.

In other words, assuming a random subjects model is equivalent to imposing a
specific covariance structure on the set of measurements from one subject:

V

Y i1k

Y i2k

..

.

Y ipk

2666664

3777775 ¼
s2 þ s2s s2s � � � s2s

s2s s2 þ s2s � � � s2s

..

. ..
. . .

. ..
.

s2s s2s � � � s2 þ s2s

2666664

3777775.

Table 7

Conventional analysis with fixed subject effects

Effect Estimate SE DF t P

A–P 47.31 16.52 36 2.86 0.007

B–P �18.70 16.70 36 �1.12 0.270

C–P 24.52 16.52 36 1.48 0.147

Source of Variation NDF DDF F-test P

Subjects 13 36 4.65 o0.001

Period 3 36 7.87 o0.001

Treatment 3 36 6.02 0.002
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This is called a uniform, compound symmetry or exchangeable covariance struc-
ture.

The introduction of the random effects means that this is no longer an example
of a simple linear regression model, and ordinary least squares estimation and
standard least squares theory no longer apply. Instead, a modified version of
maximum likelihood is used for estimation, called restricted maximum likelihood

(REML) (Patterson and Thompson, 1971). This can be thought of as a two stage
procedure in which the variance components (s2 and s2s ) are first estimated from a
marginal likelihood that does not depend on the fixed effects (period, treatment,
etc.). The fixed effects are then estimated using generalized least squares with the
covariance matrix constructed from the estimated variance components. In ma-
trix terms, if Y is the vector of observations, with covariance matrix S and
expectation

EðYÞ ¼ Xb

for X the design matrix and b the vector of fixed effects, then the REML estimator
of b is

~b ¼ XT R̂
�1
X

� ��1
XT R̂

�1
Y

where Ŝ ¼ Sðŝ2; ŝ2s Þ; for ŝ
2 and ŝ2s the REML estimators of s2 and s2s : Asymp-

totically, as the number of subjects increases,

~b 	 N½b; ðXTR�1XÞ�1�:

These random subject analyses are examples of the recovery of interblock

information. In such an analysis a weighted average is implicitly used that com-
bines between- and within-subject estimates. The weights are equal to the inverse
of the covariance matrices of the two vectors of estimates. If there is little in-
formation in the subject totals, recovery of this information is not worth the
effort, and the amount of such information will depend on two things: the size of
the between-subject variance ðs2s Þ relative to the within-subject variance (s2), often
measured by the intraclass correlation, and the efficiency of the design. We need
an inefficient design, a moderately small intraclass correlation and a sufficiently
large number of subjects to make the procedure worthwhile. Otherwise it may
even be counter-productive because the need to estimate the weights introduces
extra variation into the combined estimate. In a very small trial these weights will
be poorly estimated. Also, the simpler fixed subjects analysis is more robust as it
does not require distributional assumptions for the random effects, and moving to
the random effects analysis means moving from small sample inference based
on exact distribution theory to methods of inference based on distributional
approximations such as those in Kenward and Roger (1997). In conclusion,
recovery of interblock information through random subject effects models should
be considered only when there is likely to be a substantial benefit.

A further step in generalizing the assumptions underlying the dependence
structure of the repeated measurements in a cross-over trial is to allow an
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unstructured covariance matrix. These ideas are developed in Jones and Kenward
(Section 5.7). In small trials such analyses will typically be very inefficient and
should be considered only when there are good reasons to expect large departures
from homogeneity of variances and covariances in the repeated measurements. In
a well-run trial this would be unusual, given that we are expecting as a basis for
the treatment comparisons comparatively stable subject conditions throughout
the period of the trial. It should also be noted that small trials do not provide
much useful information of the assessment and comparison of covariance struc-
tures from the data. In the light of these points it is probably good practice in
typical trials to assume a subject effects based model, with these either treated as
random or fixed as appropriate.

Robust methods of analysis using permutation and bootstrap methods are also
available, some examples are also given in Jones and Kenward (2003, Section 5.7).

4. Analysis with non-normal data

The analysis of non-normal cross-over data falls into the class of analyses of non-
normal clustered or dependent data. Such analyses are much less straightforward
than those for continuous data based on the linear model. There are two main
reasons for this. First, there is no single ‘‘natural’’ choice of multivariate model in
such settings to parallel the multivariate normal linear model. Second, for most
problems in this class, it is appropriate to assume a non-linear relationship
between the mean or expectation of an observation and the linear predictor with
the various fixed effects (treatment, period, etc.). A recent treatment of the whole
subject is given by Molenberghs and Verbeke (2005). Here we outline some
common approaches to such analyses and draw attention to some of the key
issues.

As in the analysis of continuous data, the aim of the analysis is to explain the
variation in the observed responses in terms of period, treatment and possible
other effects, such as carry-over. In the present setting we relate a linear model
involving these effects to a function of the expectation of an observation. As
before let Yijk be the response observed on subject k in group i in period j. We can
write for a model with period and direct treatment effects

gfEðY ijkÞg ¼ mþ pj þ td½i;j�. (6)

The construction on the right-hand side of (6) is just the same as used earlier in
Eq. (1) and the effects carry over their associations, although not their strict
meanings.

The function relating the success probability to this linear component or linear

predictor is represented by g( � ). We term g( � ) the link function, noting that some
authors use this for its inverse. Typically the expectation will be a probability
or rate. The use of the identity function would imply that the expectations are
modelled directly on a linear scale. This is usually avoided in practice because it is
typically not sensible to expect treatment or other effects to act additively across
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the whole range of such expectations. Common choices of the function for prob-
abilities are the logit and probit which have a form for which the inverse is
sigmoid in shape or the natural logarithm for rates.

To fix ideas we now consider the common and important example of a binary

outcome, in which the expectation is a probability. The commonly used link
functions have the added advantage of mapping values of the linear predictor to
the appropriate (0,1) interval for probabilities. In other words, any calculable
linear predictor will correspond to a genuine probability. This is not true when the
probabilities are modelled on the linear scale. We note in passing that these
sigmoid functions are fairly linear for probabilities between about 0.2 and 0.8,
and if, for a particular example, the observed probabilities lie in this range then
there is often little to choose between an analysis on the linear and transformed
scales. Given the typical small size of cross-over trials there is also usually little
practical difference among the functions mentioned above, and we will use the
logit function almost exclusively in the following, pointing out where necessary if
there is any restriction on the choice of link function for a particular analysis.
Thus, the logit version of (6) can be written

logitfPðY ijk ¼ 1Þg ¼ ln
PðY ijk ¼ 1Þ

1� PðY ijk ¼ 1Þ

� �
¼ mþ pj þ td½i;j�

or equivalently,

E½Y ijk� ¼ PðY ijk ¼ 1Þ ¼
emþpjþtd½i;j�

1þ emþpjþtd½i;j�
.

Effects in this model are log odds-ratios. To see this let pd,j be the probability
that a randomly chosen subject responds with a 1 in period j under treatment d.

Then the treatment effect ta�tb can expressed as the log odds-ratio

ta � tb ¼ ln
pa;j=ð1� pa;jÞ

pb;j=ð1� pb;jÞ

� �
. (7)

This type of model has been termed marginal or population averaged (Zeger
et al., 1988). The model determines the average success probability over all indi-
viduals from the population under consideration for the given covariate values
(treatment, period and so on). It is marginal with respect to the observations in
other periods. That is, the same model for the marginal probabilities would be
used if different subjects were used in different periods (albeit without the need to
allow for within-subject dependence as well). Such a model might be regarded as
appropriate if, for example, we wished to present treatment effects in terms of
such population averaged quantities. One objection to the use of such models
in a trial setting is that the subjects rarely represent a random sample from any
well-defined population and so the idea of averaging over this population, or
making random draws from it, lacks credibility.

It turns out that likelihoods are difficult to construct for such marginal
models in typical non-normal settings and in practice it is much easier to use
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non-likelihood methods. In particular methods based on Generalized Estimating

Equations (Zeger and Liang, 1986; Liang and Zeger, 1986) are widely imple-
mented in computer packages and commonly used.

The marginal model as presented above is not a complete one for the obser-
vations: it does not define the form of within-subject dependence. Hence, the
marginal model cannot tell us the whole story about the comparative behaviour
of one individual on different treatments, and this is particularly relevant if
subgroups of individuals have quite different patterns of behaviour across the
treatments in the trial. The marginal model would simply average over this be-
haviour and, when the link function is not the identity, the resulting marginal
model can misrepresent the average behaviour in each subgroup. The likelihood
of this actually occurring in practice depends on the particular setting, but does
require rather large differences in the behaviour among the subgroups to have
substantial impact. Models that directly address individual patterns of behaviour
are termed subject-specific. A very simple subject-specific model that is often used
in practice parallels the subject effects model used for continuous data (1) is as
follows:

logitfPðY ijk ¼ 1jsikÞg ¼ mþ pj þ td½i;j� þ sik, (8)

for sik an effect associated with the (ik)th subject. It is assumed that the obser-
vations from a subject are conditionally independent given the subject effect.
Again is usually assumed that the subject effects follow a normal distribution.
This is an example of a generalized linear mixed model. Such models are
comparatively easy to fit using maximum likelihood. Although calculation of
the likelihood requires integration over the distribution of the subject effects,
this is relatively easy to accomplish in the cross-over setting using numerical
integration, and a number of computer packages have facilities for fitting such
models.

These two modelling approaches, marginal and subject-specific, are not the
only ones available for the cross-over setting with non-normal data, but they
are by far the most widely used in practice. Given the widespread use of both
approaches it is important to understand the fundamental differences between
them and between such methods and models for normally distributed outcomes.
In the conventional linear model for which the expectation and linear predictor
are on the same scale the parameters in both the marginal and subject-specific
models have the same interpretation. The extra terms have implications for the
error structure. With a non-identity link function this is no longer necessarily
true and the corresponding parameters in (6) and (8) do not in general represent
equivalent quantities. This also underlies the problem of averaging over disparate
subgroups mentioned above in the context of marginal models. The parameters
in the subject-specific model modify a particular subject’s underlying probability,
determined by sik. This does not mean, however, that functions of these subject-
specific parameters cannot have an interpretation that applies globally. For
example, within-subject odds-ratios will be the same for all subjects with
common covariates. Extending the earlier notation, let pa,j,s be the probability
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that a subject with effect s under treatment a in period j responds with a 1. Then
from (8)

ta � tb ¼ ln
pa;j;s=ð1� pa;j;sÞ

pb;j;s=ð1� pb;j;sÞ

� �
, (9)

which is the same for all s. But we do emphasize that this is not the same quantity
as the marginal log odds-ratio in (7).

Marginal probabilities can be obtained from subject-specific ones by taking
expectations over the distribution of the subject effects. In general, however, the
model structure (linear additive model on a logit scale, for example) on which the
subject-specific probabilities are based will not carry over to the resulting
marginal probabilities. There are exceptions to this, and if normally distributed
subject effects are used, then, to a close approximation for the logit link and
exactly for the probit link, the marginal model will have the same structure with
the parameters scaled downwards in absolute size. Neuhaus et al. (1991) show
more generally that for any distribution of the subject effects there is a sense in
which parameters are attenuated in the marginal model. Good discussions of the
distinction between population-averaged and subject-specific models can be
found in Diggle et al. (2002) and Molenberghs and Verbeke (2005) and Carlin
et al. (2001) explore some issues with the conventional interpretation of subject-
specific models for binary data.

An important implication of this is that we should not in general expect
parameter estimates from analogous marginal and subject-specific models to co-
incide. This means that particular care needs to be taken when results are com-
bined or compared from sets of trials containing a mix of parallel group and
cross-over designs. A brief discussion of this in the context of meta-analyses is
given by Elbourne et al. (2002).

5. Other application areas

An important area where cross-over trials are used is in the early phases of drug
development within the pharmaceutical industry and in testing for bioequivalence
of two drug formulations. Patterson and Jones (2006) give a comprehensive ac-
count of the use of cross-over designs in bioequivalence testing and in the fol-
lowing areas: clinical pharmacology safety studies, QTc assessment, clinical
pharmacology safety studies and population pharmacokinetics. Here we will
briefly describe and illustrate the use of bioequivalence trials.

During the development of a drug its formulation will change as it moves
forward through the different phases of its development. In Phase I trials esca-
lating doses of a drug are evaluated using healthy volunteers, and are often
undertaken to establish the maximum tolerated dose. Once a safe range of doses
has been established the drug moves into Phase II trials using small numbers of
patients. Then, finally, once a safe and efficacious dose has been established the
drug is tested in large numbers of patients in Phase III confirmatory trials. It is
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important that if changes are made to the formulation of a drug, the effect of a
given dose using the new formulation is not different to that of the effect of the
same dose using the previous formulation. The bioavailability of a drug is used as
a surrogate for its effect. This is measured for a given dose by giving a healthy
volunteer a dose of the formulation and taking blood samples at a number of time
points after dosing. Each blood sample is assayed to determine the concentration
of drug in the sample and the resulting concentrations are plotted against
their corresponding sampling times. The area under this curve (the AUC) is taken
as a surrogate for the amount of exposure or bioavailability of the drug in
the body. Two different formulations are considered bioequivalent if they have
similar bioavailability values. Often the marketed formulation of a drug is not
the same as that used in the Phase III trials that were used to gain regulatory
approval to market the drug. The formulation change is usually required in
order to mass produce the drug in a commercially acceptable form, e.g., a tablet.
To gain approval to market the drug the regulator must be convinced that
the marketed dose is as efficacious and safe as the one used in the Phase III trial.
This is typically done using a 2� 2 cross-over trial with a small number of
volunteers in each sequence group. Another important use of bioequivalence
trials is when regulatory approval is sought for the sale of a generic version of an
existing marketed drug. The generic must be shown to be bioequivalent to the
original.

Suppose, for illustration, we consider the situation where the formulation used
in a Phase III trial is to be compared to the formulation used in the marketed
version of the drug. In order to gain regulatory approval that the two formu-
lations are bioequivalent, equivalence has to be shown on two metrics: the AUC
as already described and Cmax, the maximum concentration of drug in the blood
(i.e., the peak of the concentration curve). To better satisfy the assumption that
the analysed data are normally distributed, it is standard practice to analyse the
transformed values, log(AUC) and log(Cmax), rather than the original values.
Similarity, or equivalence, for each of these metrics is defined by the United States
Food and Drug Administration (FDA) as follows. Let mT denote the mean of
log(AUC) of the Test formulation (i.e., the to-be-marketed formulation) and mR

denote the mean of the Reference formulation (i.e., the formulation used in the
Phase III trial). The two formulations are compared using the TOST (two one-

sided tests) procedure in which each of the following two hypotheses is tested at
the 5% level (Schuirmann, 1987). If both are rejected the two formulations are
considered equivalent (on log(AUC) in this case).

H01 : mT � mR � �D (10)

versus the alternative

H11 : mT � mR4� D

and

H02 : mT � mR 
 D (11)
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versus the alternative

H02 : mT � mRoD

where, for example, the FDA has set D ¼ log(1.25) ¼ 0.2231.
This would be repeated for log(Cmax) and if the formulations were declared

equivalent on both metrics they would be considered bioequivalent by the FDA.
As an illustrative example we consider Example 3.2 from Patterson and Jones

(2006). There were 24 subjects who received the Reference (R) and Test (T)
formulations in the order RT and 25 who received them in the reverse order TR.
Only subjects that had data in both periods have been included in the bioequiv-
alence analysis described here. See Patterson Jones (2006) for the analysis of all
the data. The group-by-period means are given in Table 8.

It can be shown that an equivalent way of implementing the TOST procedure
is to calculate a 90% two-sided confidence interval for mT� mR for each metric. If
both confidence intervals are entirely within the limits (�D, D) then bioequiv-
alence is declared. The results of doing this for our example are given in Table 9,
where we have fitted model (1) and included only those subjects that had a data
value in both periods. It can be seen that for logCmax the confidence interval lies
entirely within (–D, D) but for logAUC the upper limit of the confidence interval
is above D. Consequently T and R cannot be declared bioequivalent.

As mentioned in Section 3.1, three-period cross-over designs for two treat-
ments are useful when testing for bioequivalence. This is in the situation where the
drugs are highly variable and extra replication is needed to reduce the sample size

Table 8

Groups-by-periods means (sample size in brackets)

Group Period 1 Period 2 Mean

logAUC

1(RT) ȳ11: ¼ 4:55ð22Þ ȳ12: ¼ 4:60ð22Þ ȳ1:: ¼ 4:57
2(TR) ȳ21: ¼ 4:43ð23Þ ȳ22: ¼ 4:28ð23Þ ȳ2:: ¼ 4:35

Mean ȳ:1: ¼ 4:49 ȳ:2: ¼ 4:43 ȳ... ¼ 4:46

1ogCmax

1(RT) ȳ11: ¼ 1:33ð23Þ ȳ12: ¼ 1:36ð23Þ ȳ1:: ¼ 1:34
2(TR) ȳ21: ¼ 1:27ð24Þ ȳ22: ¼ 1:19ð24Þ ȳ2:: ¼ 1:23

Mean ȳ:1: ¼ 1:30 ȳ:2: ¼ 1:27 ȳ... ¼ 1:29

Table 9

TOST procedure results-log scale

Endpoint m̂T � m̂R 90% Confidence Interval

logAUC 0.0970 (�0.0610, 0.2550)

logCmax 0.0508 (�0.0871, 0.1887)

Source: Table reproduced from Patterson and Jones (2006) with the permission of the publisher.

Design and analysis of cross-over trials 487



to a manageable level. Patterson and Jones (2006) describe the analysis of data
from a bioequivalence trial that used the design with sequences RTT and TRR.
There were 47 subjects on the sequence RTT and 48 subjects on the sequence
TRR. The group-by-period means are given in Table 10. As in the previous
example not all subjects had a data value in all three periods.

The analysis proceeds as for the RT/TR design using the TOST procedure. The
results are given in Table 11. It can be seen that T and R are bioequivalent as both
confidence limits are within the regulatory bounds.

In conclusion, we note that cross-over trials are widely used in experimental
research in a range of disciplines. Jones and Deppe (2000), for instance, give
examples of the use of cross-over designs in psychology, pharmacokinetics and
sensory testing.

6. Computer software

MLwiN: Centre for Multilevel Modelling, Institute of Education, 20 Bedford
Way, London WC1H 0AL, UK.

SAS: SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513,
USA.

Table 10

RTT/TRR design: groups-by-periods means (sample size in brackets)

Group Period 1 Period 2 Period 3 Mean

logAUC

l(RTT) ȳ11: ¼ 4:35ð46Þ ȳ12: ¼ 4:36ð45Þ ȳ13: ¼ 4:60ð43Þ ȳ1:: ¼ 4:43
2(TRR) ȳ21: ¼ 4:66ð47Þ ȳ22: ¼ 4:88ð47Þ ȳ23: ¼ 4:92ð47Þ ȳ2:: ¼ 4:82

Mean ȳ:1: ¼ 4:51 ȳ:2: ¼ 4:63 ȳ:3: ¼ 4:77 ȳ... ¼ 4:63

logCmax

l(RTT) ȳ11: ¼ 1:18ð47Þ ȳ12: ¼ 1:10ð47Þ ȳ13: ¼ 1:46ð45Þ ȳ1:: ¼ 1:24
2(TRR) ȳ21: ¼ 1:39ð48Þ ȳ22: ¼ 1:60ð48Þ ȳ23:: ¼ 1:64ð48Þ ȳ2:: ¼ 1:54

Mean ȳ:1: ¼ 1:29 ȳ:2: ¼ 1:35 ȳ:3: ¼ 1:55 ȳ... ¼ 1:40

Source: Table reproduced from Patterson and Jones (2006) with the permission of the publisher.

Table 11

Example 4.1: TOST procedure result for RTT/TRR design

log Scale

Endpoint m̂T � m̂R 90% Confidence Interval

logAUC �0.0270 (�0.1395, 0.0855)

logCmax �0.0557 (�0.1697, 0.0583)

Source: Table reproduced from Patterson and Jones (2006) with the permission of the publisher.
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Splus 6.1 for Windows: Insightful Corporation, 1700 Westlake Avenue N, Suite
500, Seattle, Washington 98109, USA.

Stata: Stata Corporation, 702 University Drive East, College Station, Texas
77840, USA.

WinBUGS: MRC Biostatistics Unit, Institute of Public Health, University
Forvie Site, Robinson Way, Cambridge CB2 2SR, UK.
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Sequential and Group Sequential Designs in
Clinical Trials: Guidelines for Practitioners

Madhu Mazumdar and Heejung Bang

Abstract

In a classical fixed sample design, the sample size is set in advance of collecting

any data. The main design focus is choosing the sample size that allows the

clinical trial to discriminate between the null hypothesis of no difference and the

alternative hypothesis of a specified difference of scientific interest. A disad-

vantage of fixed sample design is that the same number of subjects will always

be used regardless of whether the true treatment effect is extremely beneficial,

marginal, or truly harmful relative to the control arm. Often, it is difficult to

justify because of ethical concerns and/or economic reasons. Thus, specific

early termination procedures have been developed to allow repeated statistical

analyses to be performed on accumulating data and to stop the trial as soon as

the information is sufficient to conclude. However, repeated analyses inflate the

false positive error to an unacceptable level. To avoid this problem, many

approaches of group sequential methods have been developed. Although there is

an increase in the planned sample size under these designs, due to the sequential

nature, substantial sample size reductions compared with the single-stage

design is also possible not only in the case of clear efficacy but also in the case

of complete lack of efficacy of the new treatment. This feature provides an

advantage in utilization of patient resource. These approaches are methodo-

logically complex but advancement in software packages had made the plan-

ning, monitoring, and analysis of comparative clinical trials according to these

approaches quite simple. Despite this simplicity, the carrying on of a trial under

group sequential design requires efficient logistics with dedicated team of data

manager, study coordinator, biostatistician, and clinician. Good collaboration,

rigorous monitoring, and guidance offered by an independent data safety mon-

itoring committee are all indispensable pieces for its successful implementation.

In this chapter, we provide a review of sequential designs and discuss the

underlying premise of all current methods. We present a recent example and

an historical example to illustrate the methods discussed and to provide a flavor

of the variety and complexity in decision making. A comprehensive list of
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softwares is provided for easy implementation along with practical guidelines.

Few areas with potential for future research are also identified.

1. Introduction

Randomized clinical trial (RCT) is regarded as the gold standard for assessing the
relative effectiveness/efficacy of an experimental intervention, as it minimizes
selection bias and threats to validity by estimating average causal effects. There
are two general approaches for designing RCT: (1) fixed sample design (FSD) and
(2) group sequential design (GSD). In FSD, a predetermined number of patients
(ensuring a particular power for proving a given hypothesis) are accrued, and the
study outcome is assessed at the end of the trial. In contrast, a design where
analyses are performed at regular intervals after a group of patients are accrued is
called GSD. In comparative therapeutic trials with sequential patient entry, FSDs
are often unjustified on ethical and economic grounds, and GSDs are preferred
for their flexibility (Geller et al., 1987; Fleming and Watelet, 1989). Currently
used methods can be classified into three categories: group sequential methods for
repeated significance testing; stochastic curtailment or conditional power (Lan
et al., 1982; Pepe and Anderson, 1992; Betensky, 1997) and Bayesian sequential
methods (Spiegelhalter and Freedman, 1994; Fayers et al., 1997). While no single
approach addresses all the issues, they do provide useful guidance in assessing the
emerging trends for safety and benefit.

Trials using GSDs are common in published literature and the advantage of
this kind of design is self evident by their impact (Gausche et al., 2000; Kelly
et al., 2001; Sacco et al., 2001). One example of its successful use is a trial reported
by Frustaci et al., where 190 sarcoma patients (a rare form of cancer) were to be
accrued in order to detect a 20% difference in 2-year disease-free survival (60%
on the adjuvant chemotherapy treatment arm versus 40% in the control arm
undergoing observation alone) (Frustaci et al., 2001). An interim analysis was
planned after half of the patients were accrued with stopping rule in terms of
adjusted p-value. The trial was stopped as this criterion was met thereby saving
50% of the planned patient accrual. The observed difference was found to be 27%
(72% on the treatment arm versus 45% on the control arm), 7% higher than what
was hypothesized initially at the design stage. Therefore, the risk of treating
additional patients with suboptimal therapy was greatly reduced.

Independent data safety monitoring committee (DSMC) with responsibilities
of (1) safeguarding the interests of study patients, (2) preserving the integrity and
credibility of the trial in order to ensure that future patients be treated optimally,
and (3) ensuring that definitive and reliable results be available in a timely manner
to the medical community has been mandated for all comparative therapeutic
clinical trials sponsored by national institutes (URL: http://cancertrials.nci.nih.
gov; Ellenberg, 2001). GSD provides an excellent aid to the DSMC for decision
making. Other names utilized for this kind of committees playing virtually
the same role are data or patient safety monitoring board (DSMB or PSMB),
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data monitoring and ethics committees (DMEC), and policy and data monitoring
board (PDMB).

In this chapter, we start with a historical account of sequential methods and
provide introduction to the underlying concept and approaches to the commonly
utilized methods of inflation factor (IF) for sample size calculation and alpha
spending function for monitoring the trials for early stopping. A listing of soft-
wares is provided that has the capabilities of accommodating all of the methods
discussed. A table of IF for sample size calculation of GSD is provided for quick
assessment of feasibility of a trial (in regard to sample size) even before acquiring
any special software for GSD. One current example is presented with standard
template of a biostatistical consideration for writing study protocol, details of
a stopping boundary utilized, items to be included in an interim analysis reports
presented to the DSMC, and the substance included in the statistical section
write-up for final dissemination in published literature. Another historical exam-
ple (the BHAT trial) is discussed to highlight that the DSMC’s decision to stop
early was based not only on statistical group sequential boundary point, but also
on a variety of other subjective considerations.

Several review papers and books from various perspectives are recommended
to those who wish to learn about further details (Fleming and DeMets, 1993;
Jennison and Turnbull, 2000; Sebille and Bellissant, 2003; Proschan et al., 2006).

2. Historical background of sequential procedures

The first strictly sequential method, the sequential probability ratio test, was
developed during the Second World War (Wald, 1947). As its main application
was the quality control of manufactured materials, its publication was only au-
thorized after the end of the war, in 1947. Another class of sequential test is based
on triangular continuation regions (Anderson, 1960). The basic idea on which
these methods rely is to constantly use the available information to determine
whether the data are compatible with null hypothesis, with alternative hypothesis,
or insufficient to choose between these two hypotheses. In the first two cases, the
trial is stopped and the conclusion is obtained whereas in the third case the
trial continues. The trial is further processed until the data allows a legitimate
(or per-protocol) decision between the two hypotheses. An example of a com-
pletely sequential trial can be found in Jones et al. (1982).

Armitage (1954) and Bross (1952) pioneered the concept of group sequential
methods in medical field (Bross, 1952; Armitage, 1954). At first, these plans were
fully sequential and did not gain widespread acceptance perhaps due to the
inconvenience in their application. The problems discussed included the fact that
response needs to be available soon after the treatment is started and that there
would be organizational problems, such as coordination in multicenter trials and
a much greater amount of work for the statistician. The shift to group sequential
methods for clinical trials did not occur until the 1970s. Elfring and Schultz
(1973) specifically used the term ‘group sequential design’ to describe their pro-
cedure for comparing two treatments with binary response (Elfring et al., 1973).
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McPherson (1974) suggested that the repeated significance tests of Armitage et al.
(1969) might be used to analyze clinical trial data at a small number of interim
analyses (Armitage et al., 1969; McPherson, 1974). Canner (1977) used Monte
Carlo simulation to find critical values of a test statistic for a study with periodic
analyses of survival endpoint (Canner, 1977). However, Pocock (1977) was the
first to provide clear guidelines for the implementation of the GSD attaining
particular operating characteristics of type I error and power (Pocock, 1977).
He made the case that most investigators do not want to evaluate results every
time a couple of new patients are accrued but do want to understand the com-
parative merit every few months to assess if the trial is worth the time and effort
and that continual monitoring does not have a remarkable benefit. More
specifically, only a minor improvement is expected with more than five interim
looks. A more comprehensive account of this history can be read from the
excellent book by Jennison and Turnbull (2000).

3. Group sequential procedures for randomized trials

A primary difficulty in performing repeated analyses over time is the confusion
about the proper interpretation of strength of evidence obtained from such eval-
uations. Suppose that only a single data analysis is performed after data collec-
tion has been fully completed for a trial. Then a two-sided (or one-sided if
justified, e.g., non-inferiority design) significance value of pr0.05, obtained from
a test of hypothesis of no difference between an experimental therapy and a
control, is usually interpreted as providing strong enough evidence that the new
therapy provides an advantage. The interpretation is justified by the willingness of
investigators to accept up to five false-positive conclusions in every 100 trials of
regimens that, in truth, have equivalent efficacy. Unfortunately, even when a new
treatment truly provides no advantage over a standard therapy, performing
repeated analyses can greatly increase the chance of obtaining positive conclu-
sions when this p r 0.05 guideline is repeatedly used.

As such, interim data safety reports pose well-recognized statistical problems
related to the multiplicity of statistical tests to be conducted on the accumulating
set of data. The basic problem is well known and is referred to as ‘‘sampling to a
foregone conclusion’’ (Cornfield, 1966) and has been illustrated mathematically,
pictorially or through simulations by many researchers (Fleming and Green,
1984). Specifically, in a simulation of 100 typical clinical trials of two interven-
tions with truly equivalent efficacy that called for up to four periodic evaluations,
17 (rather than five) trials yielded false-positive conclusions (i.e. pr0.05) in at
least one analysis. The rate of false-positives continues to rise as the frequency of
interim analyses rises. This serious increase in the likelihood of reaching false-
positive conclusions due to misinterpretation of the strength of evidence when
repeated analyses are conducted over time partly explains why many published
claims of therapeutic advances have been false leads and provides the motivation
for development of GSD.
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A GSD first provides a schedule that relates patient accrual to when the
interim analyses will occur. This schedule is conveniently expressed in terms of the
proportion of the maximal possible number of patients that the trial could accrue.
Second, such designs give a sequence of statistics used to test the null hypothesis,
and third, they give a stopping rule defined in terms of a monotone increasing
sequence of nominal significance levels at which each test will be conducted. This
sequence of significance levels is carefully chosen to maintain the overall type I
error at some desired level (e.g., 0.05 or 0.10) using one- or two-sided hypothesis.
Either the number or the time of analyses is prespecified or the rate at which the
overall significance level is ‘‘used up’’ is fixed in advance. Thus, undertaking
group sequential trials assumes that hypothesis testing at nominal significance
levels less than a prestated overall significance level will be performed, and that if
results are ever extreme enough to exceed prespecified thresholds, the trial should
be stopped. While such group sequential procedures differ in detail, they have
certain common features.

The two commonly discussed pioneering mechanisms in GSD are given by
Pocock (Pocock, 1977) and O’Brien and Fleming (OBF) (O’Brien and Fleming,
1979). Pocock adapted the idea of a repeated significance test at a constant
nominal significance level to analyze accumulating data at a relatively small
number of times over the course of the study. Patient entry was divided into
equally sized groups and the data are analyzed after each group of observations
has been collected. As an alternative, OBF proposed a test in which the nominal
significance levels needed to reject the null hypothesis at sequential analyses
increase as the study progresses, thus, making it more difficult to reject the null
hypothesis at the earliest analysis but easier later on. Other variations to these
schemes have also been developed but OBF is the most commonly utilized GSD
as it fits well with the wishes of clinical trialists who do not want to stop a trial
prematurely with insufficient evidence based on less reliable or unrepresentative
data. There are other reasons for this preference. Historically, most clinical trials
fail to show a significant treatment difference, hence from a global perspective, it
is more cost-effective to use conservative designs. Indeed, even a conservative
design such as OBF often shows a dramatic reduction in the average sample
number (ASN or expected sample size) under the alternative hypothesis, HA,
compared to a FSD (see Table 1 for brief overview). Moreover, psychologically, it
is preferable to have a nominal p-value at the end of the study for rejecting the
null hypothesis, H0, which is close to 0.05 in order to avoid the embarrassing
situation where, say, a p-value of 0.03 at the final analysis would be declared
non-significant.

Table 1

General properties of monitoring designs

Design General ASN (under H0) ASN (under HA)

Fixed Most conservative Low Large

OBF Conservative, hard to stop early Mid Mid

Pocock Most liberal, early stopping properties Large Low
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Later, Wang et al. (1987) proposed a class of generalized formulation that
encompasses Pocock and OBF methods as two extreme members.

Although the formulation of GSD started with binary outcomes, a generalized
formulation has helped establish the wide applicability of the large sample theory
for multivariate normal random variables with independent increments (i.e.,
standardized partial sums) to group sequential testing (Jennison and Turnbull,
1997; Scharfstein et al., 1997). This structure applies to the limiting distribution of
test statistics which are fully efficient in parametric and semiparametric models,
including generalized linear models and proportional hazards models (Tsiatis
et al., 1995). It applies to all normal linear models, including mixed-effects models
(Lee and Demets, 1991; Reboussin et al., 1992). Gange and Demets showed its
applicability to the generalized estimating equation setting and Mazumdar and
Liu showed the derivation for the comparative diagnostic test setting where area
under the receiver operating characteristic curve is the endpoint (Mazumdar and
Liu, 2003; Mazumdar, 2004). In short, almost any statistic likely to be used to
summarize treatment differences in a clinical trial will justify group sequential
testing with this basic structure and common mathematical formulation (Jennison
and Turnbull, 2000).

3.1. Power and sample size calculation using inflation factor

Sample size computation in GSD setting involves the size of the treatment effect
under some non-null hypothesis, the standard error of the estimated treatment
effect at the end of the trial, and the drift of the underlying Brownian motion used
to model the sequentially computed test statistics. The appropriate drift is
determined by multiple factors such as the group sequential boundaries, type I
error, and desired power. The theoretical background for design of group
sequential trials has been discussed elsewhere (Kim and DeMets, 1992; Lan and
Zucker, 1993) but the drift of commonly used GSDs can be easily translated into
the corresponding IFs, provided in Table 2. The sample size approximation for a
GSD in any setting is simply obtained by multiplying the sample size under the
corresponding FSD by the IF provided in this table for the features of the specific
GSD chosen. It is easy to note that the sample size inflation under OBF is
minimal.

3.2. Monitoring boundaries using alpha spending functions

The earlier publications for group sequential boundaries required that the
number and timing of interim analyses be fixed in advance. However, while
monitoring data for real clinical trials, it was felt that more flexibility in being able
to look at the data at time points dictated by the emerging beneficial or harmful
trend is desired. To accommodate this capability, Lan and Demets proposed a
more flexible implementation of the group sequential boundaries through an
innovative ‘alpha spending function’ (Lan and Demets, 1983; Lan and DeMets,
1989). The spending function controls how much of the false-positive error
(or false-negative error when testing to rule out benefit) can be used at each
interim analysis as a function of the proportion (t*, range 0 (study start)�1 (study
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end)) of total information observed. In many applications, t* may be estimated as
the fraction of patients recruited (for dichotomous outcomes) or the fraction of
events observed (for time to event outcomes) out of the respective total expected.
The alpha spending functions underlying OBF GSD correspond to

a1ðtnÞ ¼ 2� 2F
Z1�ða=2Þ

ðtnÞ1=2

" #
,

whereas the one for Pocock is described by

a2ðtnÞ ¼ a ln½1þ ðe� 1Þtn�.

The advantage of the alpha spending function is that neither the number nor
the exact timing of the interim analyses needs to be specified in advance. Only the
particular spending function needs to be specified. It is useful to note that the
nominal significance levels utilized in any GSD will always add up to more than
the overall significance level, because with multiple significance testing the prob-
ability of rejecting the null hypothesis does not accumulate additively due to
positive correlations among test statistics.

Following is a sample ‘Biostatistical Consideration’ write-up for a clinical trial in
Germ Cell Tumor (GCT) utilizing GSD with OBF boundaries. IF approach with
three total looks (K ¼ 3) was chosen at design stage and a series of boundaries and
sequence of significance level were computed accordingly. The option of utilizing
spending function approach was also kept open, which is often the case in practice.

3.3. Design of a phase 3 study with OBF GSD: A sample template

3.3.1. Biostatistical considerations

1. Objective and background: The objective of this study is to compare in a pro-
spective randomized manner the efficacy of an experimental combination

Table 2

Inflation Factors for Pocock and O’Brien–Fleming alpha spending functions for different total num-

bers of looks (K) under equal-sized increments

a ¼ 0.05 (Two-sided) a ¼ 0.01 (Two-sided)

K Spending function Power (1–b) K Spending function Power (1–b)

0.80 0.90 0.95 0.80 0.90 0.95

2 Pocock 1.11 1.10 1.09 2 Pocock 1.09 1.08 1.08

2 OBF 1.01 1.01 1.01 2 OBF 1.00 1.00 1.00

3 Pocock 1.17 1.15 1.14 3 Pocock 1.14 1.12 1.12

3 OBF 1.02 1.02 1.02 3 OBF 1.01 1.01 1.01

4 Pocock 1.20 1.18 1.17 4 Pocock 1.17 1.15 1.14

4 OBF 1.02 1.02 1.02 4 OBF 1.01 1.01 1.01

5 Pocock 1.23 1.21 1.19 5 Pocock 1.19 1.17 1.16

5 OBF 1.03 1.03 1.02 5 OBF 1.02 1.01 1.01
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regimen versus the standard regimen in previously untreated ‘poor’ risk GCT
patients. The poor risk criterion helps identify patients who are expected to
have high probability of worse outcome. It is described in the protocol and
roughly depends on the primary site, histology, and specific blood markers
being high. For this kind of cancer, a patient’s prognosis is considered to be
favorable if their tumor completely disappears and does not come back at least
for a year. The response of these patients is called durable complete responder
(DCR) at one year. In the institutional database at Memorial Sloan–Kettering
Cancer Center (MSKCC) of size 796 patients treated by standard therapy,
the proportion of patients remaining DCR at one year for the poor risk group
(n ¼ 141) is 30% with a 95% confidence interval (Cl) of 22.2–37.3%.

2. Primary endpoint, power and significance level: The major endpoint for this trial
is DCR at one year where the time is computed from the day a patient is
defined responder. This study is planned to detect a 20% absolute difference
from the currently observed rate of 30% (30% versus 50%). We are expecting
an accrual of 50 patients per year. The sample size calculation based on
log-rank test for an FSD with 80% power and 5% level of significance, 195
patients will be needed. To incorporate two interim looks and a final look
(so total K ¼ 3) at the end of full accrual, an IF of 1.02 was multiplied to 195
requiring 199 patients ( ¼ 1.02� 195) using OBF method (O’Brien and
Fleming 1979). Rounding it off to 200 patients (100 per arm), we decide to
place the two interim looks at the end of second and third year and the final
look at the end of fourth year as the accrual rate of 50 patients makes the
length of study to be four years.

3. Randomization: After eligibility is established, patients will be randomized via a
telephone call to the coordinating center at MSKCC clinical trial office (Phone
number: XXX-XX-XXXX; 9:00 am to 5:00pm Monday through Friday).
Randomization will be accomplished by the method of stratified random
permuted block, where patient institution (MSKCC versus ECOG versus
SWOG versus remaining participating institutions) was adopted for stratifi-
cation, where ECOG denotes Eastern Cooperative Oncology Group and
SWOG denotes Southwest Oncology Group.

4. Data safety monitoring committee and interim analyses: The data will be
reviewed at designated intervals by an independent DSMC. This committee
was formed with two independent oncologists and one independent biostat-
istician. The committee will be presented with the data summary on accrual
rates, demographics and bio-chemical markers etc. and comparative analysis
(using Fisher’s exact test) on toxicity and DCR proportion by the principal
investigator (PI) and the biostatistician on study. Survival and progression-free
survival curves will be estimated only if there is an enough number of
events that governs statistical power. Semi-annual reports on toxicity will be
disseminated to all the participating groups.

Normalized z-statistics according to the OBF boundary to be used for stopping
early if the experimental regimen looks promising are 73.471, 72.454, 72.004,
where the corresponding sequence of nominal significance levels are 0.001, 0.014,
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and 0.036, respectively (East, Cytel Statistical Software). If situation emerges
where these time points are not the most convenient or desirable, Lan–Demets
spending function utilizing OBF boundaries will be used to compute the corre-
sponding z-statistics and significance level. The committee is expected to use the
statistical stopping rules as a guideline in addition to both medical judgment and
the relevant emerging data in the literature, especially ones obtained from similar
trials.

5. Final analysis: All toxicities will be evaluated based on the NCI common tox-
icity criteria and tabulated by their frequencies and proportions. Fisher’s exact
test will be used to compare the toxicities and adverse events by the two arms.
The primary analysis, DCR-free survival curves will be estimated using
Kaplan–Meier method and with appropriate follow-up, comparisons will be
made using log-rank test (Kaplan and Meier, 1958; Mantel, 1966). Once the
trial stops (either at interim look or at final look), standard statistical estima-
tion and inference will be undertaken for the observed treatment difference.

3.4. Analyses following group sequential test

Analysis following a group sequential test consists of two scenarios: The first is
upon conclusion of the trial after the test statistic has crossed a stopping bound-
ary and the second is when an interval estimate of the treatment difference is
desired whether the design calls for a termination or not. Tsiatis et al. (1984) have
shown that in both situation, it is inappropriate to compute a ‘naı̈ve’ CI, treating
the data as if they had been obtained in a fixed sample size experiment. They
estimated naı̈ve CI following a five-stage Pocock’s test with 5% level of signifi-
cance and found their coverage to vary between 84.6% and 92.9%, depending on
the true parameter value.

For the first scenario, Tsiatis et al. suggested a numerical method for calcu-
lating an exact CIs following group sequential tests with Pocock (1977) or
O’Brien and Fleming (1979) boundaries based on ordering the sample space in a
specific manner. They derived the CIs based on normal distribution theory, which
pull the naive CIs toward zero and are no longer symmetric about the sample
mean. They also commented that their method is applicable to any (asymptot-
ically) normal test statistic which has uncorrelated increments and for which the
variance can be estimated consistently. Whitehead (1986) suggested an approach
for adjusting the maximum likelihood estimate as the point estimate by sub-
tracting an estimate of the bias. Wang and Leung (1997) proposed a parametric
bootstrap method for finding a bias-adjusted estimate, whereas Emerson and
Fleming (1990) provide a formulation of uniformly minimum variance unbiased
estimator calculated by Rao–Blackwell technique.

For the second scenario, the multiple-looks problem affects the construction
of CIs just as it affects significance levels of hypothesis tests. Repeated CIs
for a parameter y are defined as a sequence of intervals Ik, k ¼ 1,y,K, for which
a simultaneous coverage probability is maintained at some level, say, 1� a.
The defining property of a (1� a)-level sequence of repeated CIs for y is
P½y 2 Ik for all k ¼ 1; . . . ; K � ¼ 1� a for all y (Jennison and Turnbull, 1983,
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1984, 1985). The interval Ik, k ¼ 1,y,K, provides a statistical summary of the
information about the parameter y at the kth analysis, automatically adjusted to
compensate for repeated looks at the accumulating data. As a result, repeated CIs
instead of group sequential testing can be used for monitoring clinical trials
(Jennison and Turnbull, 1989).

Most conventional trials are designed to have a high probability of detecting
a predefined treatment effect if such an effect truly exists. That probability is
called the power of the trial. Most trials use power in the range of 0.8–0.95 for
a plausible range of alternatives of interest and the sample size of the study is
calculated to achieve that power. The concept of ‘conditional power’ comes into
play when supporting evidence is sought to decide the power midstream.

3.5. Stochastic curtailment

Once the trial starts and data become available, the probability that a treatment
effect will ultimately be detected can be recalculated (Halperin et al., 1982; Lan
et al., 1982; Lan and Wittes, 1988). An emerging trend in favor of the treatment
increases the probability that the trial will detect a beneficial effect, while an
unfavorable trend decreases the probability of establishing benefit. The term
‘conditional power’ is often used to describe this evolving probability. The term
‘power’ is used because it is the probability of claiming a treatment difference at
the end of the trial, but it is ‘conditional’ because it takes into consideration the
data already observed that will be part of the final analysis. Conditional power
can be calculated for a variety of scenarios including a positive beneficial trend, a
negative harmful trend, or no trend at all. However, these calculations are fre-
quently made when interim data are viewed to be unfavorable. For this scenario,
it represents the probability that the current unfavorable trend would improve
sufficiently to yield statistically significant evidence of benefit by the scheduled
end of the trial. This probability is usually computed under the assumption that
the remainder of the data will be generated from a setting in which the true
treatment effect was as large as the originally hypothesized in the study protocol.

When an unfavorable trend is observed at the interim analysis, the conditional
probability of achieving a statistically significant beneficial effect is much less than
the initial power of the trial. If the conditional power is low for a wide range of
reasonable assumed treatment effect, including those originally assumed in the
protocol, this might suggest to the DSMC that there is little reason to continue
the trial since the treatment is highly unlikely to show benefit. Of course, this
conditional power calculation does increase the chance of missing a real benefit
(false-negative or type II error) since termination eliminates any chance of
recovery by the intervention. However, if the conditional power under these sce-
narios is less than 0.2 compared to the hypothesis for which the trial originally
provided power of 0.85–0.9, the increase in the rate of false-negative error is
negligible. There is no concern with false-positive error in this situation since
there is no consideration of claiming a positive result. An example of its use will
follow in the Beta-Blocker Heart Attack Trial (BHAT) trial description later in
this chapter.
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3.6. Bayesian monitoring

The Bayesian approach for monitoring accumulating data considers unknown
parameters to be random and to follow probability distributions (Spiegelhalter
et al., 1986; Freedman et al., 1994; Parmar et al., 1994; Fayers et al., 1997). The
investigators specify a prior distribution(s) describing the uncertainty in the
treatment effect and other relevant parameters. These prior distributions are
developed based on previous data and beliefs. It is quantified through a distri-
bution of possible values and is referred to as the prior distribution. The observed
accumulating data are used to modify the prior distribution and produce a pos-
terior distribution, a distribution that reflects the most current information on the
treatment effect, taking into account the specified prior as well as the accumulated
data. This posterior distribution can then be used to compute a variety of
summaries including the predictive probability that the treatment is effective. In
1966, Cornfield introduced the idea of Bayesian approach to monitoring clinical
trial (Cornfield, 1966). Although, interest has recently increased in its use
(Kpozehouen et al., 2005) and availability of computational tools have made it
more feasible to use, these methods are still not widely utilized.

3.7. Available softwares

Softwares for implementing GSDs have been developed and commercialized since
the early 1990s. Extended descriptions of these softwares are available through
their user’s guide and some review papers (Emerson, 1996; Wassmer and
Vandemeulebroecke, 2006). Most of the computational tools employ the recur-
sive numerical integration technique that takes advantage of a quadrature rule
of replacing integral by a weighted sum for probabilistic computations (Armitage
et al., 1969; Jennison and Turnbull, 2000).

Here, we provide a comprehensive listing of appropriate links for free self-
executable softwares as well as codes written in FORTRAN, SAS, Splus, and R
languages. FORTRAN source code used in the textbook by Jennison and
Turnbull (2000) can be downloaded from Dr. Jennison’s homepage on http://
people.bath.ac.uk/mascj/book/programs/general. The code provides continua-
tion regions and exit probabilities for classical GSDs including those proposed
by Pocock (1977), O’Brien and Fleming (1979), Wang and Tsiatis (1987) and
Pampallona and Tsiatis (1994). In addition, the spending function approach
according to Lan and Demets (1983) is implemented. Another implementation in
FORTRAN of the spending function approach is available for use under
UNIX and MS-DOS. It can be downloaded from http://www.biostat.wisc.edu/
landemets/ as a stand-alone program with a graphical user interface, while details
of methodologies and algorithms are found in Reboussin et al. (2000). These
codes provide computation of boundaries and exit probabilities for any trial
based on normally or asymptotic normally distributed test statistics with inde-
pendent increments, including those in which patients give a single continuous
or binary response, survival studies, and certain longitudinal designs. Interim
analyses need not be equally spaced, and their number need not be specified in
advance via flexible alpha spending mechanism. In addition to boundaries, power
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computations, probabilities associated with a given set of boundaries, and CIs can
also be computed.

The IML (Interactive Matrix Language) module of SASs features the calls
SEQ, SEQSCALE, and SEQSHIFT that perform computations for group
sequential tests. SEQ calculates the exit probabilities for a set of successive con-
tinuation intervals. SEQSCALE scales these continuation regions to achieve a
specified overall significance level and also returns the corresponding exit prob-
abilities. SEQSHIFT computes the non-centrality parameter for a given power.

S-PLUS that is commercially available provides a package for designing,
monitoring, and analyzing group sequential trials through its S+SeqTrialTM

module. It makes use of the unifying formulation by Kittelson et al. (Kittelson
and Emerson, 1999), including all classical GSDs, triangular tests (Whitehead,
1997), and the spending function approach. It offers the calculation of contin-
uation regions, exit probabilities, power, sample size distributions, overall
p-values and adjusted point estimates and CIs, for a variety of distributional
assumptions. It comes with a graphical user interface and very good documen-
tation, which can be downloaded from http://www.insightful.com/products/
seqtrial/default.asp.

In R (http://www.r-project.org/), cumulative exit probabilities of GSDs can be
computed by the function seqmon. It implements an algorithm proposed by
Schoenfeld (2001) and the documentation and packages are freely downloadable
at http://www.maths.lth.se/help/R/.R/library/seqmon/html/seqmon.html.

PEST, version 4 offers a wide range of scenarios, including binary, normal, and
survival endpoints, and different types of design. The main focus of PEST is the
implementation of triangular designs. Sequential designs from outside PEST can
also be entered and analyzed. Besides the planning tools, the software offers a
number of analysis tools including interim monitoring and adjusted p-values, CIs,
and point estimates for the final analysis. An important and unique feature of
PEST is that interim and final data can be optionally read from SAS data sets.
More information about the software can be found at http://www.rdg.ac.uk/mps/
mps_home/software/software.htm#PEST%204.

East of Cytel Statistical Software and Services (http://www.cytel.com/
Products/East/) is the most comprehensive package for planning and analyzing
group sequential trials. The software provides a variety of capabilities of
advanced clinical trial design, simulation and monitoring, and comes with
extensive documentation including many real data examples. Tutorial sessions for
East are frequently offered during various statistical meetings and conferences
and educational settings.

‘‘PASS 2005 Power Analysis and Sample Size’’ is distributed by NCSS Inc.
This software supplies the critical regions and the necessary sample sizes but it is
not yet possible to apply a sequential test to real data in the sense of performing
an adjusted analysis (point estimates, CIs, and p-values). Documentation and a
free download are available on http://www.ncss.com./passsequence.html.

‘‘ADDPLAN Adaptive Designs-Plans and Analyses’’ (http://www.addplan.
com/) is designed for the purpose of planning and conducting a clinical trial based
on an adaptive group sequential test design. New adaptive (flexible) study designs
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allow for correct data-driven re-estimation of the sample size while controlling the
type I error rate. Redesigning the sample size in an interim analysis based on
the results observed so far considerably improves the power of the trial since the
best available information at hand is used for the sample size adjustment. The
simulation capabilities for specific adaptation rules are also provided.

The choice of software is based on the users’ need and the complexity of
design. The freely available softwares are often enough to implement basic func-
tions to be used in standard or popular designs and to perform associated data
analyses outlined in this chapter unless special features are required.

3.8. Data safety monitoring committee

Early in the development of modern clinical trial methodology, some investiga-
tors recognized that, despite the compelling ethical needs to monitor the accu-
mulating results, repeated review of interim data raised some problems. It was
recognized that knowledge of the pattern of the accumulating data on the part of
investigators, sponsors, or trial participants, could affect the course of the trial
and the validity of the results. For example, if investigators were aware that the
interim trial results were favoring one of the treatment groups, they might be
reluctant to continue to encourage adherence to all regimens in the trial, or to
continue to enter patients in the trial, or they may alter the types of patients they
would consider accrual. Furthermore, influenced by financial or scientific conflicts
of interest, investigators, or the sponsor might take actions that could diminish
the integrity and credibility of the trial. A natural and practical approach to
dealing with this problem is to assign sole responsibility for interim monitoring of
data on safety and efficacy to a committee whose members have no involvement
in the trial, no vested interest in the trial results, and sufficient understanding of
the trial design, conduct, and data-analytical issues to interpret interim analyses
with appropriate caution. These DSMCs consisting of members from variety of
background (clinical, statistical, ethical, etc.) have become critical components
of virtually all clinical trials.

For the above example, an independent DSMC consisting of three members
with background in oncology (one from community hospital and one from spe-
cialized center) and biostatistics met every year to discuss the progress of the trial.
The outcome comparison was only presented when an interim analysis with OBF
was allowed. Below we present a list of items that were included in the interim
report for this trial. This is a typical template for a clinical trial and could be
useful in other scenarios.

Items included in the interim report:

1. Brief outline of the study design
2. Major protocol amendments with dates (or summary) if applicable
3. Enrollment by arm and year and center (preferably, updated within a month

of the DSMC meeting date)
4. Information on eligibility criterion violation or crossover patients
5. Summary statistics (e.g., mean/median) on follow-up times of patients
6. Frequency tables of baseline characteristics (demographics, toxicity, and
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adverse event summary, laboratory test summary, precious treatment) of the
full cohort

7. Comparative analysis of primary and secondary endpoints (when data
mature)

8. Subgroup analyses and analyses adjusted for baseline characteristics (and
some secondary outcomes data, if any)

9. Comparative analysis of adverse event and toxicity data
10. Comparative analysis of longitudinal lab values.

The GCT study referred above struggled with accrual of patients and remained
open for 10 years instead of the four years planned initially. To improve accrual
rate, new centers were added and the patient eligibility was expanded. DSMC met
annually and approved these actions. The first DSMC meeting where outcome
data were compared was at 6th year after study start instead of the 2nd year.
Lan–Demets with OBF boundary was utilized to compute the appropriate
boundary but the boundary was not crossed. DSMC deliberations continued with
concern for the accrual rate but since the experimental regimen utilizing auto-
logus bone marrow transplant was quite a novel and unique approach and it was
added to the standard therapy, the DSMC did not feel any harm to patients and
decided to keep the trial open. More assertive accrual plans were adopted but
when many of these plans failed to improve accrual, the study was at last closed at
219 patients (in contrast, N ¼ 270 in the original plan).

3.8.1. Details included in the final paper (on design and primary analysis)

The final write-up or summary report needs to include as much details as possible
about the original design (including sample size/power calculation), modifica-
tions, rationale for modification, decisions by DSMC, and conclusions. Here’s
part of the ‘Statistical Methods’ section from the final paper related to the GCT
study (Motzer et al., 2007):

The trial was designed with the proportion of patients with durable complete

response (DCR) at one year from entry onto the trial as the primary endpoint.

The original study population to be enrolled on this study was poor-risk GCT

patients only. We had planned to accrue 200 patients (100 per arm) to detect a

20% difference in DCR rate at one year (an improvement from 30% to 50%)

with a 5% level of significance and 80% power. However, as the trial pro-

gressed, the accrual rate was far lower than our expectation of 50 poor-risk

patients per year. Also during this time, an international effort brought along a

newly developed but broadly accepted risk group classification and it was felt

that the intermediate-risk group patients with poor markers (lactate

dehydrogenase greater than 3 times upper limit of normal) would benefit from

the treatment under investigation. Therefore it was decided to extend the study

to this modified intermediate risk group from the poor risk classification

utilized before. Based on a historical one-year DCR rate of 45% in the poor

and intermediate risk groups combined, we then modified our target accrual to

218 patients to detect an improvement of 20% with the same level and power.

M. Mazumdar and H. Bang504



A final modification to the study was implemented in 2002 after a new center

CALGB was added to the study and accrual at that center began. At that point,

it was our hope to be able to address the original question of interest in the

poor-risk group of patients. We planned to accrue 270 patients, consisting of

216 poor-risk patients (200 per original calculation +16 to account for with-

drawals) and 54 intermediate-risk patients. However, as accrual did not meet

our expectations even with the additional cooperative group participating, the

study was closed in August of 2003. The data were reviewed annually by an

independent DSMC. Initially, the design included an O’Brien and Fleming

stopping rule with the sequence of nominal significance levels of 0.001, 0.014,

and 0.036 for the two interim analyses and the final analysis, respectively. A

formal comparative interim analysis on DCR proportion and overall survival

was presented in May 2000 based on a recalculated boundary utilizing Lan–

Demets spending function. The decision was to continue the trial as the

boundary was not crossed and no ethical conflict was found since the exper-

imental regimen was an autologus bone marrow transplant regimen on top of

the standard therapy. The study was at last stopped in 2003 due to not being

able to improve accrual rate.

3.9. Historical example of GSD use

It is always educational to look back on the trials that were planned with GSD
and benefited from it. Two excellent books by DeMets et al., 2006 and Ellenberg
et al., 2006 provide essential and in-depth reading materials for clinical trialists
starting in this field. An example considered by these books and many other
publications is described below to show the multifaceted decision process that
goes into the deliberation of DSMB.

The BHAT compared the beta-blocker propranolol against placebo in patients
who had a myocardial infarction recently. The statistical design called for
enrollment of 4,020 patients, aged 30–69 years, who had a myocardial infarction
5–21 days prior to randomization. The primary objective of the study was to
determine if long-term administration of propranolol would result in a difference
in all-cause mortality. The design utilized O’Brien–Fleming boundary with alpha
level set at two-tailed 0.05, 90% power, and three-year average follow-up. The
attempt was to detect a 21.25% relative change in mortality, from a three-year
rate of 17.46% in the control (placebo) group to 13.75% in the intervention
group, which were obtained from earlier studies (Furberg and Friedwald,
1978; Anderson et al., 1979) after taking non-adherence into account (Byington,
1984).

Enrollment began in 1978 and a total of 3,837 participants were accrued
instead of the planned 4,020. This reduced the power slightly from the planned
90% to 89%. The PDMB first reviewed the data in May 1979. Subsequent data
reviews were to occur approximately every six months, until the scheduled end of
the trial in June 1982. At the October, 1979 meeting of the PDMB, the log-rank
z-value exceeded the conventional 1.96 critical value for a nominal p of 0.05 but
was far from significance due to the conservative nature of the O’Brien–Fleming
boundaries early in the study. PDMB recommended continuation of the trial.
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At the meeting in April 1981, the PDMB reviewed not only the accumulating
BHAT data but the results of the timolol trial that had just been published. This
trial of 1,884 survivors of an acute myocardial infarction showed a statistically
significant reduction in all-cause mortality, from 16.2% to 10.4%, during a mean
follow-up of 17 months. At this point, BHAT was no longer enrolling patients,
but follow-up was continuing. The PDMB recommended that BHAT continues,
primarily because, despite the timolol findings, the BHAT data did not show
convincing evidence of benefit. Not only had the monitoring boundary not been
crossed, but the long-term effect on mortality and possible adverse events was
unknown. Importantly, all patients in BHAT had been in the trial for at least six
months post-infarction, and there was no evidence that beta-blockers started after
that time produced benefit. Thus, there was not an ethical concern about leaving
the participants on placebo. The PDMB advised that the study investigators be
informed of the timolol results. However, it also advised that because there had
been conflicting results from other beta-blocker trials, the positive results of the
timolol trial should not preclude the continuation of BHAT. Furthermore,
timolol was not available for sale in the United States then. At its October 1981

data review, the PDMB noted that the upper OBF boundary had been crossed.
The normalized log-rank statistic was then 2.82, which exceeded the boundary
value of 2.23. In addition to the monitoring boundaries, the PDMB considered a
number of factors in its recommendation to stop early:

1) Conditional power calculations indicated that there was little likelihood that

the conclusions of the study would be changed if follow-up were to continue;

2) The gain in precision of the estimated results for the first two years would be

tiny, and only modest for the third year; 3) The results were consistent with

those of another beta-blocker trial; 4) There would be potential medical benefits

to both study participants on placebo and to heart attack patients outside the

study; 5) Other characteristics, such as subgroup examinations and baseline

comparability, confirmed the validity of the findings; 6) The consent form

clearly called for the study to end when benefit was known. Following points in

favor of continuing until the scheduled end were considered but were not found

to weigh enough in favor of not stopping: 1) Even though slight, there remained

a chance that the conclusions could change; 2) Because therapy would be con-

tinued indefinitely, it would be important to obtain more long-term (4 year)

data; 3) It would be important to obtain more data on subgroups and second-

ary outcomes; 4) The results of a study that stopped early would not be as

persuasive to the medical community as would results from a fully powered

study that went to completion, particularly given the mixed results from

previous trials.

Lessons learnt from these experiences are that 1) O’Brien-Fleming approach to

sequential boundaries could prove very helpful in fostering a cautious attitude

with regard to claiming significance prematurely. Even though conventional

significance was seen early in the study, the use of sequential boundaries gave

the study added credibility and probably helped make it persuasive to the

practicing medical community; 2) The use of conditional power added to the
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persuasiveness of the results, by showing the extremely low likelihood that the

conclusions would change if the trial were to continue to its scheduled end; 3)

The decision-making process involves many factors, only some of which are

statistical (Friedman et al., 2003).

4. Steps for GSD design and analysis

4.1. Classical design

Step 1: Decide the number of maximum looks (or groups) K and the choice of
boundary (that can be indexed by shape parameter, D (Wang and Tsiatis,
1987).

Remark:
a) The gain in ASN is most dramatic when going from K ¼ 1 (i.e., the fixed

sample size design) to K ¼ 2. Beyond K ¼ 5, there is relatively little
change in ASN.

b) The choice of K may be dictated by some practicality such as the fre-
quency of the DSMC meetings that is feasible.

c) D ¼ 0 for OBF and D ¼ 0.5 for Pocock.
Step 2: Compute the sample size for fixed design as you would ordinarily

do (using significance level, power, and effect size). Multiply by the appro-
priate IF.

Step 3: After computing the maximum sample size, divide it into K equal group
sizes and conduct interim analyses after each group. Reject H0 at the first
interim analysis where the test statistic using all the accumulated data
exceeds the boundary values computed. Alternatively, we can translate the
boundaries to the corresponding nominal p-values at each look and conduct
the test using p-values.

4.2. Information-based design

Step 1: Specify level of significance, power, K and alternative of interest (g).
Remark:
You specify K at the design stage but you may deviate from this at the time of

analysis.
Step 2: Choose a spending function and stopping boundary (Lan and DeMets

spending function with OBF or Pocock or other boundaries).
Step 3: Compute maximum information (MI) required to have a specific power

as MI ¼ (z1�a/2 +z1�b/g)
2 X IF.

Step 4: The first time the data are monitored, say, at time t1, compute the
proportion of information compared to MI. Then find the first boundary
value. If the test statistic exceeds the boundary computed, stop and reject
H0. If not, continue to next monitoring time.

Step 5: At time t2, compute the ratio of observed information and MI. Then
perform the testing.
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Step 6: Continue in this fashion, if necessary, until the final analysis, at which
point you use up the remaining significance level.

Remark:
With this strategy, you are guaranteed a level alpha test regardless of how often

or when you look at the data prior to obtaining MI.

5. Discussion

In RCTs designed to assess the efficacy and safety of medical interventions,
evolving data are typically reviewed on a periodic basis during the conduct of the
study. These interim reviews are especially important in trials conducted in the
setting of diseases that are life-threatening or result in irreversible major mor-
bidity. Such reviews have many purposes. They may identify unacceptably slow
rates of accrual or high rates of ineligibility determined after randomization,
protocol violations that suggest that clarification of or changes to the study pro-
tocol are needed or unexpectedly high dropout rates that threaten the trial’s
ability to produce unbiased results. The most important purpose, however, is to
ensure that the trial remains appropriate and safe for the individuals who have
been or are still to be enrolled. Efficacy results must also be monitored to enable
benefit-to-risk assessments to be made. Repeated statistical testing of the primary
efficacy endpoint was seen to increase the chance of false-positive rate. The
methods of adjusting the significance levels at each interim analysis so that the
overall false-positive rate stays at an acceptable level gave rise to GSDs. The field
has been developing for past 30 years and is now quite mature with various
methods with well-studied operating characteristics and availability of an array
of user-friendly software.

One new field of applications has been cluster-randomized trials (CRTs). CRTs
have been used increasingly over the past two decades to measure the effects of
health interventions applied at the community level. Excellent reviews and books
are written by Donner et al. and Murray (Donner and Brown, 1990; Murray,
1998; Donner and Klar, 2000). Recently, Zou et al. (2005) developed group
sequential methods that can be applied to CRT. Although the design aspect is
well characterized and related computer program is available upon request, effect
estimation following this group sequential test remains a topic of future research.
This method is not yet used prospectively on a clinical trial. Development of
methodology for novel design such as the split-cluster design could also be a
useful addition to this field (Donner and Klar, 2004).

Adaptive designs in the context of group sequential testing allow modifications
of particular aspects of the trials (such as inappropriate assumptions, excessive
cost, or saving in time) after its initiation without undermining the validity
and integrity of the trial. Some developments have been made to combine the
advantages of adaptive and of classical group sequential approaches. Although
research has been ongoing in this field, it still remains a field of research priority
(Tsiatis and Mehta, 2003; Jennison and Turnbull, 2005; Kuehn, 2006; Wassmer,
2006).
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There are some settings where GSDs may not be appropriate. For example,
when the endpoint assessment time is lengthy relative to the recruitment period,
there might be enough interim results to perform an analysis only after all or most
subjects have been recruited and treated, thereby potentially rendering the GSD
irrelevant. Most other large studies will benefit from having planned look at the
data as trial progresses. Quite surprisingly, we found that many large trials follow
FSD (Cooper et al., 2006; Cotton et al., 2006; Nicholls et al., 2006). A systematic
literature search to assess the percentage of studies that would benefit from GSD
but is not currently planning to use it would be interesting. This effort could also
identify additional areas for further research or need for expanded exposure of
these designs among practitioners.
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Early Phase Clinical Trials: Phases I and II

Feng Gao, Kathryn Trinkaus and J. Philip Miller

Abstract

A clinical trial is a planned experiment on human subjects to assess one or more

potentially beneficial therapies. A central problem in early phase clinical trials

is the limited knowledge on the new treatment of interest. As a consequence,

extreme caution needs to be taken in study designs to minimize the risk of

participants while maximizing the benefit. This chapter provides an overview of

the recent advances in statistical designs of early phase clinical trials. Since

formal statistical methods for phase I and II trials have been mostly developed

for cancer drugs, a considerable portion of this chapter addresses statistical

issues in this particular setting.

1. Introduction

Clinical trials, usually classified as phases I, II, III, and IV, are true experiments
on human beings to assess one or more potentially beneficial therapies. The
primary objective of phase I trials is to characterize the safety profile of a new
regimen and to determine the best dose for subsequent clinical evaluation of its
efficacy. The purpose of phase II trials is to assess the therapeutic efficacy of a
regimen in a well-defined patient population and to further evaluate its toxicity
profile. Phase III trials are conducted in a randomized controlled manner to
provide more definitive results regarding the benefits and risks associated with a
new treatment as compared to the standard therapy. Phase IV trials carry out
post-marketing surveillance of treatment effects with long-term follow-up in a
broader clinical setting (i.e., to examine issues of quality of life) or for goals other
than clinical benefits (i.e., for marketing purposes). This chapter is devoted to the
recent development of statistical designs in early phase clinical trials. Since many
formal statistical methods for phase I and II trials have been developed to eval-
uate cytotoxic drug development in oncology studies, a considerable portion of
this chapter addresses statistical issues in this particular setting.
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In Section 2, a variety of innovative designs in phase I trials is presented. A
common feature shared by these designs is to seek the highest dose associated
with a tolerable level of toxicity, the maximum tolerated dose (MTD). The strat-
egy for identifying the MTD is one of the key features that differentiate these
designs. Section 2.1 describes the conventional 3+3 design and its modifications.
Section 2.2 presents up-and-down designs that are based on a random walk con-
cept and allow dose escalation or de-escalation based on the occurrence of dose
limiting toxicity (DLT) among previous patients. Accelerated titration designs

are presented in Section 2.3, where a two-stage process of escalation and
de-escalation rules is used to shorten the trial and treat fewer patients at sub-
therapeutic doses. Section 2.4 introduces the continuous reassessment method

(CRM) and Section 2.5 presents the dose escalation with overdose control

(EWOC), both of which take a Bayesian modeling approach and treat MTD as a
parameter of the model. Sections 2.6 outlines some complex innovative phase I
designs and Section 2.7 explores the integration of phase I and II trials.

Section 3 presents recent advances beyond conventional single-arm phase II
trials. Though nowadays small randomized phase II trials are not uncommon, a
typical phase II trial is conducted without concurrent controls. It usually con-
siders efficacy (often measured as a binary variable based on tumor shrinkage) as
the solely primary endpoint and treats a relatively homogenous patient popula-
tion (Geller, 1984; Retain et al., 1993). Estey and Thall (2003) recently have given
an excellent review of the problems with current phase II trials and proposed
some practical alternatives. In Section 3.1, we describe phase II trials with multiple

stages that allow early stopping due to inactivity of regimen. Phase II trials with

multiple endpoints are introduced in Section 3.2, including trials that simultane-
ously consider toxicity and efficacy as well as trials that distinguish the relative
importance of complete response (CR) versus partial response (PR). Section 3.3
presents covariate-adjusted phase II trials that estimate efficacy in the presence of
patient heterogeneity, and Section 3.4 introduces randomized phase II trials that
aim to select the best regimen among several experimental therapies. Some
miscellaneous innovations in phase II designs are also discussed in Section 3.5.
These include adaptive designs that allow investigators to re-adjust the sample size
based on information accumulated during the first stage, three-outcome trials that
allow rejection of the null hypothesis (H0), rejection of the alternative hypothesis
(Ha), or rejecting of neither, as well as flexible designs that permit the actual size
achieved at each stage to deviate slightly from the exact design. Finally, Section
3.6 deals with some issues of transition from a phase II trial to phase III.

A short summary in Section 4 compares the different developmental strategies
used for cytotoxic and non-cytotoxic agents. Several useful websites and free available
software to implement some of the published methods are also presented in Section 4.

2. Phase I designs

The first use of a drug or device (‘‘treatment’’) in humans or in a new disease
setting usually takes place in conditions of uncertainty. The treatment may be
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entirely new, or its effect may be as yet unexplored in a combination of treatments
or in a new disease setting. Phase I trial designs provide a structure for these first
steps. They typically involve few patients, are relatively quickly completed and
gather specific, limited information. Participants are often either healthy volun-
teers or patients whose treatment options have been exhausted, so they are not
representative of the population in which the treatment, if successful, will be used.
Patients are recruited in small cohorts, often 1�3 in each, into a single-arm,
uncontrolled study. The primary goal of phase I treatment trials is to identify
highest dose that can be tolerated without excessive toxicity or other adverse
effects (MTD). Adverse effects are monitored and described, as are any indica-
tions of efficacy, although neither can be observed with great precision. Phase I
studies are not intended to stand alone, however. The goal is to identify ethically
acceptable treatments so that further efficacy testing can take place, while ex-
posing the smallest possible number of patients to ineffective and possibly harm-
ful treatments.

Planning a phase I trial requires definition of a starting dose and of the dose
levels, or the range of acceptable doses, to be tested. These are based on an
explicit or implicit dose–toxicity model and on a prior estimate of the MTD. The
design further specifies the sample size at each dose level, a rule for dose esca-
lation, a rule identifying DLT, and clear criteria for stopping the trial. Given these
parameters, simulation studies are commonly used to compare alternative designs
while planning a trial, especially to estimate the total sample size, the rate of DLT,
the duration of the trial, and the number of patients treated at sub-optimal doses.

The phase I framework described above emphasizes single-treatment trials
associated with substantial toxicity, which has been the standard for some years.
The development of targeted therapies requires different strategies for testing, as
the effects of such therapies may not be dose dependent, and some have low
toxicity. There is also a need to anticipate differences in patient subgroups, de-
fined by quantities measured prior to or updated continuously during the trial,
and to accommodate trials with multiple agents and outcomes. Extensive reviews
of the statistical basis of phase I designs can be found in the statistical literature
(Chevret, 2006; Edler, 2001; Rosenberger and Haines, 2002; O’Quigley, 1999,
2002; Ahn, 1998). Horstmann et al. (2005) provide a comprehensive summary of
the conduct and outcomes of 460 completed phase I trials, representing a com-
plete survey of adult oncology trials conducted by the Cancer Therapy Evaluation
Program (CTEP) between 1991 and 2002. The focus here is on new models and
refinements of existing models made within the past 5 years. A review of software
and websites, with code samples for developing phase I monitoring applications,
can be found in Chevret (2006).

2.1. Traditional 3+3 and generalized A+B designs

Cohort designs rely on simple, rule-based algorithms to make decisions concern-
ing dose escalation and trial continuation. Such algorithms are popular in prac-
tice because they are straightforward to carry out in complex clinical settings. The
target sample size can be specified in advance, but the final trial size is not known
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at the outset. The resulting estimates of MTDs and DLTs are generally imprecise
but may be adequate as a basis for further testing, especially when the underlying
assumptions concerning dose escalation steps and toxicity rates are appropriate
(Christian and Korn, 1994).

The simplest of rule-based algorithms accrue a fixed number of patients per
cohort and escalate or de-escalate doses in fixed, pre-specified steps. The tradi-
tional 3+3 design uses cohorts of three patients each. Dose escalation occurs
between cohorts, rather than within single patients, and the experience of the
previous cohort usually is fully observed before proceeding to the next cohort.

The initial dose is chosen to cause little or no toxicity in humans. An accept-
able initial dose may be specified using information from use of the experimental
treatment in another multi-drug combination or a different disease setting. If no
information is available on the treatment’s activity in humans, the initial dose
may be based on animal studies, e.g., 10% of the lethal dose in 10% of another
species. Modified Fibonacci designs use dose multipliers such as 1.0, 2.0
(+100%), 3.3 (+65%), 5.0 (+52%), 7.0 (+49%), 9.0 (+33%), 12.0 (+33%),
etc. (Edler, 2001; Lin and Shih, 2001).

An example of a traditional 3+3 design is

1st Cohort = 3 Patients

0 DLT → Escalate  Dose in
Next Cohort

1 DLT → Same Dose in
Next Cohort

≥ 2 DLT → Stop for  Dose
Reevaluation or De-escalate

Add 2nd Cohort = 3
More Patients

0 DLT in 1st 6 →
Escalate Dose 

1 DLT in 1st 6 → 
MTD is Current Dose

≥2 DLT in 1st 6
patients → MTD is next
smallest dose  

The trial continues until a pre-specified number of DLTs is observed and the
MTD is determined. The number of cohorts may be specified in advance if there is
a maximum dose that cannot be exceeded. In this case, the maximum trial size is
known in advance.

The structure outlined above can be generalized to cohorts of varying size in an
A+B design (Korn et al., 1994; Ivanova, 2006; Kang and Ahn, 2002). Properties
used in designing an A+B trial with and without dose de-escalation can be found
in Lin and Shih (2001). The simple case without de-escalation is described below.
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Given A ¼ ] DLTs in the first cohort, B ¼ ] patients in the 1st cohort, C ¼ ]
DLTs in the second (or both) cohorts, D ¼ ] patients in the second cohort, E ¼ ]
DLTs in A+B, n ¼ the pre-specified number of dose levels, and pi ¼ probability
of DLT at dose level i, an A+B trial with dose de-escalation and 1rjrn, then
the probability ofoC DLTs in cohort A is

P
j
0 ¼

XC�1
k¼0

ð
A
k Þp

k
j ð1� pjÞ

ðA�kÞ.

The probability of ZC but rD DLTs in cohort A and rE DLTs in cohorts
(A+B) is

Q
j
0 ¼

XD

k¼C

XE�k

m¼0

ð
A
k Þp

k
j ð1� pjÞ

A�k
ð
B
mÞp

m
j ð1� pjÞ

B�m.

Thus, for 1rIon, the MTD falls at dose I if there is escalation at dose ri and
escalation stops at dose (i+1):

PðMTD ¼ doseiÞ ¼ ð1� Piþ1
0 �Qiþ1

0 Þ
Yi

j¼1

ðP
j
0 þQ

j
0Þ.

The final sample size is not known in advance, primarily because the number of
levels from the initial dose to the first DLT is unknown. The expected number of
patients at each dose level can be estimated. If the probability of ZC but rD

DLTs in cohort A at dose level j is

P
j
1 ¼

XD

k¼C

ð
A
k Þp

k
j ð1� pjÞ

A�k

and Xj is the number of patients to be treated at dose level j, then

EðX iÞ ¼
Xn

i¼0

EðX jjMTD ¼ doseiÞPðMTD ¼ doseiÞ;

where

EðX jjMTD ¼ doseiÞ ¼
AP

j
0 þ ðAþ BÞQ

j
0

P
j
0 þQ

j
0

(
; j � i

¼
Að1� P

j
0 � P

j
1Þ þ ðAþ BÞðP

j
1 �Q

j
0Þ

1� P
j
0 �Q

j
0

(
; j ¼ i þ 1

¼ 0; j4i þ 1:
�

These designs are simple to describe and to apply, and they are among the
simplest to monitor as they have relatively few rules. Estimates of the MTD are
discontinuous and usually imprecise, but they cannot fall outside the pre-specified
dose levels. The probability of unexpected, short-term toxicity is limited to a
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single cohort, as the experience of each cohort is observed before starting the next.
In practice, there is often pressure to enroll as quickly as possible, so long-term
toxicity must be monitored separately and may affect a larger number of patients.
A trial with a very low starting dose or one that does not observe a DLT may be
very long, exposing too many patients to toxicity at sub-therapeutic doses. The
widespread use and intuitive appeal of these designs have motivated attempts to
improve their precision and unpredictable length.

2.2. Up-and-down designs

Up-and-down designs are based on a random walk concept, allowing dose esca-
lation or de-escalation to occur within single patients or small cohorts based on
the occurrence of DLT among previous patients. A simple Markovian random
walk would assign subsequent doses on the basis of the previous patient’s expe-
rience, escalating the dose in the absence of DLT and de-escalating it if a DLT is
observed at the previous dose. The probability of underdosing or overdosing can
be high, which has prompted several reformulations (O’Quigley and Chevret,
1991; Durham et al., 1997).

Biased coin allocation designs use the maximum allowable probability of DLT
(Pmax) to weight the probability of dose escalation. For example, if a DLT is
observed, then the subsequent dose is de-escalated. If there is no DLT, then the
subsequent dose is escalated only if a binary random variable with PðX ¼ 1Þ ¼
Pmax=ð1� PmaxÞ takes the value 1. Otherwise, the next patient is treated at the
same dose.

Using the experience of more than one previous patient is possible using a k-in-
a-row rule or moving average rule. Storer (1989) suggested escalating the dose
only if the two consecutive previous patients were without DLT. Ivanova et al.
(2003) describe a more general k-in-a-row rule which de-escalates from dose level j

to level j�1 if the most recent patient experienced a DLT at level j, escalates from
dose level j to j+1 if the previous, consecutive k patients have received dose level j

without DLT, and remains at the same dose otherwise. A related, moving average
rule, escalates to dose level j+1 if the previous, consecutive k patients have been
treated at dose level j without DLT and de-escalates otherwise. The probability of
DLT at the MTD is defined as Pmax ¼ 1� ð0:5Þ1=k; where k ¼ 1, 2, 3. There is no
provision for remaining at the same dose.

Up-and-down designs may be group sequential, treating cohorts of more than
one patient (Storer, 1989). Such designs are similar to the A+B concept. The dose
would be escalated if there are no DLTs in the first cohort, maintained at the
same level in three additional patients if there is one DLT, and de-escalated if
there is more than one DLT (see also Edler, 2001). An up-and-down stage can be
added to the initial cohorts of an A+B design without de-escalation to move
rapidly through sub-therapeutic doses and progress by slower steps once a DLT
has occurred (Gatsonis and Greenhouse, 1992; O’Quigley and Chevret, 1991).

The primary disadvantage of up-and-down designs is that they can escalate or
de-escalate too rapidly. In the first case, the patients are placed at undue risk. In
the second case, the first stage may be lengthened or fail to reach an active dose. If
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toxicity is severe, up-and-down designs may be better suited to treatments with
small dosing steps than to those with large gaps due to the nature of the treatment
or its delivery.

Several studies have shown that isotonic regression estimators can be efficient
at estimating the MTD within a set of ordinal toxicity categories (Ivanova et al.,
2003; Stylianou and Flournoy, 2002). Greater efficiency means that fewer patients
are treated before reaching the MTD and that, in at least one case (Paul et al.,
2004), the MTD is reached with fewer DLTs.

2.3. Accelerated titration designs

Accelerated titration designs (Simon et al., 1997; Eisenhauer et al., 2000) build on
A+B and up-and-down concepts by using a two-stage process with escalation
and de-escalation rules to shorten the trial and treat fewer patients at sub-
therapeutic doses. In general, these designs begin with one patient per cohort,
using pre-clinical information to determine the starting dose. Doses are escalated
within or between patients until one DLT or two grade 2 toxicities are observed.
Early dose escalation steps are large, e.g., adding 40–100% of the current dose as
the expected toxicity profile of the treatment allows. In the second stage, patients
are treated in small cohorts. Dose determination may follow an A+B design, or it
may escalate the dose in 40% increments in a standard A+B design. The cost of
shortening the trial and treating fewer patients at lower doses is a greater risk of
more severe toxicity. Simulation and consideration of real-world trials indicate
that a standard A+B design may have up to three times as many patients whose
worst toxicity is none or mild (grade I by the NCI Common Toxicity Criteria) as
does an accelerated design. An accelerated design may have 1.5–3.0 times as many
patients with grade 4 (potentially life-threatening) toxicity (Simon et al., 1997).

Titrating doses, or altering doses up or down, within patients yield information
about intra-patient variability which simpler designs lack, as well as an estimate
of toxicity at lower levels than DLT. The trial can produce estimates of between-
patient variability in probability of toxicity, as well as of the probability of cu-
mulative toxicity. The magnitude of worst toxicity is described by

yij ¼ logðdij þ aDijÞ þ bi þ �ij ,

where i ¼ 1, ..., n is the number of patients, j ¼ 1, 2, 3y the number of the dose
level, dj the dose at the jth dose level, and Dij the total dose received by the ith
patient up to but not including the jth dose level. a is the cumulative toxicity of
doses Dij, bi represents patient-specific sensitivity to toxicity, and eij measures
intra-patient variability in experience of toxicity at a given dose level j.

The probability of grades 2–4 toxicity in a single course of treatment may be
computed over the range of specified dose levels D as

F
logðd þ aDÞ þ mb � Kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2b þ s2a
q

0B@
1CA,
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where F is the cumulative standard normal distribution function, K ¼ 1, 2, 3,y
a set of constants defining critical toxicity categories, such that yijoK1 indicates
that patient i experienced less than grade 2 toxicity at dose level dj, K1oyijoK2

indicates that patient 1 experienced grade 2 toxicity, K2oyijoK3 indicates DLT,
and yijZK3 indicates unacceptably severe toxicity. Using this definition of K, the
probability of grade j+ toxicity at dose D and cumulative toxicity over previous
doses D is

F
logðd þ aDÞ þ bi � Kj�1

s�

� �
.

In practice, the risk of toxicity can be controlled by careful definition of the level
considered dose limiting, as well as the level of toxicity considered sufficiently
mild to permit intra-patient dose escalation, with reference to a given disease
setting and patient population. First phase dose escalation steps can be smaller
than 100%, if desirable. The second phase design is also flexible, taking any form
that provides the required toxicity control features.

2.4. Continuous reassessment method

The CRM was proposed by O’Quigley et al. (1990) as a Bayesian strategy for
estimation of the MTD as a parameter of a model, rather than a fixed quantity.
Using prior information about the treatment, disease setting and patient pop-
ulation, a working dose–response function C(d,a) is specified, where d is the dose
level from a pre-specified range of possible doses DJ ¼ {d1,y, dJ} and a is a
parameter vector to be estimated. The goal is to find a unique solution corre-
sponding to the MTD such that C(MTD, a) ¼ y. The curve is refit as observa-
tions are taken from each patient or cohort as the trial progresses. After observing
the result of treatment for the ith patient, i ¼ 1,y,N, a new dose is chosen to
minimize the difference between y, the value of the dose–toxicity function at the
MTD, and yij, the observed value for the ith patient at the jth dose. That is, the
current dose is determined from the most recent estimate of the MTD, rather than
being fixed in advance.

Given the dose–toxicity function C(d,a), information about the dose–toxicity
relationship observed from patients 1 to i�1 ¼ O(y1,y, yi�1), and the prior
density of the parameter a, f(a,Oi), the new estimate of the MTD is the probability
of DLT at dose level j

Pðdj ; aÞ ¼

Z 1
0

Cðdj ; aÞf ða;OiÞda ¼ yij .

Once the toxicity at dose level j is known, the posterior density can be derived
using the prior density and the likelihood of toxicity for the ith patient (Edler,
2001; O’Quigley, 2001):

Lðyi; dij ; aÞ ¼ Cðdij ; aÞ
yi ½ð1�Cðdij ; aÞÞ�

1�yi .
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By means of Bayes Theorem,

f ða;Oiþ1Þ ¼
Lðyi; dij ; aÞf ða;OiÞR1

0 Lðyi; dij ; uÞf ðu;OiÞdu
.

In principle, dose Dj is equal to the most recently estimated MTD, although, in
practice, early estimates of the MTD may be imprecise. Very high estimates of the
MTD may occur, which would result in large increases in dose from one patient
to the next, and wide swings in the estimated MTD may increase the number of
patients needed to achieve a stable estimate of the MTD. Overly high estimates of
the MTD pose an unacceptable danger to patients, so a variety of modifications
have been proposed to contain dose escalation within pre-specified limits. For
example, the dose may be escalated by one level when the estimated MTD exceeds
the current dose level, or it may be escalated by one level only if no DLT has been
observed at the previous dose level. A maximum value of MTD may be pre-
specified or derived from the prior dose–toxicity function, providing a cap for
dose escalation. Treating more than one patient at each dose level also provides
substantial improvement in the estimate of MTD, reducing the number of pati-
ents treated and decreasing the trial duration (Edler, 2001). Storer (2001) has
shown that, although the precision of a CRM design may be lessened by the need
to use fixed, rather than continuous, dose levels, precision can be improved by
adding a model-fitting step after data collection is complete. Post-trial modeling
treats dosing as continuous and incorporates all information collected by the trial.

CRM design can be used to identify levels of toxicity lower than DLT. This is a
useful feature, as the cumulative effect of lower level toxicity can have severe
consequences for the patient (Korn et al., 1994). To prevent unexpected DLT at
the first dose level, Korn et al. (1994) suggested using a pre-specified initial dose
level. The authors used a one-variable logistic model with an exponential prior
and a maximum of six patients at any one dose level to estimate the MTD,
concluding that there was little increase in safety or efficiency over rule-based
approaches. Gatsonis and Greenhouse (1992) suggest estimating the MTD di-
rectly and propose escalation steps from these estimates. The need to protect
against both overdosing and underdosing is addressed using a modified CRM
design by Heyd and Carlin (1999). The authors propose modifying the CRM
strategy to allow early stopping when the posterior 95% probability interval for
the MTD reaches a pre-specified width. The authors review several alternative
rules under a variety of erroneous prior information conditions, and conclude
that trial size can be reduced and patient protection from overdosing and un-
derdosing can be improved by these means. Their discussion is particularly in-
teresting for the consideration of alternative dose–toxicity relationships and the
inclusion of an additional parameter indicating the level of risk attached to a
patient, for example, due to the presence or absence of a genotype or gene sig-
nature.

Observations such as these have prompted formulation of a modified, practical
form of CRM (mCRM). This method defines the starting dose in the traditional
fashion, based on pre-clinical or clinical information, and enrolls three patients at
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the starting dose. An initial estimate of sample size is made, as this information is
needed for practical planning of the trial. The MTD, its posterior distribution,
and a dose–toxicity curve are estimated at each step. Beyond this point, mCRM
differs from the initial definition of CRM chiefly in the flexibility with which it
accommodates disease, treatment, response, and toxicity characteristics of indi-
vidual trials. A summary of the decision parameters can be found in Eisenhauer
et al. (2000).

A good general discussion of the theoretical basis for optimal Bayesian design
can be found in Haines et al. (2003). Although formulated as a Bayesian method,
continuous reassessment can be carried out using maximum likelihood estimation
as well (O’Quigley, 2002). Defining patient outcomes (primarily toxicity) as gen-
eralized to time-to-event endpoints (TITE–CRM, Braun, 2006) offers an alter-
native means of including information from patients who have not yet completed
treatment. This extension also allows estimation of the incidence of late-onset
toxicity. Dose–toxicity models can be stratified in order to take into account
heterogeneity in MTDs in the designated patient population. Given significantly
different responses to treatment, estimates of both average and patient-specific
MTDs are often desirable (Legedza and Ibrahim, 2001; Whitehead, 2002). The
critique that CRM may lead to exceeding the true MTD has led to a decision
theoretic method to estimate the highest dose not exceeding a pre-specified tox-
icity risk, rather than the dose ‘‘closest to’’ that risk (Leung and Wang, 2002).
TITE–CRM has also been modified to allow inclusion of late-onset toxicities, a
useful feature when the agents involve are known to have lingering effects
(Cheung and Chappell, 2000).

Software for CRM trials and other practical considerations are presented by
Zohar et al. (2003) and Piantadosi et al. (1998).

2.5. Dose escalation with overdose control

A more formal approach to overdose control in CRM studies has been proposed
by Babb et al. (1998), treating the probability of exceeding the MTD as a para-
meter to be estimated. The probability of overdose (dose4MTD) is limited to a
pre-specified amount, the feasibility bound a, while minimizing the amount by
which each patient is underdosed ( ¼MTD–dose received). The first patient rece-
ives a starting dose, the minimum known to be safe in humans. All successive
patients are assigned doses based on the posterior cumulative distribution func-
tion (CDF) of the MTD, pi(g), or the probability that the MTD is exceeded by
the dose di assigned to the ith patient, given prior information on doses received,
toxicity administered, and any other clinically relevant covariates. That is, for all
patients i, i ¼ 2,y,N, the dose chosen has pi(di) ¼ a, or probability a of ex-
ceeding the MTD. The dose, then, satisfies di ¼ p�1i�1ðaÞ: If dose levels are dis-
continuous, as if often the case, subsequent dose levels will differ from those
derived from the posterior CDF of the MTD. If the pre-specified levels are
Dj ¼ {D1,y,DJ}, then the next dose is chosen to be the maximum of the Dj

which meets two conditions: the difference between the actual and the calculated
dose, dj�Dj, does not exceed a pre-specified tolerance, and the difference between
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the probability of overdose at the calculated dj and the maximum probability of
overdose, pj(dj)�a, does not exceed a second, pre-specified tolerance. This method
converges efficiently toward MTD from below, while controlling the probability
of a DL. It also provides a confidence interval for the MTD (Eisenhauer et al.,
2000).

An extension of the EWOC method by Tighiouart et al. (2005) has shown that
efficient estimation of the MTD using the EWOC method can improve the safety
profile of the trial as a whole by assuming a prior negative correlation structure
for the two primary parameters of the dose–toxicity model, the probability of
DLT at the initial dose and the MTD. The EWOC framework shares the
strengths of CRM strategies, including the use of any available prior information
on clinically significant covariates and the ability to include treatment data from
patients who have not yet completed therapy (early-onset toxicity) or from those
who have been followed after completion of therapy (late-onset toxicity). Add-
itional information and study planning tools are available at this writing at http://
www.sph.emory.edu/BRI-WCI/ewoc.html.

2.6. More complex designs

2.6.1. Bivariate dose–toxicity designs

The potential for poor decision making involved in using purely algorithm-driven
or purely CRM approaches has been a subject of comment for some years
(Storer, 1989, 2001; Korn et al., 1994; Gatsonis and Greenhouse, 1992). There are
clear advantages to combining the robustness of algorithm-driven designs, which
protect patients from dosing extremes, and model-driven approaches, which esti-
mate the MTD more precisely and are more efficient in making use of available
information. In addition to the combination of rule-based and CRM methods
proposed by Storer (2001), Potter (2002) suggests a three-patient cohort design
with a rule-based first stage, in which doses are escalated by 50% up to the first
DLT. After this point a bivariate logistic dose–toxicity model is used to estimate
the MTD, and subsequent patients are assigned a dose as close as possible to the
estimated MTD. Initial settings of proportions at which 10% and 90% of patients
would experience DLT can be customized to the patient population and disease
setting in question. Alternative stopping rules are also described.

Bayesian methods offer several alternative designs incorporating a positive
(efficacy) and a negative outcome (toxicity). Whitehead et al. (2006) propose a
bivariate cohort design with two primary outcomes observed for each patient,
a desirable outcome (DO) and a dose-limiting event (DLE). The goal is to define a
‘‘therapeutic window’’ of doses that optimizes both outcomes for each patient.
Safety is given more weight than efficacy, so presence of toxicity is considered a
single outcome, whether or not benefit is present. The other possible outcomes are
benefit without toxicity and lack of benefit without toxicity. A prior joint dis-
tribution of benefit and toxicity is required. The outcomes are modeled using two
logistic regression models with binary outcomes. A means of maximizing a gain
function is proposed to identify the therapeutic window.
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A similar model described by Loke et al. (2006) also treats toxicity and efficacy
as binary endpoints. Using a Dirichlet prior, the authors define a utility for each
possible decision that can be made at each dose level. The expected utility is
maximized under the observed bivariate posterior distribution to identify the
optimum dose.

Ivanova (2003) proposes an optimal Bayesian solution to choice between three
outcomes: toxicity (with or without response, response without toxicity, and a
neutral outcome (no response and no toxicity)). This design maximizes the prob-
ability of the response–no toxicity outcome for all doses with toxicity below the
maximum tolerable level.

Zhang et al. (2006) propose a flexible continuation-ratio model with optimal
dose selection criteria (TriCRM). Both toxicity and efficacy data are used, and
information from all patients is used to determine successive dose levels. This
method can incorporate several forms of monotonic dose–toxicity relationships,
as well as an increasing–decreasing relationship with a single mode. The outcome
is a biologically optimal dose defined by both efficacy and toxicity, where efficacy
can be the effect on a molecular target. The inclusion of an efficacy endpoint
measurable in small numbers of patients makes this design less reliant on toxicity,
so it is suitable for biologic agents that may have low toxicity. Ishizuka and
Ohashi (2001) have also proposed a method of monitoring toxicity and efficacy
separately, which allow a natural expansion of a phase I trial into a phase II trial.

2.6.2. Lagged designs

Phase I designs generally require that outcomes be measured from each patient,
or from all members of a cohort, before the subsequent patient or cohort can be
treated. Considerable delays can result if the outcomes are not immediately ob-
servable. Several designs deal with this problem in a Bayesian framework that
estimates subsequent doses at specified stages of the trial (Thall et al., 1999;
Hüsing et al., 2001). Subsequent doses are estimated using all information avail-
able at the time, including information from patients who have not yet completed
treatment. These generally specify a rule for assessing the inclusion of a new
patient and result in a decision to continue or to wait for more information.

2.6.3. Stratified designs

Phase I trials have been criticized in the past for excessive simplicity, as they omit
from consideration many features of the patients, their disease state, and the
standard treatment. Patients enrolled in a phase I trial may differ from one
another in age, gender, or other personal characteristics. They may not be uni-
form in disease subtype, severity, or prior treatment. They may be receiving
concurrently a variety of standard treatments for the disease under consideration
or for a co-morbid condition. Stratification is one way to adjust for systematic
heterogeneity in the patient sample. Ivanova and Wang (2006) propose a bivariate
isotonic design for estimation of separate MTDs in an ordered pair of patient
subgroups with different probabilities of DLT. Using information on the prob-
ability of toxicity in each subgroup, a matrix of toxicity probabilities at each dose
level is estimated using data from all patients and estimating from a different
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starting probability in each subgroup. Escalation stops separately in each sub-
group when a pre-defined threshold is exceeded. Continuous reassessment pro-
vides a parametric approach to stratified studies using a two-parameter working
model. O’Quigley et al. (2002) suggest an initial stage in which escalation occurs
until one patient with DLT and one patient without DLT have been observed in
each subgroup. After this point, the two-parameter model is fit, using either
maximum likelihood or Bayesian methods, and the toxicity probability vector is
updated with each observation. Low doses can be skipped in the subgroup less
likely to experience toxicity. The occurrence of toxicity in one group can be used
to inform decisions about the other, offering an advantage over entirely separate,
parallel trials. The initial stage of the trial also can be used to explore the relative
probability of toxicity if the ordering of subgroups is not already known.

2.6.4. Multiple treatments and/or multiple patient subgroups

Oncology treatments often involve more than one agent used concurrently,
sequentially, or partially overlapping in time. The complementary, synergistic or
antagonistic action of multiple drugs is often in need of investigation. Estimates
of an MTD obtained from trials of monotherapy are unrepresentative at best and
may be ethically impossible to carry out. There is an obvious benefit to simul-
taneous estimation of MTDs where two drugs are to be used in concert. In this
situation, Ivanova and Wang (2004) have proposed a non-parametric method for
estimating the MTD with respect to two drugs administered simultaneously. The
authors assume that the dose ranges and levels of each drug are fixed in advance.
The method is non-parametric in the sense that the dose–toxicity relationship of
each drug is assumed to be non-decreasing at each fixed level of the other. Esti-
mation of the MTD is based on the set of all possible dose combinations.

Kramar et al. (1999) have developed a maximum likelihood-based approach to
CRM in order to monitor simultaneously two drugs with different toxicity profiles.

Still more complex situations may require assessment of multiple drugs or
treatments in more than one subgroup of patients. In a review of both Bayesian
and maximum likelihood approaches, He et al. (2006) propose a model-based
approach that estimates effects for more than one treatment in more than one
subgroup. Conaway et al. (2004) present a method of evaluating toxicity in mul-
tiple agents when the joint dose–toxicity relationship is poorly understood.
Rather than requiring a fully ordered dose–response at the outset, the method
accommodates partial orders, in which the relative probability of toxicity is in-
itially unknown within pairs of treatments.

2.6.5. Multiple outcomes

Response has been the most common endpoint used to represent benefit in phase
I trials, although many other aspects of biologic function may be equally as
important in addition to toxicity. To deal with multiple outcomes, Fan and Wang
(2006) propose a Bayesian decision-theoretic design for estimation of a single
MTD based on multiple criteria. The authors propose a computationally com-
promised method of MTD estimation that is feasible, given commonly available
computing resources, and that contains safeguards against overdosing by
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restricting the number of dose levels that can be escalated in a single step. An
initial distribution for the dose–toxicity curve is assumed, and the curve is refit
after each patient in a fashion similar to CRM. The degree of precision can be
specified in advance and can be increased by more extensive computing.

Modeling biomarker expression level with toxicity is particularly complex be-
cause of the correlation between discrete (binary or ordinal) and continuous
outcomes. Bekele and Shen (2005) present an adaptive Bayesian design for con-
tinuous monitoring of toxicity in phase I or phase II biomarker studies.

2.7. Phase I/II trials

If a substantial amount of information is available about the affect of a treatment,
perhaps from clinical studies in another disease setting, and documented toxicity
is low, there may be a need to progress rapidly from phase I dose-finding to
documentation of toxicity and efficacy in a larger phase II study. The continuous
reassessment framework offers the possibility of seamless progression from a
small phase I trial with small dose steps to a larger phase II trial. Zohar and
Chevret (2001) point out that CRM-based calculation of the MTD extends nat-
urally in a larger trial to estimation of the minimum effective dose. The authors
propose alternative decision rules based on posterior or predictive probabilities of
both DLT and a predetermined level of efficacy. Since response, or other measure
of efficacy, is monitored simultaneously, efficacy becomes the focus of the trial as
it expands. Ishizuka and Ohashi (2001) have proposed using the posterior density
function describing the probability of DLT, as this is readily interpreted by non-
statisticians. The authors also suggest starting at the lowest dose level when the
prior distribution of DLT is poorly defined, and terminating the trial when the
posterior densities at each dose level are well separated. Bekele and Shen’s (2005)
adaptive design for monitoring a continuous biomarker and a discrete measure of
toxicity also extends from a phase I to a phase II setting.

The single-drug focus of phase I trials is a handicap for disease settings in
which multiple agents is the norm. Huang et al. (2007) suggest identifying the
combination doses of possible interest and carrying out parallel phase I CRM
trials to measure the safety and preliminary efficacy of each combination. Com-
binations with high toxicity can then be dropped. An adaptive randomization
scheme is used to direct more patients to phase II trials of combinations with high
efficacy and fewer to the combination doses with lower efficacy, based on Bay-
esian posterior probabilities.

3. Phase II designs

Once the dose and schedule of an agent has been set as a result of a phase I trial,
the regimen is ready for a phase II trial. The primary goal of a classical phase II
trial is to screen new regimens based on their efficacy. Unlike phase I trials where
a problem of estimation is addressed, phase II trials inherently deal with a prob-
lem of hypothesis testing even though usually there is often no concurrent control

F. Gao et al.526



arm in the trial. Let p0 denote the maximum unacceptable probability of response
and p1 be the minimum acceptable probability of response (p0op1), then the
problem can be formulated as testing the null hypothesis H0 versus the alternative
Ha

H0 : p � p0 versus Ha : p 
 p1,

where p is the response rate.
The design of a typical phase II trial is based on a one-sample binomial dis-

tribution with the probability of success being the probability of achieving an
objective response. In planning a trial, investigators choose a sample size (N) and
a boundary value of response (r) to guarantee that the type I error a (i.e., the
probability that we accept the new therapy when its true response rate is p0) and
type II error b (i.e., the probability that we reject the new therapy when its true
response rate is p1) are controlled under some pre-specified levels,

Bðr; p0;NÞ ¼
Xr

x¼0

bðx; p0;NÞ 
 1� a;

Bðr; p1;NÞ ¼
Xr

x¼0

bðx; p1;NÞ � b,

bðx; p;NÞ ¼
N

x

� �
pxð1� pÞN�x,

bðx; p;NÞ ¼
N

x

� �
pxð1� pÞN�x,

where b(x; p, N) and B(x; p, N) denote the probability mass function and cumu-
lative function for binomial distribution with probability of success p and number
of trials N. That is, we want to reject the experimental treatment with a very high
probability (Z1�a) given a true H0 and to reject the experimental treatment with
a very low probability (rb) if H1 is true. For a trial with (p0, p1, a, b) ¼ (0.05,
0.20, 0.05, 0.10), for example, a minimum of 38 patients are required with a
boundary value of 4 for rejecting H0. There is approximately 95% chance
(a ¼ 0.05) that four or less responders will be observed given an ineffective reg-
imen (p0 ¼ 5%) and there is 90% chance (b ¼ 0.10) to observe five or more
responses if the true response is 20% or above.

3.1. Phase II trials with multiple stages

Since phase I trials generally treat only three to six patients per dose level, such
trials provide limited information regarding anti-tumor activity. It is important,
both for ethical reasons and for the purpose of allocating limited resources, to
minimize the number of patients exposed to drugs with poor activity. A variety of
designs have been proposed to allow early stopping due to inactivity of the
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regimen, and the most popular one is Simon’s two-stage design (Simon, 1989). A
two-stage design can be described as follows. At first stage, N1 patients will be
treated. If the number of responders is not larger than a boundary r1, the trial is
terminated due to lack of treatment efficacy. Otherwise, additional N2 patients
will be accrued. If the accumulated number of responders is not larger than the
boundary r, the trial will be claimed as lack of sufficient evidence to warrant
further study.

Let R(p) denote the probability of rejecting the treatment (or equivalently,
accepting the null hypothesis H0: prp0),

RðpÞ ¼ Bðr1; p;N1Þ þ
Xminðr;N1Þ

x¼r1þ1

bðx; p;N1ÞBðr� x; p;N2Þ

For a given set of parameters (p0, p1, a, b), the sample sizes (N1, N ¼ N1+N2) and
boundaries (r1, r) can be searched by enumeration using exact binomial prob-
abilities with constraints such that R(p0)Z1�a and R(p1)rb. It is anticipated that
many designs (N1, N, r1, r) can satisfy such a and b requirements. Simon’s two-
stage designs impose one more constraint that either minimizes the expected
sample size (EN) when p ¼ p0 (the so-called optimal design) or minimizes the
maximum number of patients N (the so-called minimax design). Sometimes, a
choice between optimal and minimax designs can be difficult, especially when the
optimal design has a much smaller EN but much large N than the minimax
design. The size of the first stage is also a concern. Optimal designs often require
fewer patients in the first stage, and so are suitable when the probability of severe
toxicity is high or unknown. To this end, Jung et al. (2001) propose a heuristic
graphical method to search for a good design that is a compromise between the
optimal and minimax designs. Jung et al. (2004) also develop a family of two-
stage designs that are admissible according to a Bayesian decision-theoretic cri-
terion based on an ethically justifiable loss function. These admissible designs
include Simon’s optimal and minimax designs as special cases and thus facilitate
investigators choosing trials with more appealing operational features.

Although two-stage designs are preferable to single-stage ones, they still suffer
from the fact that in any cases a trial cannot be stopped until all patients in stage 1
have finished the experimental therapy, even if the true response rate is a value
substantively inferior to the standard therapy (poop0). In order to protect pati-
ents from very poor regimens, some investigators place greater emphasis on
minimizing the initial cohort of patients. Chen (1997) extends Simon’s two-stage
designs to three stages, with the overall probability of rejecting the treatment being

RðpÞ ¼ Bðr1; p;N1Þ þ
Xminðr2;N1Þ

x¼r1þ1

bðx; p;N1ÞBðr2 � x; p;N2Þ

þ
Xminðr3;N1Þ

x1¼r1þ1

�
Xminðr3�x1;N2Þ

x¼r1þ1

bðx1; p;N1Þbðx2; p;N2Þ

� Bðr3 � x1 � x2; p;N3Þ.
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Similar to Simon’s designs, the parameters for three-stage design (N1, N2, N, r1,
r2, r3) are searched such that the expected sample size (EN) is minimized when
p ¼ p0 (three-stage optimal design), or the maximum sample size N ¼ N1+N2+N3

is minimized (three-stage minimax design). Comparing to two-stage designs, in
average, the three-stage trials can reduce the expected sample size by 10% when
the treatment is ineffective. For the same concern, Hanfelt et al. (1999) modify
Simon’s optimal design to minimize the median sample size rather than the ex-
pected sample size. As comparing with the optimal two-stage design, the modified
design tends to have a smaller initial cohort of patients (N1) and has a slightly
larger expected sample size. Both of the above designs suffer from a potential
drawback that there is a greater risk to reject a promising experimental therapy,
especially when there is a substantial heterogeneity in the patient population. One
possible solution to this issue is to limit the eligibility to a relative homogeneous
population for patients entering the first stage.

Theoretically, the more stages in a multi-stage design, the better the
performance in terms of sample-size gain under null hypothesis. However, the
largest gain is actually seen when moving from one-stage to two-stage designs. In
addition, designs with more than two stages can create an onerous administrative
burden, especially for trials conducted in co-operative groups or multi-institute
settings. Thus, Simon’s two-stage designs remain the most popular designs in
practice.

3.2. Phase II trials with multiple endpoints

3.2.1. Designs incorporating both safety and efficacy

Although the primary goal of a phase II trial is to assess the clinical efficacy,
toxicity could affect the course of treatment and sometimes evaluation of toxicity
may be equal in importance to the assessment of efficacy. In most clinical proto-
cols for phase II trials, the study designs are based on a single ‘‘primary’’ outcome
associated with treatment efficacy while ignoring the safety issues. Rather, the
adverse events of treatment are ‘‘monitored’’ using early stopping rules derived
from sequential probability ratio test (SPRT) or Bayesian methods. That is, two
tests are carried out separately – one for side effects and one for treatment effi-
cacy. This double testing will affect the operating characteristics of both tests, but
the problem is ignored in a typical design. In addition, such a strategy is incapable
of identifying experimental regimens that have substantially low adverse events
but have nearly the same efficacy comparing with the standard therapy.

With these considerations in mind, a variety of phase II designs based
on multiple outcomes have been developed. Bryant and Day (1995) propose a
two-stage design to evaluate both clinical response and toxicity, where the trial is
terminated after the first stage if either the observed toxicity rate is too high or the
response rate is too low. In analogy to Simon’s two-stage design, let pr0

and pr1

denote the maximum unacceptable and the minimum acceptable probabilities of
response (pr0

opr1
), let pt0

and pt1
be the maximum unacceptable and the minimum

acceptable probabilities of non-toxicity (pt0
opt1

), let pr denote probability of re-
sponse, and let pt be the probability of not experiencing toxicity. The proposed
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design can be formulated as testing the hypotheses

H0 : pr � pr0
or pt � pt0

versus Ha : pr 
 pr1
and pt 
 pt1

.

The trial will be terminated after stage 1 if either less than rr1 responders or less
than rt1 non-toxicity patients are observed. At the completion of study, the ex-
perimental regimen will be concluded effective if the number of responders and
the number of non-toxicity exceed rr and rt simultaneously. These design para-
meters (rr1, rt1, N1, rr, rt, N) are chosen such that the following error bounds are
satisfied: ar is an upper bound on the probability of erroneously accepting a
regimen whose toxicity rate is acceptable (pt 
 pt1

) but with inadequate response
rate (pr � pr0

); at is an upper bound on the probability of erroneously accepting a
regimen whose response rate is acceptable (pr 
 pr1

) but with excess toxicity
(pt � pt0

); and b is a bound on the probability of failing to recommend a regimen
that is acceptable with respect to both response and toxicity (pr 
 pr1

and
pt 
 pt1

). These design parameters also depend on the values of potential asso-
ciations between response and toxicity. To search for an optimal design, Bryant
and Day apply the above error constraints uniformly over all possible correla-
tions between toxicity and response. They have shown that the design is very
insensitive to the misspecification of correlations as long as a small-to-moderate b
is specified (br0.15, say).

Similar designs are proposed by other investigators for joint modeling of safety
and efficacy. Conaway and Petroni (1995) propose two- and three-stage designs
based on response and toxicity, taking the same strategy as Bryant and Day while
allowing the associations between response and toxicity to be explicitly specified.
Conaway and Petroni (1996) further propose a design allowing trade-offs between
toxicity and response. That is, the design allows more patients with toxicity when
the response rate is high, and vice versa. The trade-offs between toxicity and
response are quantified by a so-called ‘‘I-divergence’’ statistics, which in some
sense measures the distance from p to H0. Thall and Cheng (2001) extend Simon’s
two-stage design to randomized trials based on a two-dimensional test. The pa-
rameters (i.e., efficacy and safety) are defined as the difference between exper-
imental and control regimens so that all the effects are in the same scale. If the
endpoints are binary variables such as response rate, for example, an arcsine
difference transformation D ¼ ðsin�1

ffiffiffiffiffi
p1

p
� sin�1

ffiffiffiffiffi
p0
p
Þ will make the variance of D

independent of p1 or p0, approximately with varðDÞ � 1=4n: One attractive feature
of the proposed design is its adaptability to many different situations. The design
accommodates both continuous and discrete outcomes, applies to both randomi-
zed and single-arm trials, and also allows one to test for an improvement in one
dimension while maintaining the null level in the other. In contrast, the designs by
Bryant and Day (1995) and Conaway and Petroni (1995, 1996) require that the
alternative hypothesis specifies improvements in both toxicity and response.

3.2.2. Designs distinguishing complete response from partial response

A most commonly used measure of efficacy in phase II oncology trials is response
rate. It is standard practice to further classify responders as either complete
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response (CR) or partial response (PR). CR is consistently characterized as the
complete disappearance of measurable lesions for a fixed minimal time period
without appearance of new lesions. Usually PR is defined as 50% reduction of
the target lesions though the definition can vary from one protocol to another
(Geller, 1984). For many trials, an increase in the number of CR will be more
impressive because CR is rare in many tumors, and a presence of CR usually
indicates a substantial improvement in patient survival. Thus, a regimen that
shows a significant improvement in CR may be also of interest to clinicians even if
the improvement in total response (TR ¼ CR+PR) does not achieve its goal. The
conventional phase II designs such as Simon’s, however, are based on a binary
indicator of TR without differentiating CR versus PR.

In recognizing the relative importance of CR versus PR, a variety of alternative
designs have been proposed in recent years. Lu et al. (2005) propose to add CR as
an additional efficacy endpoint to a conventional study. The proposed design can
be expressed as testing the hypotheses

H0 : ptr � ptr0
and pcr � pcr0

versus Ha : ptr 
 ptr1
or pcr 
 pcr1

,

where ptr0
and ptr1

denote the maximum unacceptable and the minimum accept-
able probabilities of TR as usual (ptr0

optr1
), pcr0

and pcr1
are the maximum un-

acceptable and the minimum acceptable probabilities of CR (pcr0
opcr1

), and ptr
and pcr are the probabilities of TR and CR, respectively. That is, the objective of
the trial is to seek a regimen that shows significant improvements in either TR or
CR (or both). To design a trial with proper sample sizes and cutoff values, the
following three error bounds are specified: a type I error a for erroneously ac-
cepting a regimen ineffective in both TR and CR, a marginal type II error btr for
erroneously rejecting a regimen effective in TR, and a marginal type II error bcr
for erroneously rejecting a regimen effective in CR. Depending on the relative
importance of TR and CR, btr and bcr do not have to be the same. Owing to the
hierarchical structure of TR and CR (TR ¼ CR+PR), it has been shown that the
marginal power functions of TR and PR are the lower bounds of the joint power,

Prðreject H0jptr1
and pcr1

Þ 
 maxð1� btr; 1� bcrÞ:

The optimal design is chosen as the one that produces a minimum sample size
among those trials satisfying above error bounds. Because of the multivariate
nature of the problem, it is possible that more than one solution can be obtained.
If this happens, one more constraint will be imposed and the optimal design is
sought until the joint power of TR and CR is maximized.

Similar designs are also proposed by Lin and Chen (2000) to differentiate the
importance of CR versus PR. Their method combines CR and PR information
using a weighted linear score based on the relative importance, and the optimum
design is constructed with a likelihood-ratio test. Panageas et al. (2002) propose a
similar design where the optimization is performed by a direct search based on
enumerating exact trinomial probabilities, but sometimes the computation for
such a direct search can be prohibitively intensive. Both of the above designs use
the information on CR and PR separately. In contrast, Lu et al. (2005) treat CR
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as additional information and thus makes the design more consistent with con-
ventional practice. The design by Lu et al. also permits rejection regions to be
searched for under marginal power functions, thus allowing investigators to
specify separate powers for TR and CR according to their clinical importance.

Note that the trials with multiple efficacy endpoints address a research question
different from designs simultaneously considering efficacy and toxicity. The main
objective of trials with multiple efficacy endpoints is to seek a new regimen that
shows improvement in either of the endpoints, and thus the specification of its
alternative hypothesis will be different from design such as Bryant and Day (1995)
that aims to meet both safety and efficacy criteria. The null and alternative regions
for both types of designs are displayed in Fig. 1. Comparing to conventional
Simon’s designs, trials with multiple endpoints share a common complexity that
additional parameters must be prospectively specified. The communication of the
design characteristics to clinicians who actually conduct the trial can be a chal-
lenge. A graphical presentation, analogous to Jung et al. (2001), of the operational
characteristics of candidate trials may provide a useful tool for such a purpose.

3.3. Covariate-adjusted phase II trials

To increase the chance of detecting treatment activity and to minimize the pos-
sibility of rejecting a potentially promising regimen, phase II trials usually are

Fig. 1. Null and alternative regions for designs with multiple endpoints: (A) Designs incorporate

toxicity and response simultaneously (Bryant and Day, 1995). (B) Designs distinguish the relative

importance of complete response (CR) versus partial response (PR) (Lu et al., 2005).

F. Gao et al.532



conducted in a selected well-defined patient group. However, patient heteroge-
neity is inevitable in many clinical trials and sometimes this can raise challenges
for study planning. In the treatment of ER/PR positive metastatic breast cancer
patients, for example, it has been shown that letrozole alone can result in a clinical
benefit (CR+PR) of 50% as a first-line therapy, but the response rate is only 25%
in those refractory patients. Conventional phase II trials take two rather extreme
strategies to handle the problem of patient heterogeneity. One approach is simply
ignoring the existence of heterogeneity, and the drawback of this approach is
apparent. An ideal approach is to conduct a series of independent phase II trials
within each homogeneous patient group, but sometimes this becomes infeasible
due to limited number of patients or prohibitively high cost. The second approach
also turns out to be inefficient and wasteful of resources because it fails to ‘‘bor-
row strength’’ for the information carried among these separate trials. That is, if
an improvement is seen in the refractory patients, this can provide evidence that
an improvement is also more likely in newly diagnosed untreated patients, and
vice versa. The so-called covariate-adjusted designs provide a more desirable
approach for this situation.

London and Chang (2005) propose an algorithm to design stratified phase II
trials. Their designs are based on a global one-sample test that is analogous to the
stratified log-rank test for time-to-event data

T ¼

Pk
i¼1

ri �
Pk
i¼1

Nipi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
Pk
i¼1

Pipi0ð1� pi0Þ

s ,

where (ri, pi0, Ni) are the number of responders, response rate, and number of
patients in stratum i with N ¼ Sk

i Ni; and the proportion of patients in stratum i is
denoted as Pi which is assumed to be known. The optimal sample size (N) and
critical value (t0) will be searched via simulations such that the constraints on
significance level and power are satisfied:

PrðT4t0jN; pi ¼ pi0; i ¼ 1; :::; kÞ � a

and

PrðT4t0jN; pi ¼ pi0 þ Di; i ¼ 1; :::; kÞ 
 1� b,

where Di is the treatment effect which can be different across strata. In the case
where the true proportions of patients for each stratum is unknown, the design
will be selected with following test instead:

T ¼

Pk
i¼1

ri �
Pk
i¼1

Nipi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

Nipi0ð1� pi0Þ

s .
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Taking the demonstrating example on relapsed neuroblastoma patients by
London and Chang (2005) with three age strata (o1 year, 1�4 years, Z5 years)
which account for 10, 60, and 30% of patients, respectively. It is well known that
younger patients have a better outcome, with the anticipated response rates under
null hypothesis being 35, 20, and 15%, respectively. If an individual single-stage
trial is planned within each stratum, a total number of 91 patients (37, 29, and 25
for the three strata, respectively) will be required to detect a 20% improvement
with 80% power and at 0.05 type I error. In contrast, the stratified design requires
only 30 patients when the true proportion of the patients in each stratum is
known or 33 patients when the proportions need to be estimated.

A’Hern (2004) proposes a method based on an arcsine transformation of re-
sponse rates. Instead of testing the usual hypotheses H0: prp0 versus Ha: pZp1,
the proposed method re-parameterizes the new hypotheses as H0: B ¼ 0 versus
Ha: BZb, where B is an arcsine difference transformation with b ¼ ðsin�1

ffiffiffiffiffi
p1
p
�

sin�1
ffiffiffiffiffi
p0
p
Þ: To account for patient heterogeneity, the method allows response rates

to vary across patients (or more accurately, strata of patients), i.e., bi ¼

ðsin�1
ffiffiffiffiffiffi
p1i

p
� sin�1

ffiffiffiffiffiffi
p0i

p
Þ: A unique feature of an arcsine difference transformation

is that its variance is approximately independent of actual response rates, with
varðBÞ � 1=4n; implying that all patients sharing a common b can enter into the
same trial. For the same situation, Thall et al. (2003) use a hierarchical Bayesian
approach to account for the heterogeneity of disease with multiple subtypes.

3.4. Randomized phase II trials

When making inferences from a single-arm phase II trial, one compares the new
regimen based on a current series of patients to a historical control based on a
group of patients with potentially different characteristics. One inherent problem
in such a single-arm trial is the existence of ‘‘treatment-trial’’ confounding. That
is, the observed improvement in efficacy actually is a mixture of two effects – the
differences because of true treatment effect and the differences simply due to
presence of different prognostic factors in the two trials. Examples of such prog-
nostic factors can be supportive cares, skills of physicians or nurses, different
institutions, subtypes of patients enrolled and other patient characteristics, and
some of these factors can be even unobservable (Estey and Thall, 2003).

The rationale for randomized phase II trials has long been recognized (Simon
et al., 1985), and an increasing number of randomized phase II trials (the so-
called ‘‘selection design’’) have been conducted in recent years. However, the goal
of a randomized phase II trial is quite different from that in a phase III study. The
purpose of a phase II trial is to select a promising treatment for further eval-
uation. In this framework, the study is not designed to ensure that the best
treatment is definitely selected (such a decision would be more appropriate for a
phase III trial). Rather, the design is to ensure that an inferior treatment would
have a low probability of being selected. In the other words, a randomized phase
II trial would allow a rather large false-positive (type I) error a. A typical selection
design intends to select the best treatment among competing candidates regardless
of the magnitude of difference in response rates. Such a design will require fewer
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patients than conventional single-arm phase II designs. However, some potential
problems related to the selection designs include that (a) a selection has to be
made even if all the arms are poorly performed, (b) increasing type I error may
raise an ethical consideration if there is no standard treatment available, and (c)
the inclusion of a standard treatment into trial can endanger the selection process
because investigators may be tempted to interpret the results as coming from
definitive phase III trials. Liu (2001) provides a thorough discussion on issues
regarding selection designs.

As an extension, Sargent and Goldberg (2001) propose a flexible design for
multiple armed screening trials. The proposed design first prospectively specifies a
cutoff value for the differences among response rates. Then, the design allows the
selection to depend on factors other than response when the observed difference
in response rates is deemed ‘‘small’’. Inoue et al. (2002) propose another inno-
vative randomized phase II designs, intending to achieve a seamlessly transition
from phase II to phase III trials. Instead of assuming that response rate Y is a
surrogate of survival-based outcome T, the proposed design considers both Y and
T as the efficacy endpoints. It specifies a parametric model for Pr(T|Y) and Pr(Y),
and then also assumes that Y may affect T through the mixture model

PrðTÞ ¼
X

y

PrðT jY ¼ yÞPrðY ¼ yÞ:

The proposed design will be conducted in a multi-stage manner and patients
will be randomized throughout the trial. At each planned interim analysis, the
decision will be made to stop the trial due to futility, continue the trial as a phase
II study, or expand the trial to a phase III study via inclusion of more partic-
ipation centers when the treatment deems promising. As comparing to a con-
ventional phase III design, this design can fully utilize the information at phase II
portion when a phase III study is completed, thus substantially reducing sample
size and trial duration. A similar randomized design combining phase II and III
has also been proposed recently via a two-stage adaptive design, i.e., allowing the
sample size and dose being adjusted at the second stage given the information
accumulated in stage 1 (Liu and Pledger, 2005).

3.5. Miscellaneous innovations on phase II designs

3.5.1. Adaptive phase II designs

Recently, there has been an increasing interest in applying the concept of adaptive
designs, also known as ‘‘sample size re-estimation’’ (SSR) in blinded trials or
‘‘internal pilot’’ for unblinded studies, to two-stage phase II trials (Lin and Shih,
2004; Banerjee and Tsiatis, 2006; Shih, 2006). In a broader sense, all these multi-
stage trials described in Section 3.1 are also adaptive in nature because the future
course of a trial is dependent on the interim outcome. However, the interim
analyses for usual multi-stage sequential designs and adaptive designs are per-
formed to serve different, though sometimes overlapped, purposes. For the multi-
stage sequential designs, interim data are mainly examined for ethical reasons to
seek an early stopping due to either excess toxicity or overwhelm evidence of
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efficacy. In adaptive designs, on the other hand, the purpose of an interim anal-
ysis is to update the knowledge based on accumulated data and to re-estimate the
sample size if necessary.

Lin and Shih (2004) propose an adaptive two-stage design for single-arm phase
IIA cancer clinical trials. Instead of testing the hypotheses H0: prp0 versus Ha:
pZp1 with error bounds a and b as in Simon’s designs, the proposed design aims
to test either H0: prp0 versus Ha1: pZp1 with error bounds a and b1, or H0: prp0
versus Ha2: pZp2 with error bounds a and b2 (preferably with b1Zb2), depending
on the observed response rate at the first stage. Note that, in classical adaptive
designs, the treatment effect is ‘‘re-estimated’’ based on interim data and then, if
needed, the sample size will be re-adjusted based on updated estimates. In the
proposed design, however, both p1 and p2 (as well as b1 and b2) are prospectively
specified, and the interim data are used to guide the choice of a proper alternative
hypothesis.

Banerjee and Tsiatis (2006) derive an optimum adaptive two-stage design tak-
ing Bayesian decision-theoretic approach to minimize the expected sample size
under null hypothesis. They show that, as comparing to Simon’s designs, only a
small-to-moderate gain can be achieved (3–5% reduction of expected sample size
given a true H0). An adaptive design allows investigators the flexibility to re-
adjust the subsequent sample size if needed. However, a drawback is that the
sample size for second stage is unknown at the initiation of a trial, and this makes
it difficult to allocate resources, especially for trials conducted at co-operative
group setting. In addition, due to the nature of small sample size in phase II
designs, the information accumulated in the first stage is limited and usually
results in imprecise estimates. The usefulness of adaptive design in phase II trial
setting remains unclear.

3.5.2. Three-outcome phase II trials

Phase II trails are typically designed under the hypothesis-testing framework that
will have two possible outcomes: either rejecting the null hypothesis H0 or re-
jecting the alternative hypothesis Ha. In contrast, a three-outcome design (Storer,
1992; Sargent et al., 2001) allows three possible outcomes: rejecting H0, rejecting
Ha, or rejecting neither.

It is not uncommon in practice that a larger than affordable sample size is
obtained based on given H0 versus Ha with standard error bounds (a ¼ 0.05 and
b ¼ 0.10, say). To counteract the problem of large sample size, certain adjustment
in either error bounds or target effects must be taken. However, the availability of
three-outcome designs provides an alternative strategy that allows investigators
quantifying the size of uncertainty with the achievable sample size. For a single-
stage design, for example, a three-outcome design can result in three possible
outcomes:

(a) accepting the new treatment if r or more responses are observed,
(b) rejecting the new treatment if s or less responses are observed, and
(c) inconclusive otherwise.
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Such a design will require fewer patients than conventional designs. Taking as
an example of a one-stage design with (p0, p1, a, b) ¼ (0.05, 0.20, 0.05, 0.10), a
standard single-stage design will end up with (r, N) ¼ (4, 38), while a three-
outcome design will be (s, r, N) ¼ (2, 4, 27). The reason for the gain in sample size
is that, as depicted in Fig. 2, two more error bounds besides the usual a and b are
also defined in a three-outcome design. One (denoted as l) reflects the uncertainty
under H0 and the other (denoted as d) represents the uncertainty under Ha. Thus,
the probability of rejecting H0 under Ha (the typical statistical power) will be
1�b�d rather than 1�b, and probability of rejecting H0 given a true H0 will be
1�a�l rather than 1�a.

3.5.3. Flexible phase II designs

A typical phase II trial is designed in a fixed sample size. In real applications,
however, it is difficult for a trial to reach the planned sample exactly, especially
for trials conducted in co-operative groups or multi-center settings. In a multi-
center study, for example, investigators would not turn away patients who have
already approached for participation just because the number of patients needed
has been met. It is reasonable to have a grace period before the official suspension
of accrual and thus allow the actual number at each stage to deviate slightly from
what is planned. Green and Dahlberg (1992) propose a flexible design that adapts
the stopping rules when the attained sample size is not the same as planned. For a
two-stage trial, for example, suppose n is the planned size for stage 1 and N is the
total size. In consideration to the factor that over accrual is more common, the
flexible design allows the actual sample sizes a range of (n�2, n+5) for stage 1
and (N�2, N+5) for total sample sizes, respectively. This will lead to a total
number of 64 possible designs, and the optimal rejection regions will be searched
among all these possible combination, under the assumption that the occurrence
of any of these trials is equal to 1/64. Chen and Ng (1998) take a similar approach
for flexible designs, primarily focusing on the extension of Simon’s optimal de-
sign. They also explore the robustness of the resultant flexible designs to the
uniform assumption regarding the probability of attainable trials.

Fig. 2. Probabilities for a three-outcome design based on a normal approximation, where (a) a and b
are the usual error bounds; (b) l and d are the probabilities of uncertainty under H0 and Ha, re-

spectively; (c) p ¼ 1�b�d is the probability of rejecting H0 under Ha (the typical statistical power);

and (d) Z ¼ 1�a�l is the probability of rejecting H0 given a true H0 (from Sargent et al., 2001).
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3.6. Transition from phase II to phase III trials

Phase II and III trials have different operation characteristics in many aspects.
For example, the objectives of a phase II trial are quite different from those
of a phase III study. Despite the fact that phase II trials are formulated as
formal hypothesis test and decision rules, they are not designed to give definitive
results regarding treatment efficacy. Rather, the goal of a phase II trial is to
select promising regimens within a short time period based on limited resources.
Phase II and III trials are also different in patient selection, study endpoints
as well as on how the studies are conducted. In many cases, patients enrolled
in phase II trials are markedly different from those of phase III trials. Phase II
trials are based on relatively homogeneous patients in order to minimize
the chance of rejecting promising treatment. However, results based on selected
patients may not provide the most appropriate information for designing a
phase III study. Since a phase III trial usually requires a large number of patients
and takes many years to complete, it is desirable to release some eligibility
restrictions and make the patients more resemble between phase II and III trials.
In addition, due to time and sample size constraints, most oncology phase II
trials use tumor response (i.e., tumor shrinkage) rather than clinical benefits
such as survival-based outcomes to evaluate the treatment efficacy. Tumor
shrinkage as a surrogate measurement to survival is sustainable for a cytotoxic
agent that works by killing tumor cells, but it is usually problematic for some
new agents such as anti-angiogensis factors or cancer vaccines that work by
modulating tumor environments and delaying tumor progression. Another
pitfall in conventional phase II trial is the presence of ‘‘treatment-trial’’
confounding that imposes an inherent difficulty for the interpretation of phase
II trials. To this consideration, Fazzari et al. (2000) propose a modified phase II
trial that has a phase III flavor, namely, with relatively heterogeneous patients
and including survival-based endpoints. Though such a design considerably
enriches the information required for planning a phase III study, it suffers from
some constraints. The design requires relative large sample size, and the design
is only applicable to advanced-stage disease where survival-based endpoints
can be obtained in a relatively short time period. Some other examples of
combining features of phase II and III trials include the randomized phase II
designs by Inoue et al. (2002) to achieve a seamlessly transition from phase II to
phase III trials, as well as the adaptive randomized phase II designs by Liu
and Pledger (2005) to allow sample size re-adjustment during the middle course of
a trial.

Some authors further classify phase II trials into sub-classes of IIA and IIB.
Usually, a phase IIA trial is performed on a single agent and the typical objective
is to determine whether the experimental regimen has any anti-disease activity as
measured by binary variable such as response rate. In contrast, phase IIB trials
are conducted on combination regimens to determine whether the anti-disease
activity is sufficiently high to warrant further evaluation by a phase III study, and
some survival-based endpoints usually need to be considered. In summary, it is a
rather complex decision to advance a treatment from phase II to phase III design.
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4. Summary

Many of the above methods are proposed exclusively for cytotoxic agents based
on an implicit assumption that both toxicity and efficacy are monotone functions
of the therapeutic dose. However, this may not be true for non-cytotoxic agents
or non-pharmacological therapies. In this section, we first compare the differences
in developmental strategies for cytotoxic and non-cytotoxic agents, taking ther-
apeutic cancer vaccines as an example. We also outline the unique features of
another type of early phase studies, translational clinical trials, which serve as a
bridge between the therapeutic ideas emerging from laboratory works and tra-
ditional clinical development. Finally, several useful websites and free available
software to implement some of the aforementioned methods are presented.

4.1. Early clinical development on therapeutic cancer vaccines

A cytotoxic agent works by killing existing cancer cells and/or by interfering with
the generation of new cancer cells. Since it is generally assumed that the activity of
a cytotoxic agent increases with dose, toxicity is a prerequisite for anti-tumor
activity in cytotoxic agents. In contrast, non-cytotoxic agents such as anti-
angiogensis factors, growth modulators, or cancer vaccines, usually selectively
work on molecular targets to modulate tumor environment and thus associated
with a minimum toxicity. Clinical benefit based on tumor shrinkage is no longer
an appropriate efficacy endpoint for early vaccine studies. Patient selection can
also be different. Those incurable or otherwise untreatable patients, the target
population for usual phase I trials, are less likely to benefit from a cancer vaccine
due to lack of intact immune systems. Therefore, quite different strategies are
taken for the early development of therapeutic cancer vaccines (Simon et al.,
2001; Casadei et al., 2005). To determine the MTD in studies with molecular
endpoints, Ivanova et al. (2003) have proposed a fully sequential Narayana rule
for calculating the probability of toxicity for each patient based on a pre-specified
number of previous patients. The rule is particularly slow to escalate in the early
stages of the trial when the probability of toxicity is based on few patients. Such
conservatism may lengthen the trial, but it is ethically preferable to rapid over-
shooting of the MTD. Babb and Rogatko (2001) have proposed using clinical
characteristics of the patient, such as the pretreatment level of an antibody, to
determine the initial dose. Each patient is monitored and the dose adjusted if
necessary; however, no dose–response relationship is assumed. In the absence of a
pretreatment marker, Hunsberger et al. (2005) propose a binary endpoint meas-
uring the effect of the vaccine on its molecular target. An initial low dose is
chosen in the expectation of a low response rate. The dose is increased with high
probability until the rate of effect on the molecular target rises, or until evidence
of toxicity appears. Since therapeutic cancer vaccines often use well-defined pu-
rified tumor-specific and tumor-associated antigens intending to achieve biologic
control of cancer, a phase I safety study usually is not necessary (Simon et al.,
2001). Consequently, the boundaries between phase I and II trials in such a
setting become blurred. Table 1 compares the differences in early development of
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cytotoxic agents and cancer vaccines in terms of study objectives, patient selec-
tion, primary endpoints as well as on how the studies are conducted.

4.2. Translational clinical trials

Translational clinical trials are small studies of therapies emerging from labo-
ratory researches. Though it is often said that ‘‘phase I’’ study is the first appli-
cation of a new regimen in human subjects, actually it is the translational clinical
trials that serve as a bridge between the therapeutic ideas emerging from lab-
oratories and traditional clinical development. The major difference between
traditional phase I and translational studies lies in their objectives (Piantadosi,
2005). A phase I trial is usually conducted to characterize the relationship be-
tween dose and safety, and its interest mainly focuses on potential clinical benefit.
In contrast, a translational clinical trial is used to guide the further experiments in
the laboratory or clinic, to inform subsequent treatment modifications, or to
validate the treatment effect on a biologic target. Owing to recent progression in

Table 1

Differences between studies in early development of cytotoxic agents and therapeutic cancer vaccines

Study Features Phase I Trials on

Cytotoxic Agents

Phase II Trials on

Cytotoxic Agents

Phase I Trials on

Cancer Vaccines

Phase II Trials on

Cancer Vaccines

Primary objective To determine an

optimal dose for

subsequent

study

To evaluate the

preliminary

anti-tumor

activity

To determine an

optimal dose for

subsequent

study

To evaluate the

immunologic

activity and/or

anti-tumor

activity

Patient selection End-stage

metastatic

cancer patients

who are

otherwise

untreatable

Well-defined

disease- and

stage-specific

patient

population, thus

providing

consistent

results for larger

trials

Normal volunteers

or less-advanced

cancer patients

who have intact

immune systems

Less-advanced

cancer patients

who have intact

immune systems

Primary endpoints Dose limiting

toxicity (DLT)

Response based on

tumor shrinkage

Immunologic

endpoints or

clinical benefit

endpoints such

as time-to-

tumor

progression

Immunologic

endpoints or

clinical benefit

endpoints such

as time-to-

tumor

progression

Typical design Single-arm dose-

escalation

design, with 3–6

patients per

dose cohort

Single-arm two-

stage design, at

a fixed dose

determined

during phase I

stage

Single-arm or

randomized

design, with 10–

15 patients per

dose level which

is determined by

pre-clinical

studies

Single-arm or

randomized

design, at fixed

dose level(s)

determined by

either phase I

studies or pre-

clinical studies
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molecular biology, translational studies have become an essential tool to the
screening of numerous target-based therapies including inhibitors for signal
transduction, cyclin-dependent kinase, gene therapy, therapeutic cancer vaccines,
etc. Saijo (2002) gives an excellent review of translational studies in cancer re-
search and proposes strategies to incorporate translational studies into the tra-
ditional early phase (I and II) clinical trials. In a recent work by Piantadosi
(2005), a formal definition for translational clinical trials is given following a
thorough reviewing on the purpose of study, the uniqueness of its outcomes, and
how the study is designed, conducted, and interpreted. An entropy-based app-
roach is also proposed to guide the sample size consideration for planning
translational clinical trials.

4.3. Some useful websites and software

The development and application of innovative designs on early clinical trials
have been, and will be, greatly facilitated by continued expansion in the number
of easily accessible computational tools. Next, we first present a free-download
program that serves general purpose of study design. Then several links to soft-
ware that implements some of innovative designs covered in this chapter are also
given.

� DSTPLAN (http://biostatistics.mdanderson.org/SoftwareDownload/) is a gen-
eral-purpose program and provides power, sample size, and related calculations
to plan a variety of studies.
� CRM (http://biostatistics.mdanderson.org/SoftwareDownload/) implements
the continual reassessment method (CRM) for dose-finding in phase I clinical
trials (O’Quigley et al., 1990). A simplified version of the CRM (CRM Sim-

ulator) is also available in the same website.
� EWOC (http://www.sph.emory.edu/BRI-WCI/ewoc.html) implements the
phase I design of escalation with over dose control (Babb et al., 1998).
� A web-based calculator is provided by following link to find Simon’s two-stage
Optimal/MiniMax phase II designs (Simon, 1989): http://biostat.hitchcock.org/
BSR/Analytics/OptimalMiniMax.asp.
� CRTR2Stage (http://gnome.ucsf.edu:8080/crtr2stage.html) designs two-stage
phase II trials using both total response (TR) and complete response (CR) as
the efficacy endpoints (Lu et al., 2005).
� A web-based calculator is provided by following link to implement the bivariate
two-stage phase II design proposed by Bryant and Day (1995): http://biostats.
upci.pitt.edu/biostats/ClinicalStudyDesign/Phase2BryantDay.html.

References

A’Hern, R.P. (2004). Widening eligibility to phase II trials: Constant arcsine difference phase II trials.

Controlled Clinical Trials 25, 251–264.

Ahn, C. (1998). An evaluation of phase I cancer clinical trial designs. Statistics in Medicine 17, 1537–

1549.

Early phase clinical trials: Phases I and II 541

http://biostatistics.mdanderson.org/SoftwareDownload/
http://biostatistics.mdanderson.org/SoftwareDownload/
http://www.sph.emory.edu/BRI-WCI/ewoc.html
http://biostat.hitchcock.org/BSR/Analytics/OptimalMiniMax.asp
http://biostat.hitchcock.org/BSR/Analytics/OptimalMiniMax.asp
http://gnome.ucsf.edu:8080/crtr2stage.html
http://biostats.upci.pitt.edu/biostats/ClinicalStudyDesign/Phase2BryantDay.html
http://biostats.upci.pitt.edu/biostats/ClinicalStudyDesign/Phase2BryantDay.html


Babb, J.S., Rogatko, A. (2001). Patient specific dosing in a cancer phase I clinical trial. Statistics in

Medicine 20, 2079–2090.

Babb, J.C., Rogatko, A., Zacks, S. (1998). Cancer phase I clinical trials: Efficient dose escalation with

overdose control. Statistics in Medicine 17, 1103–1120.

Banerjee, A., Tsiatis, A. (2006). Adaptive two-stage designs in phase II clinical trials. Statistics in

Medicine 25, 3382–3395.

Bekele, B.N., Shen, Y. (2005). A Bayesian approach to jointly modeling toxicity and biomarker

expression in a phase I/II dose-finding trial. Biometrics 61, 344–354.

Braun, T.M. (2006). Generalizing the TITE-CRM to adapt for early- and late-onset toxicities. Sta-

tistics in Medicine 25, 2071–2083.

Bryant, J., Day, R. (1995). Incorporating toxicity considerations into the design of two-stage phase II

clinical trials. Biometrics 51, 1372–1383.

Casadei, J., Streicher, H.Z., Greenblett, J.J. (2005). Clinical trial design and regulatory issues for

therapeutic cancer vaccines. In: Khleif, S. (Ed.), Tumor Immunology and Cancer Vaccines. Kluwer

Academic Publishers, Norwell, MA, pp. 351–368.

Chen, T.T. (1997). Optimal three-stage designs for phase II cancer clinical trials. Statistics in Medicine

16, 2701–2711.

Chen, T.T., Ng, T.H. (1998). Optimal flexible designs in phase II clinical trials. Statistics in Medicine

17, 2301–2312.

Cheung, Y.K., Chappell, R. (2000). Sequential designs for phase I clinical trials with late-onset tox-

icities. Biometrics 56, 1177–1182.

Chevret, S. (2006). Statistical Methods for Dose-Finding Experiments. Wiley, New York.

Christian, M.C., Korn, E.L. (1994). The limited precision of phase I trials. Journal of the National

Cancer Institute 86, 1662–1663.

Conaway, M.R., Dunbar, S., Peddada, S.D. (2004). Designs for single- or multiple-agent phase I

clinical trials. Biometrics 60, 661–669.

Conaway, M.R., Petroni, G.R. (1995). Bivariate sequential designs for phase II trials. Biometrics 51,

656–664.

Conaway, M.R., Petroni, G.R. (1996). Designs for phase II trials allowing for a trade-off between

response and toxicity. Biometrics 52, 1375–1386.

Durham, S.D., Flournoy, N., Rosenberger, W.F. (1997). A random walk rule for phase I clinical trials.

Biometrics 53, 745–760.

Edler, L. (2001). Overview of phase I trials. In: Crowley, J. (Ed.), Handbook of Statistics in Clinical

Oncology. Dekker, New York, pp. 1–34.

Eisenhauer, E.A., O’Dwyer, P.J., Christian, M., Humphrey, J.S. (2000). Phase I clinical trial design in

cancer drug development. Journal of Clinical Oncology 18, 684–692.

Estey, E.H., Thall, P.F. (2003). New design for phase 2 clinical trials. Blood, 442–448.

Fan, S.K., Wang, Y.-G. (2006). Decision-theoretic designs for dose-finding clinical trials with multiple

outcomes. Statistics in Medicine 25, 1699–1714.

Fazzari, M., Heller, G., Scher, H.I. (2000). The phase II/III transition: Toward the proof of efficacy in

cancer clinical trials. Controlled Clinical Trials 21, 360–368.

Gatsonis, C., Greenhouse, J.B. (1992). Bayesian methods for phase I clinical trials. Statistics in Med-

icine 11, 1377–1389.

Geller, N.L. (1984). Design of phase I and II clinical trials in cancer: A statistician’s view. Cancer

Investigation 2, 483–491.

Green, S.J., Dahlberg, S. (1992). Planned versus attained design in phase II clinical trials. Statistics in

Medicine 11, 853–862.

Haines, L.M., Perevozskaya, I., Rosenberger, W.F. (2003). Bayesian optimal designs for phase I.

Biometrics 59, 591–600.

Hanfelt, J.J., Slack, R.S., Gehan, E.A. (1999). A modification of Simon’s optimal design for phase II

trials when the criterion is median sample size. Controlled Clinical trials 20, 555–566.

He, W., Liu, J., Binkowitz, B., Quan, H. (2006). A model-based approach in the estimation

of the maximum tolerated dose in phase I cancer clinical trials. Statistics in Medicine 25, 2027–

2042.

F. Gao et al.542



Heyd, J.M., Carlin, B. (1999). Adaptive design improvements in the continual reassessment method for

phase I studies. Statistics in Medicine 18, 1307–1321.

Horstmann, E., McCabe, M.S., Grochow, L., Yamamoto, S., Rubinstein, L., Budd, T., Shoemaker,

D., Emanuel, E.J., Grady, C. (2005). Risks and benefits of phase 1 oncology trials, 1991 through

2002. New England Journal of Medicine 352, 895–904.

Huang, X., Biswas, S., Oki, Y., Issa, J.-P., Berry, D. (2007). A parallel phase I/II trial design for

combination therapies. Biometrics 63, published online 12/7/2006.

Hunsberger, S., Rubinstein, L.V., Dancey, J., Korm, E.L. (2005). Dose escalation designs based on a

molecularly targeted endpoint. Statistics in Medicine 24, 2171–2181.
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Abstract

This chapter provides an overview of current practices in phase III and IV

clinical trials, including a brief summary of the major topics and principles

considered when executing such clinical trials. The topics covered include basic

definitions, classic questions and their requisite response variables, randomi-

zation, blinding, recruitment, sample size issues, data analysis, data quality and

control, data monitoring, and dissemination. Relevant examples from many

clinical trials are presented.

1. Introduction

A clinical trial is a prospective comparative study conducted in human beings to
evaluate the effect of an intervention on an outcome. This type of study provides
the most compelling evidence of a causal relationship between treatment and
effect. Commonly performed clinical trials evaluate new drugs, medical devices,
biologics, or other interventions in patients. They are designed to assess the safety
and efficacy of an experimental therapy, whether a new intervention is better than
standard therapy, or the efficacy of two standard interventions.

The purpose of this chapter is to give an overview of phase III and IV clinical
trials, and some critical issues, key examples, and further questions about these
studies. There are many useful high-quality books about clinical trials and we
refer the reader to these to obtain more details (Friedman et al., 1998; Piantadosi,
2005; Meinert and Tonascia, 1986; Pocock, 1984; Chow and Liu, 2003). Also,
there are journals specifically devoted to clinical trials methodology (Controlled
Clinical Trials, Clinical Trials – The Journal of the Society for Clinical Trials).

1.1. Clinical trial phases

Drug clinical trials are commonly classified into four phases, and the drug deve-
lopment process usually proceeds through all stages over many years. Device and
biologics trials may also include these phases. If the drug successfully passes
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through the first three phases, it will usually be approved for use in the general
population.

1.2. Phase I

Phase I trials are the first stage of testing in human subjects (Ahn, 1998). Usually,
a small (20–80) group of healthy volunteers will be selected although for some
diseases, e.g., cancer, patients are used. This phase includes trials designed to
assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of a
therapy. Phase I trials are usually dose-finding studies wherein the tested range
will be a small fraction of the dose that causes harm in animal testing.

1.3. Phase II

Once the initial safety of the therapy has been confirmed in phase I trials, phase II
trials are performed on larger groups (100–300) and are designed to assess clinical
efficacy of the therapy (Kramar et al, 1996; Lee and Feng, 2005). This phase
typically involves randomization and a control group but extracting new infor-
mation about the efficacy of treatment remains the primary goal of this study
design (Meinert and Tonascia, 1986). The development process for a new drug
commonly fails during phase II trials due to lack of efficacy or toxic effects.

1.4. Phase III

A phase III trial is a prospectively defined experiment used to test the efficacy and
safety of a randomly assigned treatment in patients. Phase III trials can evaluate
drugs, surgery, behavioral (diet/exercise) interventions, devices, complementary
and alternative medicine (CAM), and screening procedures (e.g., mammography
to detect breast cancer).

Trials can be labeled as superiority (prove one treatment is better than an-
other), equivalence (prove the treatments are equivalent within some predefined
metric), or non-inferiority (prove one treatment is as good as or better than
another).

A definitive phase III clinical trial is one that evaluates the efficacy of an
intervention and whose results will be used to decide on approval for use of that
intervention in practice. A definitive clinical trial should have the following ele-
ments – (1) a relevant, timely and clearly posed question, (2) a well-defined clinical
endpoint, (3) requisite statistical power to answer the question, and (4) the
necessary structure and components for a well-executed design.

Phase III studies are usually large double-blind randomized controlled trials on
sizeable patient groups (1000–3000 or more) and are aimed at being the definitive
assessment of the efficacy of the new therapy, especially in comparison with
currently available alternatives. Phase III trials are the most expensive, time-
consuming and difficult studies to design and run, especially in therapies for
chronic conditions.
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1.5. Phase IV

A phase IV trial is concerned with the long-term safety and efficacy of a drug
post-Food and Drug Administration (FDA) approval. They may be mandated by
regulatory authorities or may be undertaken by the sponsoring company for
competitive or other reasons. Safety surveillance is designed to detect any rare or
long-term adverse effects over a much larger patient population and timescale
than was possible during the initial clinical trials. Such adverse effects detected by
phase IV trials may result in the withdrawal or restriction of a drug – recent
examples include cerivastatin (SoRelle, 2001) (brand names Baycol and Lipobay),
troglitazone (Faich and Moseley, 2001) (brand name Rezulin), and rofecoxib
(Bresalier et al., 2005) (brand name Vioxx).

2. Questions

2.1. Primary and secondary questions

A clinical trial must have a primary question about a treatment effect on a specific
outcome. This question will serve as the basis for the study design and sample size
and needs to be stated in advance. It should be very specific and be posed in the
form of testing a hypothesis. A specific example might be ‘‘Does treatment A
when compared to placebo reduce the five-year risk of total mortality by 20% or
more in persons with disease X?’’

The trial can and will usually have several secondary questions. These arise
from possible treatment effects on other outcomes. These should also be stated in
advance and a rationale provided for them. Multiple comparisons can be an issue
(Davis, 1997; O’Neill, 1997; Pocock, 1997).

2.2. Subgroup questions

Many trials also consider subgroup questions (Yusuf et al., 1991; DeMets, 2004).
These are questions about effect of therapy in a subpopulation of subjects entered
into the trial. They are most often used to assess internal consistency of results,
and can confirm prior hypotheses or generate new hypotheses. These types of
questions should be pre-specified.

Analyses of a trial by subgroups result in separate statistical tests for each
subgroup. As a result the probability of false positive conclusions increases and
the greater the number of subgroups analyzed separately, the larger this prob-
ability will be. Tests for interaction are also usually performed to see if there are
any subgroup differences in treatment effect. Interactions are of two types – (a)
qualitative wherein the treatment effect is different in direction in two subgroups
and (b) quantitative wherein the treatment effect is of same direction but of
different magnitude. Interaction tests are model dependent, and are not very
powerful. Even if such a test is statistically significant, its result should be
interpreted with caution.
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2.3. Other questions

Other questions that arise in clinical trials include natural history questions, an-
cillary questions, and exploratory ones. A natural history question is not related
to the intervention. For example, the placebo group of a trial may be used to
assess what factors are predictive of a clinical outcome (Davis et al., 1998).

Ancillary questions are not related to the primary and secondary questions but
still may be of scientific interest. An example is the Genetics of Hypertension
Associated Treatment (GenHAT) study which is determining whether variants in
hypertension susceptibility genes interact with antihypertensive medication to
modify coronary heart disease (CHD) risk in hypertensive individuals (Arnett et al.,
2002). GenHAT is an ancillary study of the Antihypertensive and Lipid-Lowering
Treatment to Prevent Heart Attack Trial (ALLHAT). ALLHAT was a double-
blind, randomized trial of 42,418 hypertensives, 55 years of age or older, with
systolic or diastolic hypertension and one or more risk factors for cardiovascular
disease, designed to determine if the incidence of CHD is lower with treatment with
any of the three newer antihypertensive drug classes: a calcium channel blocker
(amlodipine), an ACE inhibitor (lisinopril), and an alpha-adrenergic blocker (do-
xazosin) each compared to treatment with a diuretic (chlorthalidone) (ALLHAT
Collaborative Research Group, 2002). GenHAT is typing variants in hypertension
genes to permit analyses of gene-treatment interactions in relation to outcomes
include CHD, stroke, heart failure, and blood pressure (BP) lowering.

Exploratory questions arise from trying to address why things happened in a
trial. These are usually based on unanticipated results and are used to help ex-
plain certain findings. However, they must be treated with caution. For example,
in most randomized clinical trials not all patients adhere to the therapy to which
they were randomly assigned. Instead, they may receive the therapy assigned to
another treatment group, or a therapy different from any prescribed in the pro-
tocol. When non-adherence occurs, problems occur with the analysis comparing
the treatments under study. However, there are several biases associated with
methods other than intent-to-treat analyses (Peduzzi et al., 1993).

2.4. Response variables

Response variables are outcomes measured during the course of the trial and are
used to answer the primary, secondary, and other questions. These outcomes should
be well defined, ascertainable, and specific to the questions. A definitive clinical trial
will most often have a clinical primary outcome rather than a physiologic-based
one. Clinical outcomes (i.e., mortality or morbidity) are ones that seriously affect
the health and well-being of an individual. These include myocardial infarctions,
strokes, cancer, blindness, visual impairment, infection, mobility, pain, etc. Physio-
logic-based outcomes are usually measures, or surrogates, for clinical outcomes.
These include BP, cholesterol levels, glucose levels, CD4 counts, electrocardiogram
abnormalities, bone density measurements, etc. Many drugs are approved solely on
the basis of these surrogate outcomes without showing their effect of clinical out-
comes. However, surrogates do not consistently predict treatment effect on clinical
outcome and reliance on them should be minimized (De Gruttola et al., 2001).
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3. Randomization

Random allocation or randomization of patients to treatment or control is a key
element of a phase III clinical trial that requires proper execution for successful
completion and reliable results. The randomization process assures with a reasonable
amount of certainty that the groups will be comparable, thus removing the pos-
sibility of investigator bias (Friedman et al., 1998). Ethical issues have been raised
with regard to randomization in clinical studies (Royall, 1991) and adjustments in
study design have tried to alleviate this conflict (crossover designs, historical controls,
etc.), but these are not always applicable. The randomized clinical trial still remains
the gold standard when considering the available study designs. For a detailed
presentation of randomization in clinical trials, see Rosenberger and Lachin (2002).

3.1. Fixed allocation

Fixed allocation, the most common type of randomization procedure, assigns in-
terventions to patients with a pre-specified probability that is not altered during the
study. A classic example of this is when participants are randomly allocated in a set
ratio (usually 1:1) to two different treatments. The most elementary form is simple
randomization wherein participants are assigned treatments using software that uses
a random number generating algorithm (such as PROC PLAN in SAS (SAS, 2003)).

3.2. Blocked and stratified randomization

A drawback with simple randomization is that treatment groups may not be
comparable in size especially when the total sample size is not large. Blocked
randomization assures that at no time during the randomization process will an
imbalance be large and that at certain points the number of participants in each
group will be equal. Essentially blocked randomization creates small fixed size
sets of randomly generated balanced patterns. For example, for size n ¼ 4, and
two treatment groups there are six possible patterns – AABB, ABAB, BAAB,
BABA, BBAA, and ABBA. Over a designated amount of time we will have equal
numbers of individuals in each group. This is particularly helpful when we are
doing interim analyses (see Section 8.2).

Stratified randomization makes assignments in such a way that the resulting
randomized groups have comparable numbers of individuals of a certain covari-
ate. For example when we stratify randomization based on gender, we expect that
there will be equal numbers of men and women in each group. One of the most
common uses of stratified randomization is to assure equal allocation to treat-
ment assignments within a center of a multi-site trial thus eliminating the poten-
tial bias of a center effect.

3.3. Adaptive randomization

In contrast to fixed allocation, adaptive randomization changes the allocation
procedure as the study progresses. There are two types – baseline adaptive and
response adaptive. The classic baseline adaptive procedure is Efron’s biased coin
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design (Efron, 1971). The main purpose of this design is to achieve an equal
number of subjects in each group. The probability of assignment to a group
depends on the balance between the groups wherein the group with the smaller
number of subjects is assigned a larger assignment probability. The classic adap-
tive response designs are play the winner (Zelen, 1969) and the two-armed bandit
strategy (Robbins, 1952). The play the winner strategy starts with a random as-
signment to treatment or control and if the response of this subject is successful the
subsequent participant is assigned to the same group, if not the subject is assigned
to the other group. This procedure requires that we be able to assess the response
quickly enough so as not to delay the treatment assignment of newly enrolled
participants. The two-armed bandit strategy works under the same premise.
However assignment probability is linked with success proportion as results be-
come known. There are situations where this method of treatment assignment may
be justified as we may find a need to randomize based on variables assessed at
baseline or randomize based on the responses of participants to their treatment.

3.4. Blinding

Blinding or masking is ‘‘A condition imposed on an individual (or group of
individuals) from knowing or learning of some fact or observation, such as
treatment assignment’’ (Meinert and Tonascia, 1986). Blinding prevents bias that
can result from participants and investigators knowing treatment assignment thus
reducing the possibility that they will change their behavior and/or decisions
regarding endpoint ascertainment. Regardless of which procedure is used to enact
the blind this does not resolve the issue of guessing which treatment a patient is
on. Often assessing the blind at the trial’s end can be reassuring.

There are four types of blinding in a trial – (a) unblinded trials (patient and
investigators are aware of the treatment assignment), (b) single-blind trials (only
the patient is not informed), (c) double-blind trials (patient and investigator are
blind), and (d) triple-blind trials (patient, investigator, and the Data and Safety
Monitoring Board (DSMB), see Section 8.1, are blind). The last type is not rec-
ommended (Meinert, 1998) as it may prevent the DSMB from making informed
decisions regarding interruptions to the trial. The choice of whom and how to blind
in a trial is subject to the type of intervention being measured and logistics, and in
the event that it is impossible or impractical to enforce a blind other tactics can be
implemented. For example during the Ocular Hypertension Treatment Study
(OHTS) (Kass, 1994), the fundus photographs were read at a central reading center
by individuals masked to treatment. Unblinding can occur during a trial either
accidentally or intentionally. In the event that a patient needs to be removed from a
trial, there should be a prospectively stated procedure for unblinding the patient.

4. Recruitment

Recruitment is a critical component of clinical trials that needs to be accom-
plished in a timely manner. Poor recruitment can affect the feasibility of a trial
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and affects its timeline. Any extension of the recruitment period can result in
increased cost, increased effort, and possibly decreased power if there is no con-
comitant increase in the follow-up period.

The main issue of recruitment is getting enough patients, but this varies de-
pending on the intervention in question. Solutions to this problem may involve
adding more clinical centers (in a multi-center clinical trial situation), extension of
the recruitment period, or changes to the exclusion/inclusion criteria. Trials may
encounter problems stemming from competing for patients, possibly overesti-
mating the rate of prevalence of the condition or disease in population or simply
the public (specifically the medical community) is unaware of ongoing clinical
trials and physicians do not refer patients.

Much effort has been expended in trying to profile the type of individual who
would participate in a clinical study, however, many of the reasons why an indi-
vidual would participate in a trial is not as well discussed. In many cases patients
believe they may receive more or better care (Mattson et al., 1985), and it is
generally the case that they are seen more often. Clinical trials offer a ‘‘second
opinion’’ of their health status they may otherwise not have access to. However,
too many visits or even the process of getting to visits may discourage partic-
ipation as well as simply not feeling comfortable with perceived risks.

5. Adherence/sample size/power

Adherence and compliance refer to the level of participation of an individual
during a trial. Adherence usually is used with reference to all protocol matters
(visits, procedures, etc.) whereas compliance usually refers to the intervention
itself, e.g., taking medications, staying on a diet, etc. In general, some non-com-
pliance is expected and this is reflected in accounting for crossovers (drop-ins and
drop-outs to treatment) when calculating the sample size. Monitoring of adher-
ence and compliance is important, because this can affect the feasibility of con-
tinuing the trial as well as the validity of the trial’s results.

An intention to treat analysis should always be the primary one as it is based
upon the randomized cohort. However, in the case where non-adherence is
measured in a reliable way and tracked throughout the trial it may be of interest
to do a secondary, explanatory analysis based on which patients actually received
the intervention. Of course, such on-treatment analyses are fraught with potential
biases and must be assessed in context.

The calculation of sample size needed to properly execute a clinical trial is often
based on a basic formula (Chow et al., 2003). However there are situations where
sample sizes are estimated by simulation, such as in the Amblyopia Treatment
Study (Pediatric Eye Disease Investigator Group, 2002). The formulas are de-
termined by the nature of the primary endpoint of interest. There are formulas for
continuous, binary, time to event and repeated measures/longitudinal endpoints.

All the formulas begin with the prospectively defined type I error (the a level),
type II error (or b), and the effect size (d). The type I error is the probability of
rejecting the null hypothesis when in fact it is true and this is usually set at 0.05.
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The type II error is the probability of accepting the null hypothesis when it is
false, and this usually is around 0.10, but can reasonably range between 0.20 and
0.10. The power to detect the difference is 1�b. For comparing outcome occur-
rences, an effect size can be proposed by specifying event rates for each group. Let
pc be the event rate in the control group and pt the event rate in the treatment
group. We could define the effect size as the minimal detectable difference, which
would be just d ¼ pc�pt, or we could express the effect size as a relative measure
and calculate d ¼ ðpc � ptÞ=pc:

For dichotomous outcome measures, the basic formula is:

N ¼
2ðZa þ ZbÞ

2
ðpc þ ptÞ

ðpc � ptÞ
2

,

where N is the total sample size, and Za and Zb are the critical values from the
standard normal distribution. Typical critical values are Za ¼ 1.96 (for a two-
sided test at the 0.05 level) and Zb ¼ 1:645 for 90% power. Note that this formula
assumes equal allocation between nt, the number in the treatment group and nc

the number in the control group and N ¼ nt þ nc:
For continuous outcomes, the basic formula is:

N ¼
2ðZa þ ZbÞ

2
ðs2Þ

ðmc � mtÞ
2

where N, Za; and Zb are the same as defined above, but now the effect size is
expressed in terms of the means (m) for each group.

For time to event data, the basic formula is:

N ¼
2ðZa þ ZbÞ

2

ðlnðlc=ltÞÞ
2

where lc represent the hazard rate in the control group and lt is the hazard rate in
the treatment group.

For repeated measures/longitudinal data, the formula involves a calculation of
the intraclass correlation coefficient in the case of continuous response variables
and the kappa coefficient for binary response variables. The intraclass correlation
coefficient, usually denoted by r, is calculated by a ratio of the within cluster
variance (w) and the variance between clusters (b), so r ¼ s2b=s

2
b þ s2w: Assuming

we have r clusters we calculate the sample size to be Nadjusted ¼ Nð1þ ðr� 1ÞrÞ:
The kappa coefficient is a function of the rate of the event in control group,

and in particular the proportion of concordant clusters in the control group,
pconcordant. The kappa coefficient is defined as k ¼ pconcordant � ðp

r
c þ ð1�

pcÞ
r
Þ=1� ðpr

c þ ð1� pcÞ
r
Þ and affects the sample size in a similar way as the in-

traclass correlation coefficient, Nadjusted ¼ Nð1þ ðr� 1ÞkÞ:
Each of these formulas can be adapted to adjust for multiple arms (factorial

design), differences in allocation ratios and drop-ins and drop-outs. In the case of
multiple arms, say for example three arms, the formula for the total sample size
would include not just nc and nt but nc; nt1; and nt2: It is possible that each of these
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arms would have unequal allocations and then the appropriate constant is
matched with the respective arm. The case where there is equal allocation to each
of the three arms results in a formula simplified to include just nc and 2nt:

Assuming the rate of drop-ins (RIN) and drop-outs (ROUT) are known. The
sample size calculation for the case where no crossovers exist can be adjusted by a
factor of 1=ð1� RIN � ROUTÞ

2:
In the case of multiple endpoints unless the correlation between the arms is

known, and often times it is not, each endpoint’s sample size is calculated. Then,
to be conservative, the largest of the sample sizes is used.

6. Data analysis

There are many items to consider in choosing a data analysis. However, a data
analysis plan needs to be written and agreed to before the trial begins and can
only be changed according to strict guidelines with the full consent of all parties
involved and not after looking at blinded data.

Good clinical practice requires that the study protocol describe the methods of
data analysis that will be employed at the end of the study. The data analysis
section of a protocol should distinguish the primary endpoints of the study from
other outcome measures, and should describe any plans to exclude certain treated
patients from the analysis, to conduct comparisons among subgroups, or to carry
out interim analyses of patient data. In all cases, the protocol should describe the
specific statistical tests to be used.

Where several endpoints will be analyzed to determine the success of the clinical
study, the data analysis plan should also address the issue of multiple compar-
isons. When several statistical tests are performed, it is more likely that some will
be significant by chance alone. Thus, if multiple endpoints are evaluated, statistical
adjustment or increased sample size should be contemplated by the analysis plan.

A data analysis plan should also encompass a data closeout plan including
when the study is to end for each patient and what events will or will not be
counted. This should include a date by which events are to be reported in order to
close and lock the database and begin the predefined statistical analyses. All this
needs to be done prior to the study end. In order for the results of clinical trials to
be valid, analyses must be performed according to a predetermined plan that is
not changed once the randomization code is broken and the study unblinded.
Otherwise, bias is introduced and the validity of the results comes into question.
According to the intention to treat principle all participants allocated to a treat-
ment group should be followed up, assessed, and analyzed as members of that
group irrespective of their compliance with the planned course of treatment. All
patients should have a final visit for complete outcome assessment and transition
to post-trial therapy. It is essential that all missing and lost to follow-up patients
be found if possible. Plans should be made for notification of trial results and data
archiving, as well as for transitioning patient care, clinic staff, and support centers.

Most definitive clinical trials will examine a clinical outcome that is meaningful
to a patient – e.g., death stroke, loss of vision, etc. This primary outcome can be
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viewed as a dichotomous one in a short-term trial with complete follow-up, or can
best be viewed as a time to event to provide more power. The usual method of
analysis is to calculate Kaplan–Meier curves and to compare using a logrank
procedure or a variation. Cox proportional hazards models can be used to pro-
vide an estimate of the hazard ratio (or relative risk) of one arm of the trial to
another (e.g., active vs. placebo). A summary (Table 1) of the typical methods for
analysis subject to the endpoint of interest is provided.

6.1. Categorical data

Major clinical trials can have a categorical data endpoint as their primary out-
come. Usually the outcome is binary but it can encompass more than two cat-
egories. One example of this type of analysis comes from the Cryotherapy for
Retinopathy of Prematurity (CRYO-ROP) trial (Cryotherapy for retinopathy of
prematurity cooperative group, 1988). In this trial, investigators applied cryother-
apy (essentially destroying tissue by the use of very cold temperature) to the retina
in one randomly selected eye of a pair where there was retinopathy or prematurity.
ROP is an eye disease of premature infants characterized by increased vasculature
of the retina potentially leading to blindness. The trial showed that an unfavorable
outcome (essentially retinal detachment and blindness) at 3 months was signifi-
cantly less frequent in the eyes undergoing cryotherapy (21.8%) compared with the
untreated eyes (43%). The data supported the efficacy of cryotherapy in reducing
by approximately one half the risk of an unfavorable outcome in ROP.

6.2. Continuous measure

Some clinical trials utilize a continuous measure as a primary outcome. An exam-
ple of this comes from another eye trial performed by the Pediatric Eye Disease

Table 1

Summary table of typical data analyses by type of outcome

Type of Outcome Type of Analysis

Continuous

Two or more samples with underlying normal

assumptions

Two sample t-test (equal or unequal variances),

paired t-test, F-tests, simple linear regression,

or multiple linear regression

Categorical

Binary or 42 categories Fisher’s exact, Chi square, binomial proportions

test, contingency tables, Mantel Haenszel,

Kruskal–Wallis, logistic regression,

multinomial logistic regression, ordinal logistic

regression

Time to event Logrank test, Kaplan–Meier curves, Cox

Proportional Hazards, Cox Proportional

Hazards with time dependent covariates.

Count data Poisson regression, Poisson processes (used with

very low event rates)
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Investigator Group (Pediatric Eye Disease Investigator Group, 2002). In this
study, investigators compared patching and atropine as treatments for moderate
amblyopia (‘‘lazy eye’’) in children younger than 7 years. After 6 months, the
difference in visual acuity between treatment groups was small and clinically
inconsequential (mean difference, 0.034 logMAR (Minimum Angle of Resolu-
tion) units; 95% confidence interval, 0.005–0.064 logMAR units). The trial
showed that atropine and patching produced improvement of similar magnitude,
and both are appropriate modalities for the initial treatment of amblyopia in
children 3–7 years old.

Another trial utilized a multivariate longitudinal continuous outcome. The
Casa Pia Study of the Health Effects of Dental Amalgams in Children was a
randomized clinical trial designed to assess the safety of low-level mercury expo-
sure from dental amalgam restorations in children (DeRouen et al., 2002). Since
the goal of the trial was to assess the safety of a treatment currently in use, rather
than the efficacy of an experimental treatment, unique design issues came into
play. The identification of a primary study outcome measure around which to
design the trial was problematic, since there was little evidence to indicate how
health effects from such low-level exposure would be manifested. The solution
involved the use of multiple outcomes over time.

6.3. Time to event outcomes

An example of a time to event outcome analysis comes from the Hypertension
Detection and Follow-up Program (HDFP), a community-based, randomized
controlled trial involving 10,940 persons with high BP (Hypertension detection
and follow-up program cooperative group, 1979). The trial compared the effects
on 5-year mortality of a systematic antihypertensive treatment program (Stepped
Care (SC)) and referral to community medical therapy (Referred Care, RC). Five-
year mortality from all causes was 17% lower for the SC group compared to the
RC group (6.4 vs. 7.7 per 100, po0.01) The findings of the HDFP indicated that
the systematic effective management of hypertension had a great potential for
reducing mortality for the large numbers of people with high BP in the population.

Another example of a time to even outcome analysis comes from the Systolic
Hypertension in the Elderly Program (SHEP) (SHEP cooperative research group,
1991). This trial was designed to assess the ability of antihypertensive drug treat-
ment to reduce the risk of stroke in isolated systolic hypertension. Persons aged 60
years and above were randomized to active (using the diuretic chlorthalidone) or
placebo antihypertensive treatment. Systolic BP ranged from 160 to 219mm Hg
and diastolic BP was o90mm Hg. Antihypertensive stepped-care drug treatment
with chlorthalidone reduced the incidence of total stroke by 36%, and major
cardiovascular events were also reduced.

6.4. Multiple approaches

Clinical trials often involve a variety of clinical and laboratory measures that are
used as endpoints and sometimes two of these measures are combined in one
endpoint. One such solution is to utilize a so-called combined endpoint. When the
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individual components of such a combined endpoint are time to event measure-
ments, the analysis is straightforward. However, the analysis of the combined
endpoint is more difficult when one component of the endpoint is time to event
and the other is a continuous measure. There are proposed solutions to this. One
example comes from the Survival and Ventricular Enlargement (SAVE) trial
(Moye et al., 1992), which investigated whether the ACE inhibitor, captopril,
could reduce morbidity and mortality in patients with left ventricular dysfunction
after a myocardial infarction. A combined endpoint of mortality or a nine-unit
decrease in left ventricular ejection fraction was significantly reduced in the capt-
opril group with p ¼ 0.016. Long-term administration of captopril was associated
with an improvement in survival and reduced morbidity and mortality due to
major cardiovascular events (Pfeffer et al., 1992).

6.5. Other issues

Other issues to consider in data analysis include missing data and measuring
safety versus efficacy (Wood et al., 2004). There is a wealth of missing data
techniques (Little and Rubin, 2002) that can be applied to the analysis of clinical
trials. However, the paramount issue might be why the data are missing. Miss-
ingness could be related to the treatment and this can severely affect the ability to
assess the data. Other points to consider are whether the analysis should focus
solely on efficacy with safety as a secondary issue or whether safety should also
have primary outcome status (Cook and Farewell, 1994; Jennison and Turnbull,
1993; Todd, 2003).

6.6. Bayesian approaches

Another approach to the analysis of clinical trials involves Bayesian statistics
(Berry, 2006; Multiple authors, 2005). The Bayesian approach to statistical
analysis makes explicit and quantitative use of external evidence in the design,
analysis, and interpretation of data from clinical trials. Bayesian methods have
the flexibility and capacity to integrate data from multiple sources. Freedman
(1996) provides a brief description of the differences between Bayesian and con-
ventional (‘‘frequentist’’) methods – ‘‘Frequentist analysis may conclude that
treatment A is superior because there is a low probability that such an extreme
difference would have been observed when the treatments were in fact equivalent.
Bayesian analysis begins with the observed difference and asks how likely is it that
treatment A is in fact superior to B’’.

Like classical statistics, the Bayes method is applicable to problems of pa-
rameter estimation and hypothesis testing. However, there are several important
differences between the Bayesian and frequentist approach. One is that the Bay-
esian formulation is based on the likelihood principle. The likelihood principle
states that a decision should have its foundation in what has occurred, not in
what has not happened. In addition, although Bayesians like frequentists are
interested in parameter estimation and hypothesis testing, Bayesians do not be-
lieve that the parameter y of a distribution is constant, but rather has a prob-
ability distribution, called the prior distribution, or pðyÞ:
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Once the prior distribution is identified, the Bayesian uses the probability
distribution of the data given the value of the parameter. This conditional dis-
tribution (because it is the distribution of the data conditional on the value of the
unknown parameter) is denoted as f ðx1;x2;x3; . . . ;xnjyÞ: The Bayes process con-
tinues by combining the prior distribution with this conditional distribution to
create a posterior distribution, or the distribution of the parameter y given the
observed sample, denoted as pðyjx1;x2;x3; . . . ;xnÞ:

From the Bayes’ perspective, the prior distribution reflects knowledge about
the location and behavior of y before the experiment is carried out. The execution
of the experiment provides new information that is combined with the prior
information to obtain a new estimate of y. To help in interpreting the posterior
distribution, some Bayesians will construct a loss function that identifies the
penalty to pay for underestimating or overestimating the population parameter.
Bayesian hypothesis testing is based on the posterior distribution. However, the
requirement of a realistic specification of the prior distribution can be a burden if
there is no information about the parameter to be estimated. Similarly, the choice
of the loss function can be difficult to justify from a clinical perspective.

Bayesian analysis can be computer intensive. We are seeing more computa-
tional software becoming available to perform Bayesian analysis now that pow-
erful and inexpensive computers are widely available. Raftery and colleagues at
the University of Washington (www.stat.washington.edu/raftery/) have devel-
oped programs that can be run in SPlus (Insightful, 2006) to perform a variety of
Bayesian analyses. Similarly, Albert at Bowling Green State University
(www.math.bgsu.edu/	albert/) has developed Matlab (Mathworks, 2006) pro-
grams for Bayesian analysis.

7. Data quality and control/data management

Data quality and data management are extremely important facets in the conduct
of a clinical trial (McFadden, 1997). A clinical trial is only as good as the data that
is collected. Quality control begins with the protocol and the manual of oper-
ations. The protocol serves as the overall plan for the conduct of the trial. The
manual of operations provides the details for every aspect of running the trial.

Quality control procedures should be put in place for all aspect of the trial and
data collection should be as simple as possible to carry out the essential questions of
the trial. Data editing of forms should include checking for missing data, allowable
ranges of data, and consistency within forms or across forms. Online submission of
information improves the efficiency of checking (in most cases immediately) for the
information captured from case report forms (Winget et al., 2005).

8. Data monitoring

Investigators engaging in clinical trial must make accommodations for monitor-
ing the outcomes, recruitment, participation, various logistic elements of

B. R. Davis and S. Baraniuk558

http://www.stat.washington.edu/raftery/
http://www.math.bgsu.edu
http://www.math.bgsu.edu


conducting a trial (usually involving data quality and control), and above all the
safety of the trial participants. How the monitoring proceeds is detailed in the
trial protocol and is often subject to the guidelines of the funding agency (such as
NIH guidelines for data monitoring). A Data and Safety Monitoring Board
(DSMB) is essential for almost all definitive phase III clinical trials.

8.1. Data and safety monitoring boards

The DSMB has a long tradition in clinical trials dating back over 40 years. It has
many names (Policy Advisory Board (or Committee) Data and Safety Monitor-
ing Board (or Committee), Data Monitoring Board (or Committee), Independent
Data and Safety Monitoring Committee). There is an excellent book that deals in
detail with the policies and procedures of such a committee and another book
that highlights many important cases studies that DSMB’s face (Ellenberg et al.,
2002; DeMets et al., 2005). The purpose of a DSMB is to provide oversight to the
trial by monitor the accumulating data. Issues that the Board has to deal with
include whether recruitment is going as planned, whether there are protocol vi-
olations, whether there are safety concerns, and whether the accumulating effi-
cacy data warrant an early stopping of the trial for efficacy or futility. The DSMB
should agree to a charter before the trial begins. Such a charter should include a
brief description of the trial, DSMB members and affiliations, frequency of
meetings, how often data are reviewed in the course of the trial, content of
reports, stopping rules and stopping logistics for the trial, and how DSMB de-
liberations are communicated to the trial’s sponsor leadership.

8.2. Stopping guideline

The statistical evidence brought to the DSMB is only one of many elements to the
decision-making regarding stopping a trial. Stopping a trial can happen when
there is evidence of harm, overwhelming benefit or if the trial will not return clear
results (futility). Three basic types of procedures are used in interim monitoring –
(a) group sequential, (b) conditional power, and (c) Bayesian methods (see Sec-
tion 6.6).

8.2.1. Group sequential procedures

Repeated analyses of accumulating data increase the type I error. For example if
we wish to reject a null hypothesis of no treatment difference using a statistical
test based on the standard normal distribution, i.e., where jZj41:96; then five
interim looks at the data can lead to a type I error of 0.14 and for 10 looks, it is
0.20.

The idea behind group sequential boundaries is to use a more conservative
critical value of Z such that for a given number of looks the total type I error at
the end of the study will be 0.05. A summary statistic is computed at each interim
analysis, based on additional groups of new subjects (or events) and this is com-
pared to a conservative critical value. Various methods have been proposed
(Jennison and Turnbull, 2000; Haybittle, 1971; Peto et al., 1976; Pocock, 1977;
O’Brien and Fleming, 1979).
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In classical group sequential analysis, the intervals between looks are pre-
specified. For example, analyses are performed after each of k groups of 2n

subjects are entered, and then the same critical value is used at each analysis. If
the statistic is greater than the critical value, then the trial may be stopped. If not,
then it is continued. As the stopping rules are really a guideline, a trial can
continue even if a stopping boundary is crossed. In this case, one may buy back
the previously spent type I error to be re-spent or re-distributed at future looks
(Lan et al., 2003).

O’Brien and Fleming (OBF) (O’Brien and Fleming, 1979) modified the con-
stant conservative critical value procedure to allow decreasing critical values. This
made it much more difficult for early stopping. Lan–DeMets (Lan and DeMets,
1983) modified this procedure even further by not having to specify the number of
analyses in advance nor equally spaced interim analyses. They defined an alpha-
spending function, a*(t), such that a*(t) defines rate at which type I error is used
where t (information time) is proportion of total information accumulated by the
end of the study (0rtr1). Therefore, a*(t) is increasing, a *(0) ¼ 0, and
a*(1) ¼ a (our usual type I error). For immediate response trials t ¼ n/N, where n

is the number of subjects accrued and N the total sample size. For time to event
trials t ¼ d/D, where d is the number of events accrued and D the total expected
number of events.

Some examples of a*(t) are

1. a1 *(t) ¼ 2{1�F(za/2/t
1/2)} (approximately equivalent to OBF (O’Brien and

Fleming, 1979) procedure)
2. a2 *(t) ¼ a ln {1+(e–1)t} (approximately equivalent to Pocock (1977) proce-

dure)
3. a3 *(t) ¼ at.

As an example, we show the comparison of the critical values for five equally
spaced intervals using the above spending functions and their counterparts with
a ¼ 0.025.

Method Intervals

1 2 3 4 5

OBF 4.56 3.23 2.63 2.28 2.04
a1*(t) 4.90 3.35 2.68 2.29 2.03
Pocock 2.41 2.41 2.41 2.41 2.41
a2*(t) 2.44 2.43 2.41 2.40 2.38
a3*(t) 2.58 2.49 2.41 2.34 2.28

8.2.2. Conditional power

The concept of futility has been used to also monitor trials. Futility is generally
considered as the inability of a trial to meet its primary goal. The most popular
method for assessing futility is conditional power, which assesses the likelihood of
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achieving a statistically significant result at the trial conclusion. This is done by
computing the probability of rejecting the null hypothesis at the trial’s conclusion,
given the current result and some assumed effect for the remaining portion of the
trial (Lan et al., 1982; Lan and Wittes, 1988). Typically, conditional power is
computed for a series of assumed effects, e.g., the observed effect to date, the
protocol defined effect, the null effect, and effects in between. Trials have been
stopped for futility (Lachin and Lan, 1992; Davis and Cutler, 2005).

As an example, Table 2 and Fig. 1 demonstrate the calculations performed to
monitor the ALLHAT trial (ALLHAT Collaborative Research Group, 2002;
Davis and Cutler, 2005) (see Section 2.3). The Lan–DeMets version of the
O’Brien–Fleming group sequential boundaries was used to assess treatment group
differences for the primary outcome (CHD), and conditional power was used to
assess futility. The doxazosin arm was terminated early because of futility for
finding a primary outcome difference and an increased incidence of cardiovas-
cular disease, especially heart failure, relative to chlorthalidone. The likelihood of
observing a significant difference for the primary outcome by the scheduled end of
the trial was very low (only 2%) for the protocol-specified reduction of 16% for
doxazosin compared with chlorthalidone.

Software to facilitate the statistical analysis required to implement the above-
described methods exist such as S+SeqTrial (Insightful C, 2005), and the Lan–
DeMets program (Reboussin et al., 2003).

8.3. Tracking adverse effects

Ideally, any intervention should result in more benefit than harm. However, AEs
do occur and are not always easy to specify in advance. An adverse event is ‘‘any
undesirable clinical outcome that has the added dimensions of physical findings,
complaints and lab results’’. These ‘‘adverse effects can be both objective meas-
ures and subjective responses’’ (Friedman et al., 1998). Tracking such effects is a
critical task in monitoring clinical trials but serious adverse events defined as
death, an irreversible event, or an event that requires hospitalization need to be
reported to regulatory agencies and institutional review boards.

The severity of adverse events as well as their frequency over time should be
considered before stopping treatment for an individual participant or before
changing the protocol or procedures of a trial include terminating an arm or
stopping the trial (Pressel et al., 2001). Included in tracking adverse effects are any
reasons for removing a participant from a trial, reducing their dosage or exposure
to the intervention and group levels of frequency of the event. The way in which
these are assessed (labs, clinical exams, etc.) should also be recorded.

It is very likely that we will see some adverse effects in a clinical study. Some
effects may be expected (known effects from the intervention). However, we must
be prepared for unexpected effects and methods for reporting must be available.
This can be achieved by allowing participants to volunteer effects they believe are
adverse.

Challenges of monitoring adverse effects include whether they are short- or
long-term and whether long-term follow-up may show additional ones. Some rare
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Table 2

ALLHAT interim data for the primary outcome (CHD)

CHD Events – n, rate per 100 (SE) Group Sequential Boundariesa

DSMB Meeting Date Information Time Chlorthalidone (N ¼ 15,255) Doxazosin (N ¼ 9,061) Logrank ZL ZU

3/12/98 0.22 224 140 0.46 �5.46 5.46

Year 3 – 2.9 (0.2) 2.8 (0.3)

12/10/98 0.37 366 226 0.45 �4.16 4.16

Year 4 – 3.4 (0.2) 3.5 (0.3)

6/28/99 0.50 498 310 0.86 �3.53 3.53

Year 4 – 6.4 (0.4) 6.3(0.5)

1/6/00 0.59 608 365 0.38 �3.24 3.24

Year 4 – 6.3 (0.4) 6.3(0.3)

a Goup sequential boundaries are based on a Dunnett multiple (3–1) comparison procedure (Davis and Cutler, 2005).
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adverse effects may be seen only with very large numbers of exposed patients and
long-term follow-up. This is a compelling reason for doing phase IV trials.

9. Phase IV trials

A phase IV trial occurs after the FDA has approved the drug/device for use. There
may be several goals in a phase IV trial. These include specifying new indications
for use, expanding the safety profile, gathering new information about the therapy,
educating clinical researchers, and fulfiling a regulatory edict (Friedman et al.,
1998). Cost effectiveness may also be explored. A phase IV trial may also be a pilot
study for other potential product indications. It may be conducted at single or
multiple sites and last months to several years. There is usually no control group
and the number of subjects varies depending on the objective. The participants
may be as few as those in a phase I trial or as many in a phase III trial (Liang,
2002).

One example of a phase IV trial was conducted on patients who had received
intravenous tissue plasminogen activator (t-PA) for acute ischemic stroke (Chiu
et al., 1998). The study examined the feasibility, safety, and efficacy of t-PA in the
first year after the FDA had approved the use of the drug for this patient pop-
ulation. Thirty patients with acute ischemic stroke from three sites were included.
Findings confirmed the safety and efficacy of t-PA were comparable to the pre-
vious National Institute of Neurological Disorders and Stroke Phase III t-PA
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Fig. 1. ALLHAT group sequential boundaries (J) for the primary endpoint (CHD). The values of the

logrank statistics for the comparison of the newer treatments (amlodipine [B], lisinopril [&], do-

xazosin [+]) group versus the standard treatment (chlorthalidone) are plotted.
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study (The National Institute of Neurological Disorders and Stroke rt-PA Stroke
Study Group, 1995).

10. Dissemination – trial reporting and beyond

Dissemination of clinical trial results is usually accomplished solely through sci-
entific publications and presentations. However, there is a general lack of success
translating research results into medical practice. In the 2003 Shattuck lecture,
Dr. Claude Lenfant, former director of the National Heart, Lung, and Blood
Institute (NHLBI), pointed out that despite clinical trials demonstrating the
importance of several treatments in preventing serious outcomes, the health care
system is not applying what is known (Lenfant, 2003). Three examples in car-
diovascular disease illustrate the problem. In 1996, 15 years after the Beta-Blocker
Heart Attack Trial demonstrated the benefits of a beta-blocker for patients who
had a myocardial infarction (b-Blocker Heart Attack Study Group, 1981), only
62.5% of these patients were prescribed such medication (National Committee
for Quality Assurance, 1999). Numerous studies have shown the benefits of cho-
lesterol-lowering in patients with CHD; yet only 50–75% of such patients were
screened for elevated serum cholesterol let alone prescribed such medication
(National Committee for Quality Assurance, 1997). BP control (o140/90mm
Hg) rates for hypertension fall far short of the U.S. national goal of 50% or more.
However, the recent ALLHAT demonstrated that BP could be controlled in two-
thirds of a multiethnic hypertensive population in diverse practice settings (Cush-
man et al., 2002).

In an effort to address issues of translation of knowledge into practice, the
NHLBI created a new policy on dissemination activities, which evolved and was
finalized during the ALLHAT trial (Pressel et al., 2005). The policy requires a
detailed dissemination plan, including evaluation, for trials with potential for
immediate public health applicability. The rationale for this program was well
summarized by a member of the ALLHAT Steering Committee. ‘‘People do a
wonderful press conference, publish in prestigious journals, present at important
meetings – and nothing happens. Publishing your data will not get doctors to
change their practice’’ (McCarthy, 2003).

At the conclusion of the ALLHAT trial, a joint dissemination project of
ALLHAT and the National High Blood Pressure Education Program was imple-
mented. This project planned to further the traditional approaches of dissemina-
tion by utilizing press release/press conferences, media coverage, presentation at
scientific meetings, and publications in peer-reviewed journals by applying novel
approaches based on intervention mapping theory (Bartholomew et al., 1998,
2000) to include health care provider persuasion (academic detailing) (Soumerai
and Avorn, 1990), influencing formulary systems and reaching out to patients.

Thus, the lessons of ALLHAT can serve as a guide to other clinical trials. If
researchers want their findings to be disseminated and to change clinical practice,
plans should be in place from the beginning for doing more than reporting results.
There should be attempts at reaching physicians, patients, formularies, and health
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practices through concerted efforts to spread the word about the importance and
significance of the trial’s results (Pressel et al., 2005).

11. Conclusions

Randomized clinical trials are considered the gold standard of human studies.
New methods in both statistics and clinical trials operations are continuing to be
developed that improve the efficiency of these studies. Novel technologies in
genomics, nanotechnology, and stem cells will require clinical trials to assess their
utility. Trials are important in proving the effect of new drugs, new devices, and
new biological interventions. Although these studies cannot always be done be-
cause of resources and ethical issues, treatment guidelines for human diseases and
conditions need to be based on such evidence.
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Abstract

Missing data are a common problem in most epidemiological and medical

studies, including surveys and clinical trials. Imputation, or filling in the missing

values, is an intuitive and flexible way to handle the incomplete data sets that

arise because of such missing data. Here, in addition to imputation, including

multiple imputation (MI), we discuss several other strategies and their

theoretical background, as well as present some examples and advice on com-

putation. Our focus is on MI, which is a statistically valid strategy for handling

missing data, although we review other less sound methods, as well as direct

maximum likelihood and Bayesian methods for estimating parameters, which

are also valid approaches. The analysis of a multiply-imputed data set is now

relatively standard using readily available statistical software. The creation

of multiply-imputed data sets is more challenging than their analysis but still

straightforward relative to other valid methods of handling missing data, and

we discuss available software for doing so. Ad hoc methods, including using

singly-imputed data sets, almost always lead to invalid inferences and should be

eschewed, especially when the focus is on valid interval estimation or testing

hypotheses.

1. Introduction

Missing data are a common problem with large databases in general and with
epidemiological, medical, and health-care databases in particular. Missing data
also occur in clinical trials when subjects fail to provide data at one or more time
points or drop out, for reasons including lack of interest or untoward side effects.
Data may also be ‘‘missing’’ due to death, although the methods described here

$ The findings and conclusions in this chapter are those of the author and do not necessarily rep-

resent the views of the Centers for Disease Control and Prevention.
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are generally not appropriate for such situations because such values are not
really missing (see Little and Rubin, 2002, Example 1.7; Zhang and Rubin, 2003;
Rubin, 2006).

Epidemiological and medical databases nearly always have missing data. Unit
nonresponse occurs when a selected unit (e.g., patient, doctor, hospital) does not
provide any of the information being sought. Item nonresponse occurs when a
unit responds to some items but not to others. Discussions of many issues related
to missing data are contained in the three volumes produced by the Panel on
Incomplete Data of the Committee on National Statistics in 1983 (Madow et al.,
1983a, 1983b; Madow and Olkin, 1983), as well as in the volume stimulated by
the 1999 International Conference on Survey Nonresponse (Groves et al., 2002).

A classical textbook on analysis with missing data (Little and Rubin, 1987,
2002) categorizes methods for analyzing incomplete data into four main groups.
The first group comprises simple procedures such as complete-case analysis (also
known as ‘‘listwise deletion’’) and available-case analysis, which discards the units
with incomplete data in different ways. Although these simple methods are
relatively easy to implement, they can often lead to inefficient and biased esti-
mates. The second group of methods comprises weighting procedures, which
deals with unit nonresponse by increasing the survey weights for responding units
in an attempt to account for the nonrespondents, who are dropped from further
analysis. The third group comprises imputation-based procedures, a standard
approach for handling item nonresponse, especially in databases that are to be
shared by many users. Imputation methods fill in values that are missing, and the
resultant completed data are then analyzed as if there never were any missing
values.

Of particular interest, multiple imputation (MI) is a method for reflecting the
added uncertainty due to the fact that imputed values are not actual values, and
yet still allows using complete-data methods to analyze each data set completed
by imputation. The final group of methods comprises direct analyses using model-
based procedures, in which models are specified for the observed data, and
inferences are based on likelihood or Bayesian analyses. In general, only MI and
direct analysis can lead to valid inferences. By valid inferences we mean ones that
satisfy three criteria:

(a) approximately unbiased estimates of population estimates (e.g., means, cor-
relation coefficients),

(b) interval estimates with at least their nominal coverage (e.g., 95% intervals for
a population mean should cover the true population mean at least 95% of the
time), and

(c) tests of significance should reject at their nominal level or less frequently when
the null hypothesis is true (e.g., a 5% test of a zero population correlation
should reject at most 5% of the time when the population correlation is zero).

Resampling methods, such as the bootstrap and jackknife, can satisfy criteria
(b) and (c) asymptotically, but give no guidance on how to satisfy criterion (a) in
the presence of missing data, but rather implicitly assume that estimates satisfying
(a) have already been obtained (see Efron, 1994 and the discussion by Rubin,
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1994). Such methods are only briefly discussed in Section 4.2 because they do not
represent a complete approach to the problem of missing data.

This chapter reviews these four classes of approaches to handling missing
data, with a focus on MI, which we believe is the most generally useful approach
for medical and epidemiological databases. Before presenting our review of
approaches, we start with a basic discussion of missing-data mechanisms, i.e., the
processes that govern why certain values are missing and others are observed.

2. Missing-data mechanisms and ignorability

When data are missing, it is important to distinguish various missing-data mech-
anisms, which describe to what extent missingness depends on the observed and/
or unobserved data values. Many simple methods for dealing with missing data
are based, either implicitly or explicitly, on the assumption of a particularly
simple missing-data mechanism, and these methods’ behavior can be influenced
strongly by differences between the assumed and the true mechanisms. More
formally, let Y represent the N�P matrix of complete data, and let R represent
the N�P matrix of indicator values for observed and missing values in Y. Then,
the missing-data mechanism gives the probability of the matrix of indicator var-
iables, R, given Y and possible parameters governing this process, x : pðRjY ; xÞ:

Key concepts about missing-data mechanisms were formalized by Rubin
(1976), and following this work, subsequent statistical literature (e.g., Little and
Rubin, 2002, p. 12) distinguishes three cases: missing completely at random
(MCAR), missing at random (MAR), and not missing at random (NMAR). This
language was chosen to be consistent with much older terminology in classical
experimental design for completely randomized, randomized, and not randomi-
zed studies.

MCAR refers to missing data for which missingness does not depend on any of
the data values, missing or observed. Thus, the probability that units provide data
on a particular variable does not depend on the value of that variable or the value
of any other variable: pðRjY ; xÞ ¼ pðRjxÞ: The MCAR assumption can be unre-
alistically restrictive and can be contradicted by the observed data, for example,
when men are observed to have a higher rate of missing data on postoperative
blood pressure than women.

Often, it is plausible to assume that missingness can be explained by the
observed values in the data set. For example, in an epidemiological survey, the
missingness for certain medical variables might depend on completely observed
variables such as gender, age group, health conditions, social status, etc. If the
probability of units responding to items depends only on such observed values
but not on any missing values, then the missing data are MAR, but not nec-
essarily MCAR because of the following possible dependence: pðRjY ; xÞ ¼
pðRjYobs; xÞ; where Yobs are observed values in Y, Y ¼ (Yobs, Ymis), Ymis being
the missing values in Y. Thus, if the value of blood pressure at the end of a
clinical trial is more likely to be missing when some previously observed values
of blood pressure are high, and given these, the probability of missingness is
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independent of the value of blood pressure at the end of the trial, the missingness
mechanism is MAR.

If, even given the observed values, missingness still depends on data values that
are missing, the missing data are NMAR. This could be the case, for example,
with final blood pressure, if people with higher final blood pressure tend to be less
likely to provide their blood pressure than people with lower final blood pressure,
even though they have the exact same observed values of race, education, all
previous blood pressure measurements, etc. Obviously, the richer the data set in
terms of observed variables, the more plausible the MAR assumption becomes.

In addition to defining formally the concepts underlying MCAR, MAR,
and NMAR, Rubin (1976) defined the concept of ignorability. Suppose that,
in a situation with missing data, parametric models have been specified for:
(1) the distribution of the data that would occur in the absence of missing
value, pðY jcÞ; and (2) the missing-data mechanism, pðRjY ; xÞ: Rubin (1976)
showed that if the missing data are MAR and the parameters of the data
distribution, c, and the missing-data mechanism, x, are distinct (which means, in
disjoint parameter spaces and, if Bayesian models are used, a priori independent),
then valid inferences about the distribution of the data can be obtained using
a likelihood function that does not contain a factor for the missing-data
mechanism and is simply proportional to pðYobsjcÞ ¼

R
pðY jcÞdYmis: In this sit-

uation, the missing-data mechanism may be ‘‘ignored’’ for likelihood or Bayesian
inferences.

In many cases, it is reasonable to assume that the parameters of the data
distribution and the missing-data mechanism are distinct, so that the practical
question of whether the missing-data mechanism is ignorable often reduces to a
question of whether the missing data are MAR. This argument requires some
care, however, when using random parameter models, where there can exist
ambiguity between unknown parameters and missing data (see Shih, 1992). Also,
even when the parameters are not distinct, if the missing data are MAR, then
inferences based on the likelihood ignoring the missing-data mechanism are
still potentially valid in the sense of satisfying criteria (a)–(c) of Section 1, but
may not be fully efficient. Thus, the MAR condition is typically regarded as the
more important one in considerations of ignorability. Little and Rubin (2002,
Section 6.2) include further discussion of these ideas, as does Rubin (1978b) in a
very simple but instructive artificial example.

It is common to make the ignorability assumption in analyses of incomplete
data even when it is not known to be correct, and it can be advantageous to do so
for a variety of reasons. First, it can simplify analyses greatly. Second, the MAR
assumption is often reasonable, especially when there are fully observed covari-
ates available in the analysis to ‘‘explain’’ the reasons for the missingness; further,
MAR cannot be contradicted by the observed data without the incorporation of
external assumptions such as exact normality of variables. Third, even when the
missing data are NMAR, an analysis based on the assumption of MAR can be
helpful in reducing bias by effectively imputing missing data using relationships
that are observed. Finally, even if the missing data are NMAR, it is usually not
at all easy to specify a correct nonignorable model, for the simple reason that any
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evidence concerning the relationship of missingness to the missing values is absent
because the missing values are, by definition, not observed (for example, see
Rubin et al., 1995).

3. Simple approaches to handling missing data

3.1. Complete-case analysis

The simplest analysis with incomplete data is to delete all units (cases) with at
least one missing variable, i.e., to use ‘‘complete-case’’ analysis (sometimes called
listwise deletion). This approach is generally biased unless the missing data are
MCAR; the degree of bias depends on (a) the amount of the missing data, (b) the
degree to which the assumption of MCAR is violated, and (c) the particular
analysis being implemented. Even when complete-case analysis is unbiased, it can
be highly inefficient, especially with multivariate data sets. For example, consider
a data set with 20 variables, each of which has probability of being missing of .05,
and suppose that missingness on each variable is independent of missingness
on the other variables. Then, the probability of a unit having complete data is
(.95)20 ¼ .36, so that complete-case analysis would be expected to include only
36% of the units, and many of the discarded units have a large fraction of their
values observed.

3.2. Available-case analysis

A simple alternative to the complete-case method is to include all units that have
complete data on the variables that are needed for the analysis being considered.
This approach, ‘‘available-case’’ analysis, can be regarded as ‘‘complete-case
analysis restricted to the variables of interest.’’ Available-case analysis retains at
least as many of the data values as does complete-case analysis. However, it can
be problematic when more than one quantity is estimated and the different
estimates are compared or combined, because the sample base generally changes
from one estimated quantity to the next. For example, if summaries of different
variables are to be compared, the set of units for which each variable is sum-
marized can differ across variables, and the summaries can be incomparable if the
missing data are not MCAR; an extreme artificial illustration of incomparable
estimation using available-case analyses would occur if last year’s mean choles-
terol were based on males because it was not collected for females, and this year’s
were based on females because it was not collected for males. As an extreme
example in the context of combining estimates, if the covariance of two variables
and their individual standard deviations have been estimated using available-
case analyses, when these estimates are combined to estimate the correlation
between the two variables, the resulting estimated correlation can lie outside the
range [�1, 1].

Complete-case analysis and available-case analysis were often the default
treatments of missing data in older software packages, and they are simple to
implement, which is undeniably attractive. However, as just discussed, they can
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have serious deficiencies, which can be avoided when using more modern and
more appropriate methods.

3.3. Weighting adjustments

For the case of unit nonresponse in surveys, a modification of complete-case
analysis that can help to remove bias when the missing data are not MCAR is to
weight the complete cases (i.e., the respondents) based on background informa-
tion that is available for all of the units in the survey. For example, when a
nonrespondent matches a respondent with respect to background variables that
are observed for both, the nonrespondent’s weight is simply added to the match-
ing respondent’s weight, and the nonrespondent is discarded. Because the match
is defined by observed variables, such adjustments implicitly assume MAR.

A weighting procedure was used, for example, in the National Health Inter-
view Survey (Botman et al., 2000). Typically, even if there were no adjustments
for unit nonresponse in a survey, each sampled unit would already be weighted by
the inverse of its probability of its selection, so that unbiased estimates of certain
population quantities, such as totals, under repeated sampling could be calculated
using those weights. The basic idea underlying a weighting adjustment for unit
nonresponse is to treat unit nonresponse as an extra layer of sampling, which is
accurate assuming ignorability, and then to weight each responding unit by the
inverse of its estimated probability of both selection and response. For dealing
with item nonresponse, the use of weighting adjustments is nearly always prob-
lematic, in large part because discarding the incomplete cases discards additional
observed data that are not used in creating the weighting adjustment. Therefore,
the standard method for handling item nonresponse in surveys is imputation,
discussed in the next two sections. For further discussion of weighting procedures
for nonresponse in general, see Bethlehem (2002), Gelman and Carlin (2002), and
Little and Rubin (2002, Section 3.3).

4. Single imputation

Single imputation refers to imputing one value for each missing datum. Singly
imputed data sets are straightforward to analyze using standard complete-data
methods, which is again an undeniably attractive feature. Little and Rubin (2002,
p. 72) offer the following guidelines for creating imputations. They should be:
(1) conditional on observed variables; (2) multivariate, to reflect associations
among missing variables; and (3) randomly drawn from predictive distributions
rather than set equal to means, to ensure that correct variability is reflected.
Methods for single imputation typically assume ignorability, and for simplicity,
we concentrate discussion on the ignorable case.

4.1. Simple imputation methods

Unconditional mean imputation, which replaces each missing value with the
mean of the observed values of that variable, meets none of the three guidelines
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listed above. Regression imputation can satisfy the first two guidelines by
replacing the missing values for each variable with the values predicted from
a regression (e.g., least squares, logistic) of that variable on other variables.
Replacing missing values of each variable with the mean of that variable calcu-
lated within cells defined by categorical variables is a special case of regression
imputation. Stochastic regression imputation adds random noise to the value
predicted by the regression model, and when done properly can meet all three
guidelines for single imputation.

Hot-deck imputation replaces each missing value with a random draw from a
‘‘donor pool’’ consisting of values of that variable observed on units similar to the
unit with the missing value. Donor pools are selected, for example, by choosing
units with complete data who have ‘‘similar’’ observed values to the unit with
missing data, e.g., by exact matching on their observed values or using a distance
measure (metric) on observed variables to define ‘‘similar.’’ When the distance
is defined as the difference between units on the predicted value of the variable
to be imputed (Rubin, 1986), the imputation procedure is termed ‘‘predictive mean
matching imputation’’ (Little, 1988). Hot-deck imputation, when done properly,
can also satisfy all three of the guidelines listed above for single imputation.

Suppose that single imputations have been created following the three
guidelines of Little and Rubin (2002) mentioned above. Then, analyzing such a
singly imputed data set with standard complete-data techniques is straightfor-
ward and can lead to approximately unbiased point estimates under ignorability.
This approach then satisfies criterion (a) of Section 1. However, the resulting
analyses will nearly always result in estimated standard errors that are too
small, confidence intervals that are too narrow, and p-values for hypothesis
tests that are too significant, regardless of how the imputations were created,
thus failing to satisfy criteria (b) and (c). The reason is that imputed data are
treated by standard complete-data analyses as if they were known with no
uncertainty. Thus, single imputation followed by a complete-data analysis that
does not distinguish between real and imputed values is almost always statistically
invalid.

4.2. Interval estimation after single imputation

Special methods for variance estimation following single imputation have been
developed for specific imputation procedures and estimation problems; see,
for example, Schafer and Schenker (2000) and Lee et al. (2002). However, such
techniques need to be customized to the imputation method used and to the
analysis methods at hand, and they often require the user to have information
from the imputation model that is not typically available in shared data sets.
A more broadly applicable but computationally intensive approach with singly
imputed data is to use a replication technique such as balanced repeated
replication, the jackknife, or the bootstrap for variance estimation, with the
imputation procedure repeated separately for each replicate; see, for example,
Efron (1994) and Shao (2002). But, again, such replication methods assume
criterion (a) has been satisfied by the single imputation method.
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Multiple imputation (MI), described in Section 5, is a generally valid approach
(i.e., satisfying criteria (a)–(c)), that is broadly applicable but less computationally
intensive than the replication approach just mentioned, and it is thus particularly
useful in the context of creating data sets to be shared by many users. MI simply
involves repeating the drawing of single imputations several times, but its exact
validity requires that the imputations are ‘‘proper’’ (Rubin, 1987), or more gen-
erally ‘‘confidence proper’’ (Rubin, 1996), both of which satisfy the three criteria
of Little and Rubin (2002) for imputation.

4.3. Properly drawn single imputations

For notational simplicity, assume ignorability of the missing-data mechanism,
even though the ignorability assumption is not necessary for MI to be appro-
priate. A proper imputation is often most easily obtained as a random draw from
the ‘‘posterior predictive distribution’’ of the missing data given the observed
data, which formally can be written as: pðYmisjYobsÞ ¼

R
pðYmis;cjYobsÞdc ¼R

pðYmisjYobs;cÞpðcjYobsÞdc: This expression effectively gives the distribution
of the missing values, Ymis, given the observed values, Yobs, under a model for Y

governed by c, pðY jcÞpðcÞ; where p(c) is the prior distribution on c. The
distribution pðYmisjY obsÞ is called ‘‘posterior’’ because it is conditional on the
observed Yobs, and it is called ‘‘predictive’’ because it predicts the missing Ymis.
It can be proper’’ because it reflects all uncertainty, including in parameter
estimation, by taking draws of c from its posterior distribution, pðcjYobsÞ; before
using c to impute the missing data, Ymis, from pðYmisjYobs;cÞ: More details are
given in Sections 4.4 and 4.5.

Rubin (1987, Chapter 4) labeled imputation methods that do not account for
all sources of variability as ‘‘improper.’’ Thus, for example, fixing c at a point
estimate ĉ; and then drawing m imputations for Ymis independently with density
pðYmisjYobs; ĉÞ; would constitute an improper MI procedure.

For simple patterns of missing data, such as with only one variable subject to
missingness, the two-step paradigm of drawing c from pðcjYobsÞ and then draw-
ing Ymis from pðYmisjY obs;cÞ is relatively straightforward to implement. For a
simple example, Rubin and Schenker (1987) described its use in the context of
fully parametric imputation involving logistic regression models. These steps can
also incorporate more nonparametric analogs. The simple hot-deck procedure
that randomly draws imputations for incomplete cases from matching complete
cases is not proper because it ignores the sampling variability due to the fact that
the population distribution of complete cases is not known, but rather it is
estimated from the complete cases in the sample. Rubin and Schenker (1986,
1991) described a two-step procedure, termed ‘‘approximate Bayesian bootstrap
imputation,’’ which draws a bootstrap sample from the complete cases and then
draws imputations randomly from the bootstrap sample. The initial bootstrap
step is a nonparametric analog to the process of drawing a value c* with density
pðcjYobsÞ; and the subsequent hot-deck step is a nonparametric analog to the
process of drawing a value of Ymis with density pðYmisjYobs;c

�
Þ: Dorey et al.

(1993) combined an initial bootstrap step with a fully parametric second step,
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whereas Schenker and Taylor (1996) combined a fully parametric first step with
predictive mean matching imputation at the second step. Finally, Heitjan and
Little (1991) combined an initial bootstrap step with bivariate predictive mean
matching imputation at the second step.

4.4. Properly drawing imputations with monotone missingness

If the missing data follow a monotone pattern, it is straightforward to draw
random samples from pðYmisjYobsÞ: When the missing data are not monotone,
iterative computational methods are generally necessary, as described in
Section 4.5. A missing-data pattern is monotone if the rows and columns of the
data matrix can be sorted so that an irregular staircase separates Yobs and Ymis.
Figure 1 illustrate monotone missing-data patterns. Missing data in clinical trials
are often monotone or nearly monotone when data are missing due to patient
dropout, where once a patient drops out, the patient never returns. Similarly some
longitudinal surveys have monotone or nearly monotone missingness patterns
when people who drop out never return.

Let Y0 represent fully observed variables, Y1 the incompletely observed var-
iable with the fewest missing values, Y2 the variable with the second fewest miss-
ing values, and so on, and assume a monotone pattern of missingness. Proper
imputation with a monotone missing-data pattern begins by fitting an appropri-
ate model to predict Y1 from Y0 and then using this model to impute the missing
values in Y1. For example, fit a least squares regression of Y1 on Y0 using the units
with Y1 observed, draw the regression parameters of this model from their pos-
terior distribution, and then draw the missing values of Y1 given these drawn
parameters and the observed values of Y0. Next impute the missing values for Y2

using Y0 and the observed and imputed values of Y1; for example, if Y2 is
dichotomous, use a logistic regression model for Y2 given (Y0, Y1). Continue to
impute the next most complete variable until all missing values have been im-
puted. The collection of imputed values is a proper imputation of the missing
data, Ymis, under this model, and the collection of univariate prediction models
defines the implied full imputation model, pðYmisjYobsÞ: When missing data are
not monotone, this method of imputation as described cannot be used directly to
define pðYmisjYobsÞ:

4.5. Properly drawing imputations with nonmonotone missingness

Creating imputations when the missing-data pattern is nonmonotone generally
involves iteration because the distribution pðYmisjY obsÞ is often difficult to draw
from directly. However, the Data-Augmentation algorithm (DA; Tanner and
Wong, 1987), a stochastic version of the Expectation-Maximization algorithm
(EM; Dempster et al., 1977), is often straightforward to implement. Briefly, DA
involves iterating between randomly sampling missing data given a current draw
of the model parameters and randomly sampling model parameters given a cur-
rent draw of the missing data. The draws of Ymis form a Markov Chain whose
stationary distribution is pðYmisjY obsÞ:
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Thus, once the Markov Chain has reached effective convergence, a draw
of Ymis obtained by DA is effectively a single proper imputation of the missing
data from the correct target distribution pðYmisjYobsÞ; the posterior predictive
distribution of Ymis. Many of the programs discussed in Section 5.3 use DA or
variants of DA to impute missing values. Other algorithms that use Markov
Chain Monte Carlo methods for imputing missing values include the Gibbs
sampler (Geman and Geman, 1984) and the Metropolis–Hastings algorithm
(Metropolis and Ulam, 1949; Hastings, 1970). See, e.g., Gelman et al. (2003)
for more details for these algorithms in general, and Schafer (1997) for the
application of DA for imputation. This general approach is also discussed in
Section 6.

An alternative to doing imputation under one specified model is to do impu-
tation under potentially incompatible models, e.g., a potentially incompatible
Gibbs sampler. These iterative simulation methods run a regression (e.g., least
squares, logistic) on each variable with some missing data on all other variables
using previously imputed values for these other variables, and then cycle through
each variable with missing data. In fact, such regression imputation methods
that are not necessarily derived from a joint distribution for all of the data have
been more extensively developed recently, and they provide very flexible tools for
creating imputations. As we will see in Section 5, such methods have gained
prominence for the creation of MIs in recent years, although they have a
relatively long history of application (e.g., Kennickell, 1991; Van Buuren and
Oudshoorn, 2000; Raghunathan et al., 2001; Münnich and Rässler, 2005; Van
Buuren et al., 2006). Further research should lead to greater understanding of the
theoretical properties of such methods as well as to refinements of the methods in
practice.

5. Multiple imputation

Multiple imputation (MI) was introduced by Rubin (1978a) and discussed in
detail in Rubin (1987, 2004a, 2004b); it is an approach that retains the advantages
of single imputation while allowing the uncertainty due to the process of impu-
tation to be assessed directly and included to create valid inferences in many
situations. MI is a simulation technique that replaces the missing values Ymis with
m41 plausible values, and therefore reveals and quantifies uncertainty in the
imputed values. Each set of imputations (i.e., each single imputation Ymis) thus
creates a completed data set, thereby creating m ‘‘completed’’ data sets: Y(1), y,
Y(l), y, Y(m), where Y ðlÞ ¼ ðYobs;Y

ðlÞ
misÞ: Typically m is fairly small; m ¼ 5 is a

standard number of imputations to use. Each of the m completed data sets is then
analyzed as if there were no missing data, just as with single imputation, and the
results of the m analyses are combined using simple rules described shortly.

Obtaining proper multiple-imputations is no more difficult than obtaining
a single proper imputation because the process for obtaining a proper single
imputation is simply repeated independently m times. Schafer (1997) is an
excellent source for computational guidance on creating multiple-imputations
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under a variety of models for the data Y. Multiple-imputations can be created
under both ignorable and nonignorable models for missingness, although the use
of ignorable models has been the norm, in part based on considerations of the
type discussed at the conclusion of Section 2.

5.1. Combining rules for proper multiple imputation – scalar point estimates

Let y represent the scalar estimand of interest (e.g., the mean of a variable, a
relative risk, the intention-to-treat effect, etc.), let ŷ represent the standard com-
plete-data estimator of y (i.e., the quantity calculated treating all imputed values
of Ymis as observed data), and let V̂ ðŷÞ represent the standard complete-data
estimated variance of ŷ:

Suppose MI has been used to create m completed data sets. A standard
complete-data analysis of each will produce m completed data sets, each
associated with completed-data statistics, say ŷl and V̂ l ¼ V̂ ðŷÞl ; l ¼ 1,y, m. The
m sets of statistics are combined to produce the final point estimate ŷMI ¼

m�1Sm
l¼1ŷl and its estimated variance T ¼W þ ð1þm�1ÞB; where W ¼

m�1Sm
l¼1V̂ l is the ‘‘within-imputation’’ variance, B ¼ ðm� 1Þ�1Sm

l¼1ðŷl � ŷMIÞ
2 is

the ‘‘between-imputation’’ variance, and the factor ð1þm�1Þ reflects the fact that
only a finite number of completed-data estimates ŷl ; l ¼ 1, y, m, are averaged
together to obtain the final point estimate. The quantity ĝ ¼ ð1þm�1ÞB=T

estimates the fraction of information about y that is missing due to the
missing data.

Inferences from multiply imputed data are based on ŷMI; T, and a Student’s t

reference distribution. Thus, for example, interval estimates for y have the form
ŷMI � tð1� a=2Þ

ffiffiffiffi
T
p

; where t(1�a/2) is the (1�a/2) quantile of the t distribution.
Rubin and Schenker (1986) provided the approximate value vRS ¼ ðm� 1Þĝ�2 for
the degrees of freedom of the t distribution, under the assumption that with
complete data, a normal reference distribution would have been appropriate
(i.e., the complete data would have had large degrees of freedom). Barnard and
Rubin (1999) relaxed the assumption of Rubin and Schenker (1986) to allow for a
t reference distribution with complete data, and proposed the value vBR ¼

ðv�1RS þ v̂�1obsÞ
�1 for the degrees of freedom in the MI analysis, where v̂obs ¼

ð1� ĝÞðvcomÞðvcom þ 1Þðvcom þ 3Þ; and vcom is the complete-data degrees of freedom.
See Rubin and Schenker (1991) for additional methods for combining vector-

valued estimates, significance levels, and likelihood ratio statistics; also see Little
and Rubin (2002, Section 10.2). These sources summarize work done in Meng
and Rubin (1992) and Li et al. (1991).

5.2. Discussion of MI in practice

A feature of imputation, either single or multiple, that gives such procedures great
inherent flexibility and is especially attractive in the context of data sets that are
shared by many users, is that the implicit or explicit model used for imputation,
i.e., that leads to pðYmisjY obsÞ; need not be the same as the explicit or implicit
model used in subsequent analyses of the completed data. Thus, for example, an
organization distributing public-use data can do its best job at imputing missing
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data, and then secondary analysts are free to explore a variety of models for
analyzing the completed data. The formal derivation of procedures for analyzing
multiply imputed data, however, is based on the assumption that the imputer’s
and analyst’s models are compatible, in the sense that the imputation model is
proper or confidence proper. Formally, the imputer’s and analyst’s models must
be ‘‘congenial’’ (Meng, 1994) for the resulting analyses to be fully valid. Such
congeniality can be enforced more easily when the imputer and analyst are the
same entity or communicate with each other. In the context of shared data sets,
however, to promote near-congeniality of the imputer’s and user’s implicit mod-
els, so that analyses based on multiply imputed data will be at least approximately
valid, the imputer should include as rich a set of variables in the imputation model
as possible in order to accommodate the variety of analyses that might be carried
out by secondary analysts. For example, when the data come from a complex
sample survey, variables reflecting features of the sample design should be
included as well (e.g., variables used to determine sampling weights, these weights
themselves, stratification indicators); this was done, for instance, when NHANES
III was multiply imputed (Ezzati-Rice et al., 1993) as well as when NMES was
multiply imputed (Rubin, 2003).

This advice to include as many variables as possible in an MI model was
present from the beginning (e.g., Rubin, 1987). Especially important is to
include variables used in the design of the data collection, such as variables used
to derive sampling weights, or the sampling weights themselves. Also critical is
to include domain indicators when domain estimates are to be obtained by
subsequent users. There are some criticisms of MI’s sampling variance estima-
tion equations in situations when such critical variables are excluded from the
MI model (e.g., Kim et al., 2006). Obviously, if a statistical method is imple-
mented in a way that does not even approximate its correct use, resulting
answers cannot be valid in general. Although the focus in these criticisms
has been on sampling variance estimation, even the point estimates based on
an imputation model that excludes weights or domain indicators will be
biased in general, so the issue of biased sampling variance estimation becomes
secondary.

5.3. Software for multiple imputation

Many standard statistical software packages now have built-in or add-on func-
tions for creating and analyzing multiply-imputed data sets. Routines for creating
such data sets include, for example, the S-plus libraries NORM, CAT, MIX, and
PAN, for multiply imputing normal, categorical, mixed, and panel data, respec-
tively, which are freely available (see http://www.stat.psu.edu/	jls/misoftwa.html).
NORM is also available as a stand-alone version, as is MICE–MI by chained
equations (see http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm). In
addition, IVEware is very flexible and freely available; it can be called using SAS
or can be run as a stand-alone version (http://www.isr.umich.edu/src/smp/ive/).
SAS now has procedures PROC MI and PROC MIANALYZE making the
analysis of multiply imputed data sets easy. Other software packages have been
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developed specifically for creating multiply-imputed data sets, for example, the
commercially available SOLAS (http://www.statsol.ie/solas/solas.htm), which has
been available for years, is most appropriate for data sets with a monotone or
nearly monotone pattern of missing data. Additionally, STATA provides MI
routines based on the chained equation approach and supports analyses of multiply-
imputed data sets. For more information, see www.multiple-imputation.com or
for some historical perspective, see Horton and Lipsitz (2001).

6. Direct analysis using model-based procedures

Direct analyses of the incomplete data can be implemented by specifying a model
for the complete data and then basing inferences on the likelihood or posterior
distribution under that model. In its full generality, modeling the incomplete data
is accomplished by simultaneously modeling both Y and R, as explicitly intro-
duced in Rubin (1976). Selection models (e.g., Heckman, 1976) specify the
marginal distribution of Y as well as how the distribution of R depends on Y, as
follows:

pðY ;Rjc; xÞ ¼ pðY jcÞpðRjY ; xÞ, (1)

where c and x are unknown parameters. In contrast, pattern-mixture models
(e.g., Rubin, 1977, 1978a; Little, 1993) specify the distribution of Y for each
pattern of missing data (implied by R) as well as the probability of the various
patterns occurring, as follows:

pðY ;Rjf;pÞ ¼ pðY jR;fÞpðRjpÞ,

where f and p are unknown parameters. When R is independent of Y, the missing
data are MCAR, and the selection and pattern-mixture specifications are equiv-
alent when c ¼ f and x ¼ p, i.e., the implied models are the same. When the
missing data are not MCAR, the two specifications generally differ.

Little and Rubin (2002, Chapter 15) discuss the use of selection and pattern-
mixture approaches in the context of nonignorable missingness for a variety of
types of data. As discussed earlier, the correct specification of nonignorable
models is usually difficult due to lack of information in the data about the
relationship between the missing-data mechanism and the missing values
themselves. For this reason, selection models and pattern-mixture models
for nonignorable missing data tend to depend strongly on assumptions about
specific distributions. Thus, although they offer different and interesting
approaches to modeling nonignorable missing data, it is suggested that they
be used primarily for sensitivity analyses; as in Rubin (1977) and Little (1993),
with a baseline analysis under ignorability being used as a primary point of
comparison.

Consider now the situation of ignorable missing data. The observed data are
Yobs and R, and under the selection model specification given by expression (1),
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the likelihood function based on the observed data is

Lðc; xjY obs;RÞ /

Z
pðY obs;YmisjcÞpðRjY obs;Ymis; xÞdYmis. (2)

As shown by Rubin (1976) and discussed previously, if the missing data are MAR
(i.e., pðRjYobs;Ymis; xÞ ¼ pðRjYobs; xÞÞ; and if c and x are distinct, then
inferences for c based on expression (2) are equivalent to inferences for c based
on the likelihood for c ignoring the missing-data mechanism

LðcjYobsÞ /

Z
pðYobs;YmisjcÞdYmis, (3)

because (2) factors into (3) and a factor that is free of c. Articles have appeared in
the literature describing analyses of incomplete data under the assumption of
ignorable missingness for a vast number of different analytic problems. Little and
Rubin (2002, Chapters 11–14) review several such examples.

The remainder of this section describes two general techniques: (1) the EM
algorithm (Dempster et al., 1977) and its extensions for maximum likelihood
estimation of c, and (2) DA (Tanner and Wong, 1987) and its extensions for
Bayesian posterior simulation. These techniques can be applied in the context of
nonignorable missing data as well as that of ignorable missing data, but the
presentation here is in the latter context for simplicity.

In many missing-data problems, even the observed-data likelihood (3) is com-
plicated, and explicit expressions for maximum likelihood estimation of c are
difficult to derive. The EM algorithm, a technique for computing maximum
likelihood estimates iteratively, takes advantage of the facts that: (1) if c were
known, it would be relatively easy to estimate many functions of Ymis, and (2) if
the data were complete, computation of maximum likelihood estimates would be
relatively simple. Starting with an initial estimate of c, the EM algorithm iterates
between two steps, an E-step (E for expectation) and an M-step (M for
maximization), until convergence. Given the estimate of c at iteration t, c(t), the
E-step computes the expected value of the complete-data log-likelihood given
Yobs and c ¼ c(t), QðcjcðtÞÞ ¼

R
logLðcjY ÞpðYmisjY obs;c ¼ cðtÞÞdYmis; this step

often involves computing the expected values of the complete-data sufficient
statistics, which are linear in the data for exponential family distributions. Then,
the M-step determines c(t+1) by maximizing the expected complete-data log-
likelihood QðcjcðtÞÞ: For discussions of the theoretical properties of the EM
algorithm, examples of its use, methods for obtaining standard errors based on
the algorithm, and extensions, see Dempster et al. (1977), McLachlan and
Krishnan (1997), Schafer (1997), and Little and Rubin (2002, Chapters 8, 9, and
11–15). Extensions of EM include the ECM (Meng and Rubin, 1993), ECME
(Liu and Rubin, 1994), AECM (Meng and van Dyk, 1997), and PXEM (Liu
et al., 1998) algorithms.

Bayesian inferences for c are based on the observed-data posterior distribution
with density pðcjY obsÞ / pðcÞLðcjYobsÞ; where p(c) is the prior density for c.
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As is the case with maximum likelihood estimation, working explicitly with
the observed-data posterior distribution can be difficult. DA, introduced in
Section 4.5, facilitates the creation of draws of c from density pðcjY obsÞ

using steps that are analogous to those of the EM algorithm but that involve
simulation. In a simple version, DA begins with an initial approximation to
pðcjYobsÞ and then iterates between two steps, an I-step, which imputes an
updated value for Ymis, and a P-step, which draws a value from an updated
conditional posterior distribution for c, until convergence of the distribution
of draws of Ymis and c. Specifically, given the drawn value of c at iteration
t, c(t), the I-step draws a value Y

ðtþ1Þ
mis from density pðYmisjYobs;c

ðtÞ
Þ; and then

the P-step draws a value c(t+1) from density pðcjY obs;Y
ðtþ1Þ
mis Þ: As t increases,

the draws ðY
ðtÞ
mis;c

ðtÞ
Þ converge in distribution to draws from joint density

pðYmis;cjY obsÞ; and thus the draws c(t) converge in distribution to draws
from density pðcjYobsÞ: The empirical distribution of such multiple draws
of c can be used to approximate the observed-data posterior distribution
of c. The draws at successive iterations are serially correlated, however. There-
fore, to obtain multiple independent draws from the observed-data posterior
distribution of c, it is standard practice either to independently repeat the
entire iterative procedure until convergence multiple times to generate multiple
draws or to implement the iterative procedure once until convergence and
then take every kth draw thereafter, with k chosen large enough to achieve
approximate independence. For discussions of theoretical properties, extensions
of DA, and examples of the use of Bayesian iterative simulation methods, see
Tanner and Wong (1987), Gelfand and Smith (1990), Schafer (1997), and Little
and Rubin (2002, Chapters 10–14). Gelman et al. (2003) is a good reference for
related MCMC methods such as the Gibbs sampler and the Metropolis–Hastings
algorithm.

For a specific problem, if the sample is large, likelihood-based analyses and
Bayesian analyses under diffuse prior distributions are expected to give similar
results, because the likelihood would be expected to dominate the prior distri-
bution. For small samples, however, Bayesian analyses have the advantage
of avoiding the assumption of asymptotic normality of the likelihood that is
typically made. Moreover, results under various prior assumptions can be
compared.

7. Examples

The examples we present here are from a randomized clinical trial and epide-
miological databases. All use MI to address missing data rather than any of the
ad hoc methods described at the start of this chapter or methods of direct analysis
just described. We believe this emphasis is generally appropriate in epidemiology
and medical statistics. In special cases, of course, methods other than MI can also
be appropriate or even more appropriate.
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7.1. Missing data in Genzyme’s Randomized Trial of Fabrazymes

Fabrazymes is a synthetic enzyme developed by Genzyme Corporation to
treat Fabry’s disease, a rare and serious X-linked recessive genetic disorder that
occurs due to an inability to metabolize creatinine. Preliminary results from a
randomized trial of Fabrazymes versus placebo revealed that the Fabrazymes

appeared to work well in patients in their 30s, who were not yet severely ill, in the
sense that it lowered their serum creatinine substantially. A similar randomized
clinical trial involved older patients who were more seriously ill. Since there was
no other fully competitive treatment, it was desired to make Fabrazymes com-
mercially available earlier than initially planned, a decision that would allow
patients randomized to placebo to begin taking Fabrazymes, but would create
missing Y(0) outcome data among placebo patients once they began taking
Fabrazymes. The study had staggered enrollment because of the rareness of the
condition, so that the number of monthly observations of serum creatinine for
each placebo patient depended on the time of entry into the study. Figure 1
illustrates the general pattern of monotone missing data with the same length
follow-up intended for each patient. Again, X represents baseline covariates, Y(0)
represents the repeated measures of serum creatinine for placebo patients,
and Y(1) represents the repeated measures of serum creatinine for Fabrazymes

patients.
In order to impute the missing outcomes under placebo, a complex hierarchical

Bayesian model was developed for the progression of serum creatinine in
untreated Fabry patients. In this model, inverse serum creatinine varies linearly
and quadratically in time, and the prior distribution for the quadratic trend in
placebo patients is obtained from the posterior distribution of the quadratic trend
in an analogous model fit to a historical database of untreated Fabry patients.
Thus, the historical patients’ data only influence the imputations of the placebo
patients’ data rather subtly – via the prior distribution on the quadratic trend
parameters.

Although the model fitting algorithm is complex, it is straightforward to use
the algorithm to draw c from pðcjYobsÞ for the placebo patients, and then draw
Ymis in the placebo group conditional on the drawn value of c, where, as earlier,
c represents all model parameters. Drawing the missing values in this way creates
a sample from pðYmisjYobsÞ and thus an imputation for the missing values in the
placebo group.

Fig. 1. Pattern of missing data for Genzyme trial.
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7.2. Missing Data in NMES

The NMES collects data on a random sample of approximately 30,000 members
of the US population, including hundreds of measurements of medical expen-
ditures, background information, and demographic information. MI for NMES
was more complicated than in the previous two examples because the missing-
data pattern was not monotone. Figure 2 depicts a tremendous simplification of
the missing-data pattern for NMES, where, if Y1 were fully observed, the missing-
data pattern would be monotone.

Rubin (2003) imputed the missing data in NMES by capitalizing on the sim-
plicity of imputation for monotone missing data by first imputing the missing
values that destroyed the monotone pattern (the ‘‘nonmonotone missing values’’)
and then proceeding as if the missing-data pattern were in fact monotone, and
then iterating this process. More specifically, after choosing starting values for the
missing data, iterate between the following two steps. (1) Regress each variable
with any nonmonotone missing values (i.e., Y1), on all the other variables (i.e.,
Y0, Y2, Y3), treating the current imputations as true values, but use this regres-
sion to impute only the nonmonotone missing values. (2) Impute the remaining
missing values in the monotone pattern; first impute the variable with the fewest
missing values (Y2 in Fig. 2), then the variable with the second fewest missing
values (Y3 in Fig. 2), and so on, treating the nonmonotone missing values inputed
in Step 1 as known. This process was repeated five times to create five sets of
imputations in the NMES example.

7.3. Missing data in the ABCs, a disease surveillance system

The Active Bacterial Core surveillance (ABCs) system is population-based and
laboratory-based surveillance network. Five bacterial pathogens are monitored
through the ABCs. These pathogens are: group A streptococcus, group B stre-
ptococcus, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria

? 

?

Y1Y0

?

Y2 Y3

Fig. 2. Illustrative display for type of pattern of missing data in NMES.
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meningitidis (Schuchat et al., 2001). A case of invasive disease is identified through
bacteria isolated from a normally sterile site from an individual residing within
the defined surveillance areas for each pathogen. Cases are identified through
active contact with clinical laboratories – hence the label ‘‘active surveillance.’’
Chart reviews are conducted to obtain demographic, clinical, and risk factor
information. Additional susceptibility testing and serotyping is completed for
ABCs pathogens at reference laboratories. Chart reviews generally suffer from
missing data because not all information, particularly demographic data, are
recorded in the medical record.

Multiple imputation (MI) (m ¼ 5) was used to complete the data using a
sequential regression multivariate approach (Raghunathan et al., 2001) imple-
mented with IVEware (Raghunathan et al., 2002). This approach allows a model
that accounts for the categorical and continuous nature of the variables in the
database. It also allows for skip patterns, which are important because surveillance
systems evolve over time with the case report forms adding or modifying variables.
Different sites have implemented these changes to the case report form at different
times. Also, for example, one site by law cannot report on a specific underlying
disease. The missingness in this data set is close to monotone, as shown in Fig. 3.

8. Literature review for epidemiology and medical studies

Over the last decade, there has been increasing use of MI for databases in many
areas of public health, clinical research, and epidemiology. Examples include
cross-sectional survey data, longitudinal studies, clinical trials, surveillance sys-
tems, case–control studies, etc. These databases address quality of care, descrip-
tive health statistics, AIDS-related studies, cancer mortality and survival rates,
comparison of health-related costs and outcomes across countries, prognostic
factors for cancer survival, and many other epidemiological, medically and clin-
ically important questions. An intensive literature search and review brought up
at least 40 articles using MI, as summarized in Appendix A.

?

sex 
com-
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age hosp race
dx
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out-
come 
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Fig. 3. Pattern of missing data in ABCs 2002.
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There also have been many articles comparing, evaluating, and reviewing
approaches to deal with missing data in many disciplines. For example, articles
dealing with longitudinal studies have often compared ‘‘last observation carried
forward’’ to MI techniques with the primary recommendation that MI is pref-
erable to last observation carried forward. Others studies have compared com-
plete-case analysis with MI and have found clear advantages when using MI to
retain all observations for data analysis. There have been many review articles
across different disciplines in health care (e.g., nursing) on the importance of
addressing the missing-data problem correctly. A common theme when MI is
used is the ease of data analysis using complete-data methods of analysis on
multiply-imputed data sets, and the ease of creating multiply-imputed data sets
using readily available statistical software packages. More than a hundred articles
can be found very easily regarding the comparison and evaluation of missing-data
techniques, as summarized in Appendix B.

9. Summary and discussion

Missing values are a common problem in medical and epidemiological databases.
This entry has discussed concepts regarding mechanisms that create missing data,
as well as strengths and weaknesses of commonly used approaches. Simple
approaches, such as complete-case analysis and available-case analysis, are gen-
erally valid only when the missing data are MCAR. Even then, such approaches
can be problematic.

Multiple imputation (MI) is especially useful in the context of data sets to be
shared by many users, because of its general applicability and flexibility, as well as
the fact that it allows the data producer to create one ‘‘adjustment’’ for missing
data that can be used by all secondary data analysts. MI is also a useful technique
in the context of designed missing data, such as when split questionnaire designs
(also known as matrix sampling designs) are used to reduce costs and respondent
burden (e.g., Raghunathan and Grizzle, 1995). Moreover, it offers potential for
new analyses, e.g., in the context of censored data (see Gartner and Rässler, 2005
or Jensen et al., 2006).

For specific analyses problems in the presence of missing data, especially when
the data producer and data analyst are the same entity, direct analyses of the
incomplete data can be conducted. Techniques such as the EM and DA algo-
rithms and their extensions are useful for handling the complexities created by
missing data. MI has the advantage of flexibility over direct analyses, in the sense
that the imputer can use one model to fill in the missing data, whereas the analyst
can use a different model to draw inferences from the completed data. However,
incompatibility of the two models can degrade the approximations underlying MI
methods somewhat, although many evaluations in practice suggest that this
degradation is often quite limited.

Because of uncertainties about correct models in the presence of missing data,
it is useful to conduct sensitivity analyses under different modeling assumptions.
In fact, this was one of the original motivations for MI. Rubin (1978a, 1987,
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Chapter 1) recommended the creation of imputations under multiple models for
purposes of sensitivity analysis, in addition to the creation of repeated imputa-
tions under a single model for assessments of variability due to missing data
under that model. For examples of such sensitivity analyses, see Rubin (1977,
1986) and Rässler (2002).

Many of the approaches discussed herein can be applied under the assumption
of either ignorable or nonignorable missing data. The assumption of ignorability
cannot be contradicted directly by the observed data, and procedures that assume
ignorability typically lead to at least partial corrections for bias due to missing
data. Nonignorable models can be very difficult to specify, and their performance
can be quite sensitive to modeling assumptions. Therefore, a sensible approach is
to use ignorability as a ‘‘baseline’’ assumption, and to conduct additional sen-
sitivity analyses using nonignorable models. For comparisons of the performance
of ignorable and nonignorable models, see Glynn et al. (1986), Rubin et al.
(1995), and Baker et al. (2003).

For interested readers, some recent books containing further discussion of
topics covered in this chapter, as well as related topics, include Robert and
Casella (1999), Groves et al. (2002), Little and Rubin (2002), and Gelman and
Meng (2004).
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Münnich, R., Rässler, S. (2005). PRIMA: A new multiple imputation procedure for binary variables.

Journal of Official Statistics 21, 325–341.

Raghunathan, T.E., Grizzle, J.E. (1995). A split questionnaire survey design. Journal of the American

Statistical Association 90, 54–63.

Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., Solenberger, P. (2001). A multivariate

technique for multiply imputing missing values using a sequence of regression models. Survey

Methodology 27, 85–95.

Raghunathan, T.E., Solenberger, P., Van Hoewyk, J. (2002). IVEware: Imputation and Variance

Estimation Software – User Guide. Survey Methodology Program. Survey Research Center, Institute

for Social Research, University of Michigan, Ann Arbor, MI.
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Meta-Analysis

Edward L. Spitznagel Jr.

Abstract

This chapter provides an overview of modern meta-analysis, a statistical

method for combining the results of both published and unpublished studies

involving a method of treatment, a source of illness, a protective factor, or any

other aspect that has been repeatedly studied. Both fixed and random effects

models are discussed. Forest plots as a reporting standard are introduced. The

problem of publication bias, which is the tendency for results that are not

statistically significant either not to be published or to appear in less accessible

locations, is discussed, along with possible remedies. Finally, the important

contribution of the Cochrane Collaboration to meta-analysis is described.

1. Introduction

The PubMed service of the U.S. National Library of Medicine currently indexes
over 16,000,000 publications. For any common disease, there are many publi-
cations that study the effect of the same treatment on different subjects. These
studies may vary from double-blind randomized controlled clinical trials to
simple observational reports. Their conclusions may disagree, from a finding that
a new treatment is superior to the standard, that no evidence for a difference
exists, to the new treatment being inferior to the standard.

Combining the information from these studies into a state-of-our-knowledge
summary is the province of meta-analysis. Meta-analysis can be considered a
special case of a ‘‘systematic review.’’ A systematic review has been defined (Egger
and Davey Smith, 1997) as ‘‘any review of a body of data that uses clearly defined
methods and criteria.’’ In the case of meta-analysis, the methods and criteria are
fully quantitative in nature, with the ultimate goal being not just to establish that
an effect exists, but also to estimate the size of the effect.

Meta-analysis is used to combine information about treatment effects, but it is
also used to combine information about risk and protective factors in epidemi-
ology. Because treatment effects are estimated from randomized controlled trials,
meta-analysis of them is fairly straightforward.
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By contrast, a meta-analysis of the effects of second-hand smoke from
epidemiologic data typically involves both prospective and retrospective infor-
mation, with the possibility of there being different dosage levels in each study.
(The tobacco companies know this and have used it aggressively in their legal
defense.) Nevertheless, a subject such as the relationship between smoking and
health is so important that the information should be combined, with care taken
to avoid pitfalls, and any caveats remaining stated clearly.

2. History

The prefix ‘‘meta’’ is Greek for ‘‘after’’ or ‘‘beyond.’’ It is part of the title of a work
of Aristotle, Metaphysics, which was a philosophical work on existence. Aristotle,
however, did not coin the term. An editor, in ordering Aristotle’s works, placed
those writings immediately after the writings on physics, and dubbed them
metaphysics, meaning ‘‘beyond physics.’’ Later philosophers took the prefix
‘‘meta’’ to imply being higher, on another plane, and that is how many words
beginning with ‘‘meta’’ came into being. In meta-analysis the results of other
studies are treated as data which the meta-analysis operates on or summarizes.

The term meta-analysis is fairly recent (Glass, 1976) but the idea itself goes
back more than 100 years. Pearson (1904) investigated the relationship between
inoculation and disease for ‘‘enteric fever,’’ known to us as typhoid fever, in
British soldiers in Africa and India. He calculated tetrachoric correlations for a
number of subgroups, both for disease incidence and mortality, finding most of
them to be statistically significant, but neither as high nor as uniform as the
correlations between smallpox vaccination and mortality. The correlations for
inoculation with disease incidence ranged from 0.100 to 0.445 across five groups.
For smallpox, he noted that the correlations for inoculation and mortality were
very uniform and all on the order of 0.6. Because of the nonuniformity of the
correlations and the fact that inoculation was voluntary, he suggested that a study
be done in which a list of volunteers be made with every other volunteer receiving
inoculation. (This suggestion for selection of a control group was fairly common
before randomization became adopted as a gold standard. Note that it would
have been an ‘‘open label’’ study, not even single-blinded.)

In Statistical Methods for Research Workers, Fisher (1932) gave an easy-to-use
method for combining P-values from several different studies through the
chi-square distribution. For any single study in which the null hypothesis is true,
�2 ln(P) will have a chi-square distribution with 2 degrees of freedom (df). For a
set of n studies in each of which the null hypothesis is true, �2Sln(Pi) will have a
chi-square distribution with 2n df. For example, suppose three studies comparing
the effectiveness of a new treatment for asthma with standard treatment
have been performed, and that their P-values are 0.061, 0.033, and 0.020. The
chi-square value combining these individual results is:

�2ðlnð0:061Þ þ lnð0:003Þ þ lnð0:020ÞÞ ¼ � 2ð�2:797� 3:411� 3:912Þ

¼ 20:240.
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The df are 6, and the corresponding P-value is 0.0025. Thus, the weak results
from the three separate studies combine into a single very strong conclusion.

Fisher undoubtedly chose to use chi-squares with 2 df because of the simple
relationship between theP-value and the distribution function. Chi-squarewith 2 df
follows an exponential distribution, so all that is needed to go from the P-value
to the distribution function is a table of natural logarithms, easily available at the
time.

Fisher’s method represents an important step beyond what Pearson did. In
Pearson’s example, most of the individual 2� 2 tables were already statistically
significant, so it was not so necessary to obtain an overall P-value. Most meta-
analyses do not deal with such overwhelming evidence, making it very important
to combine the evidence into an overall assessment of statistical significance.

However, Fisher’s method does not attempt to make an overall estimate of
effect size. Also, it does not address the possibility that the effect size might vary
greatly from one site or study to another, as Pearson noticed with inoculation to
prevent typhoid. Finally, because chi-square does not address directionality of
effects, his method could wind up computing overall significance of effects that
are in opposite directions. Fisher did address this last point (Mosteller and Fisher,
1948) by suggesting that all tests could be done one-tailed, and then double the
final P-value.

3. The Cochran–Mantel–Haenszel test

Cochran (1954) provided the next important contribution, a way of computing a
test for association that controls for the different sources of information. Shortly
thereafter, Mantel and Haenszel (1959) developed an equivalent approach, which
included a method for obtaining a combined estimate of the odds ratio. We know
this approach today as the Cochran–Mantel–Haenszel test. The setting is that a
set of 2� 2 tables has been obtained, from different sources or by stratification
within a single source. Collapsing these 2� 2 tables into a single one can induce a
spurious relation or reduce the strength of relations that were present in the
individual tables (Yule, 1903; Simpson, 1951). The Cochran–Mantel–Haenszel
approach avoids this pitfall, commonly known as Simpson’s Paradox.

As an illustration of the Cochran–Mantel–Haenszel test we will examine the
meta-analysis of three studies comparing two types of three-layer bandages,
elastic and inelastic, for healing of venous leg ulcers (Fletcher et al., 1997). The
results of the three separate studies are shown in Table 1.

The test can be done by hand, but it probably is best done with statistical
software. Regardless of the number of individual studies, it produces a chi-square
with 1 df. In our case, we obtain w2 ¼ 11.237, P ¼ 0.0008. Thus, the combined
information from the three studies yields a more convincing result than the best of
the single studies.

While the chi-square is somewhat intricate to hand-calculate, the combined
odds ratio is very easy to do by hand. Let the symbols Ai, Bi, Ci, and Di represent
the frequencies123 from each study as shown in Table 2, and let
Ni ¼ Ai+Bi+Ci+Di be the sample size from each study.
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Then the combined odds ratio estimate is:

OR ¼

P
AiDi=NiP
BiCi=Ni

¼
24:282

10:527
¼ 2:307.

This value lies roughly in the middle of the three individual studies’ odds ratios,
1.722, 2.270, and 2.947. This estimate makes sense if one believes that there is a
common odds ratio across all trials, with each trial producing an estimate of that
odds ratio. This would be described as a fixed effects model. The alternative to
this assumption is that odds ratios differ across trials, with the goal being to
estimate the center of the population of possible odds ratios. This would be
described as a random effects model. As we will see, both kinds of models are
amenable to meta-analysis.

A test for interaction, such as the Breslow–Day test, can help in determining
whether a fixed effects or a random effects model is more appropriate. In our
case, the Breslow–Day chi-square is 0.964, with 2 df, and P-value 0.617. There-
fore, we have no evidence for the fixed effects model being incorrect.

The calculations above were performed using the SAS FREQ procedure,
whose output is given below:

The FREQ procedure
Summary statistics for status by bandage controlling for study
Cochran–Mantel–Haenszel statistics (based on table scores)

Statistic Alternative Hypothesis df Value Probability

1 Nonzero correlation 1 11.2367 0.0008
2 Row mean scores differ 1 11.2367 0.0008
3 General association 1 11.2367 0.0008

Table 1

Frequencies from three studies of the effect of bandage type on the healing of leg ulcers

Study Northeast et al. Callam et al. Gould et al.

Outcome Healed Not Healed Healed Not Healed Healed Not Healed

Elastic Bandage 31 26 35 19 11 7

Inelastic Bandage 18 26 30 48 9 13

Odds Ratios 1.722 2.947 2.270

Significance Tests w2 ¼ 1.806, P ¼ 0.179 w2 ¼ 8.866, P ¼ 0.003 w2 ¼ 1.616, P ¼ 0.204

Table 2

Symbols for the frequencies used in the Cochran-Mantel-Haenszel estimate of the odds ratio

Study Northeast et al. Callam et al. Gould et al.

Outcome Healed Not Healed Healed Not Healed Healed Not Healed

Elastic Bandage A1 B1 A2 B2 A3 B3

Inelastic Bandage C1 D1 C2 D2 C3 D3
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Estimates of the common relative risk (row 1/row 2)

Type of Study Method Value 95% Confidence limits

Case–control Mantel–Haenszel 2.3067 1.4119 3.7685
(Odds ratio) Logit 2.3065 1.4093 3.7749
Cohort Mantel–Haenszel 1.5401 1.1900 1.9931
(Col 1 risk) Logit 1.4875 1.1533 1.9187
Cohort Mantel–Haenszel 0.6782 0.5373 0.8562
(Col 2 risk) Logit 0.6740 0.5347 0.8495

Breslow–Day test for homogeneity of the odds ratios

Chi-square 0.9643
df 2
Probability4chi-square 0.6175

Total sample size ¼ 273

The output gives six different estimates of association, of which the one we
have discussed is the Cochran–Mantel–Haenszel estimate of the odds ratio. The
other estimate of the odds ratio is calculated from a weighted mean of log-odds
ratios. It comes out practically the same as the Mantel–Haenszel estimate. The
Mantel–Haenszel odds ratio has the advantage of being computable even if one of
the stratified tables contains a frequency of zero, while the other estimate is not.

The remaining four estimates of association are risk ratios, rather than odds
ratios. The odds ratio has a special advantage in meta-analysis in that it can be
estimated from amixture of clinical trials, cohort studies, and case–control studies.
Risk ratios cannot be estimated if there are any case–control studies in the mix.

4. Glass’s proposal for meta-analysis

Glass (1976) appears to have been the first person to use the term meta-analysis in
the published literature. He states, ‘‘I use it to refer to the statistical analysis of a
large collection of analysis results from individual studies. It connotes a rigorous
alternative to the casual, narrative discussions of research studies which typify our
attempts to make sense of the rapidly expanding research literature.’’ While not
describing specific protocols for meta-analysis, he called for it to be statistical
analysis just as rigorous as the statistics in the research being reviewed.

Although Glass’s (1976) article did not give concrete details, Smith and Glass
(1977) give a good illustration of what he had in mind: ‘‘Results of nearly 400
controlled evaluations of psychotherapy and counseling were coded and inte-
grated statistically.’’ Their conclusions were that psychotherapy is effective, but
that essentially no differences among the many types of therapy were evident.

Modern meta-analyses, at least within the medical literature, focus on more
modest numbers of studies, at most a few dozen. They do exclude studies based
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on lack of rigor, whereas Glass (1976) felt that studies should be included re-
gardless of level of rigor: ‘‘y my experience over the past two years with a body
of literature on which I will report in a few minutes leads me to wonder whether
well-designed and poorly designed experiments give very different findings. At
any rate, I believe the difference to be so small that to integrate research results by
eliminating the ‘‘poorly done’’ studies is to discard a vast amount of important
data.’’

A search of PubMed returned 7605 articles containing ‘‘meta-analysis’’ in
the title and 14,387 articles with ‘‘meta-analysis’’ as publication type. Clearly,
meta-analysis has become an important tool in the medical literature.

5. Random effects models

The Cochran–Mantel–Haenszel method has proved to be an important tool in
meta-analysis. However, it makes the assumption that there is a common odds
ratio across all studies. This would be described as a fixed effects model. In many
practical settings, this assumption is not justified, and must be replaced with a
random effects model. For example, in case–control studies of the relationship of
occupational asbestos exposure to lung cancer, exposure to asbestos may only be
available as a binary yes-or-no variable, rather than amount of exposure. The
odds ratio from these studies then becomes random, and the goal of the meta-
analysis is to estimate the ‘‘typical’’ odds ratio as some measure of the center of
the distribution of all possible odds ratios.

DerSimonian and Laird (1986) developed a method for dealing with meta-
analysis of random effects, which has become the standard. We will illustrate it by
using the STATA user-contributed metan command to perform a meta-analysis
of the venous leg ulcer data which we analyzed earlier. The metan command has
the option to do both fixed and random effects meta-analyses. First, here is the
result of using it to do the fixed effects meta-analysis:

Study OR [95% Confidence Interval] % Weight

Northeast 1.722 0.777 3.816 44.02
Callam 2.947 1.433 6.062 41.02
Gould 2.270 0.636 8.106 14.96
M–H pooled OR 2.307 1.412 3.769 100.00

Heterogeneity chi-squared ¼ 0.96 (df ¼ 2), P ¼ 0.618

I-squared (variation in OR attributable to heterogeneity) ¼ 0.0%

Test of OR ¼ 1: z ¼ 3.34, P ¼ 0.001

As indicated by the label ‘‘M–H pooled OR,’’ this result is equivalent to
the Cochran–Mantel–Haenszel results from the SAS FREQ procedure given
earlier.
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Second, here is the result of using it to do the random effects meta-analysis:

Study OR [95% Confidence Interval] % Weight

Northeast 1.722 0.777 3.816 38.35
Callam 2.947 1.433 6.062 46.67
Gould 2.270 0.636 8.106 14.98
D+L pooled OR 2.306 1.409 3.775 100.00

Heterogeneity chi-squared ¼ 0.96 (df ¼ 2), P ¼ 0.618

I-squared (variation in OR attributable to heterogeneity) ¼ 0.0%

Estimate of between-study variance Tau-squared ¼ 0.0000

Test of OR ¼ 1: z ¼ 3.32, P ¼ 0.001

The label ‘‘D+L pooled OR’’ refers to the method being that of DerSimonian
and Laird. Note that the odds ratio and its confidence limits are almost identical
with those from the Cochran–Mantel–Haenszel fixed effects analysis. Further-
more, the measures of heterogeneity give no evidence for favoring the random
effects model over the fixed effects model.

For a demonstration of an appreciable difference between the two methods, let
us return to the data from Pearson’s (1904) study. He had noticed that, although
all correlations between inoculation and disease incidence were positive, they were
highly variable. Although he used tetrachoric correlations, the same is true of the
odds ratios. First, let us examine the results of doing a fixed effects analysis:

Study OR [95% Confidence Interval] % Weight

Hospital staffs 0.328 0.209 0.516 7.60
Ladysmith Garrison 0.127 0.091 0.179 44.77
Methuen’s column 0.432 0.288 0.649 10.51
Single regiments 0.931 0.671 1.290 8.23
Army in India 0.575 0.461 0.717 28.90
M–H pooled OR 0.370 0.322 0.425 100.00

Heterogeneity chi-squared ¼ 84.79 (df ¼ 4), P ¼ 0.000

I-squared (variation in OR attributable to heterogeneity) ¼ 95.3%

Test of OR ¼ 1: z ¼ 14.04, P ¼ 0.000

The first four odds ratios are from South African units, while the last is from
India. The measures of heterogeneity give strong evidence for favoring the ran-
dom effects model over the fixed effects model. The five odds ratios themselves
vary from 0.931 down to 0.127. (They are all less than 1, indicating that those who
were inoculated had lower risk of contracting typhoid.) The Cochran–Mantel–
Haenszel pooled estimate of the odds ratio is 0.370. However, since the test for
heterogeneity of the odds ratios is significant, this pooling is inappropriate, and
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the DerSimonian–Laird estimate should be used in its stead. Here, then, are the
results of fitting the random effects model:

Study OR [95% Confidence
Interval]

% Weight

Hospital staffs 0.328 0.209 0.516 19.36
Ladysmith Garrison 0.127 0.091 0.179 20.10
Methuen’s column 0.432 0.288 0.649 19.68
Single regiments 0.931 0.671 1.290 20.17
Army in India 0.575 0.461 0.717 20.69
D+L pooled OR 0.397 0.200 0.787 100.0

Heterogeneity chi-squared ¼ 84.79 (df ¼ 4), P ¼ 0.000

I-squared (variation in OR attributable to heterogeneity) ¼ 95.3%

Estimate of between-study variance Tau-squared ¼ 0.5759

Test of OR ¼ 1: z ¼ 2.65, P ¼ 0.008

The pooled estimate of the odds ratio is now 0.397, larger than the value 0.370
from the fixed effects analysis. In addition, its confidence interval is considerably
larger, and while it is still significantly different from 1, its Z-value of 2.65 is much
smaller than the value 14.04 from the fixed effects analysis. Thus, we have
evidence that inoculation overall is effective, but due to the variations from one
stratum to another, the evidence is not nearly as strong as it would have been had
the odds ratios been homogeneous.

By combining our experience from these two examples, we conclude that
in both cases it is safe to use the DerSimonian–Laird procedure. In the first case,
of homogeneous odds ratios, it produces essentially the same results as Cochran–
Mantel–Haenszel and therefore can be used in place of Cochran–Mantel–
Haenszel. In the second case, of heterogeneous odds ratios, it gives very different
results and therefore must be used.

6. The forest plot

The information given in the tables above can be graphed in a forest plot. The
forest plot has come to be regarded as a standard for reporting meta-analysis
results. In fact, the Cochrane Collaboration, to be described in Section 8, has
adopted as its logo a forest plot contained in a circle made up of two opposing
letters ‘‘C.’’

In Figure 1 is the forest plot for the Cochran–Mantel–Haenszel meta-analysis
of the venous leg ulcer data. Three lines represent the odds ratios and confidence
intervals for the individual studies. The box at the center of each line represents
the point estimate of the odds ratio, and its size represents the weight given to the
odds ratio in estimating the pooled odds ratio. Since the precision of estimate is
related to the sample size, typically, the larger the box, the smaller is the
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confidence interval. The center of the diamond represents the pooled point
estimate of the odds ratio. The left and right vertices of the diamond represent the
confidence interval for the pooled odds ratio.

Two vertical lines represent the null hypothesis OR ¼ 1 (solid line) and the
pooled point estimate of the odds ratio (dashed line). If the diamond does not
overlap the solid line, we have rejected the null hypothesis of no treatment effect.
Additional diagnostic information can be gleaned from whether the individual
study confidence intervals overlap the dashed line. In our example, all three do. A
confidence interval that does not overlap the dashed line indicates the corre-
sponding study is inconsistent with the pooled estimate of the odds ratio. That
would not be expected in a fixed effects meta-analysis, but would be perfectly
reasonable in a random effects meta-analysis. In fact, in Figure 2, the forest plot
from the DerSimonian–Laird meta-analysis of Pearson’s typhoid data, two of the
five confidence intervals do not overlap the dashed line.

7. Publication bias

In most fields of research, there is a tendency for studies to be published based on
their results. This is known as publication bias. A meta-analysis that relies only on
published results runs the risk of incorporating this bias into its own findings.

Overall

Gould

Northeast

Callam

id

Unpub

1992

1990

year

.25 1 4.5 1 2 4

Fig. 1. Forest plot for the meta-analysis of three studies of the effect of bandage type on the healing of

leg ulcers. A fixed effects model was used.
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Experience suggests that this bias is most likely to be in whichever is the positive
direction.

Egger and Davey Smith (1995) gave eight examples, four in which meta-
analyses were corroborated by large randomized controlled trials, and the other
four in which no effect was found in an RCT. One of the four in which no effect
was found in the RCT was treatment with magnesium for reducing the risk of
death following myocardial infarction.

Following is the result of a random effects meta-analysis on all studies un-
covered by Sterne et al. (2001) up to the time of the ISIS-4 definitive study of
1995. The forest plot is given in Figure 3.

Study OR [95% Confidence Interval] % Weight

Morton (1984) 0.436 0.038 5.022 2.32
Rasmussen (1986) 0.348 0.154 0.783 12.08
Smith (1986) 0.278 0.057 1.357 4.91
Abraham (1987) 0.957 0.058 15.773 1.81
Feldstedt (1988) 1.250 0.479 3.261 10.02
Schechter (1989) 0.090 0.011 0.736 3.04
Ceremuzynski (1989) 0.278 0.027 2.883 2.51
Bertschat (1989) 0.304 0.012 7.880 1.36

NOTE: Weights are from random effects analysis

Overall
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Fig. 2. Forest plot for the meta-analysis of Pearson’s data on the effect of typhoid inoculation. A

random effects model was used.
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Singh (1990) 0.499 0.174 1.426 8.94
Pereira (1990) 0.110 0.012 0.967 2.86
Schechter 1 (1991) 0.130 0.028 0.602 5.19
Golf (1991) 0.427 0.127 1.436 7.36
Thogersen (1991) 0.452 0.133 1.543 7.24
LIMIT-2 (1992) 0.741 0.556 0.988 22.18
Schechter 2 (1995) 0.208 0.067 0.640 8.16
D+L pooled OR 0.425 0.287 0.628 100.00

Heterogeneity chi-squared ¼ 21.15 (df ¼ 14), P ¼ 0.098

I-squared (variation in OR attributable to heterogeneity) ¼ 33.8%

Estimate of between-study variance Tau-squared ¼ 0.1580

Test of OR ¼ 1: z ¼ 4.29, P ¼ 0.000

The pooled odds ratio from these 15 studies is 0.425, representing a reduction
in risk of greater than 50% associated with magnesium. Only one study
(Feldstedt, 1988) had an odds ratio of greater than 1. The overall Z-value for the
meta-analysis is 4.29, significant with P-value less than 0.0001. Yet the ISIS-4
study, based on a sample size of 58,050, resulted in a nonsignificant result, with
odds ratio of 1.055 and confidence interval (0.991, 1.122). Clearly some form of
publication bias occurred, with 14 of 15 studies of a noneffective treatment going

NOTE: Weights are from random effects analysis
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Feldstedt (1988)
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Fig. 3. Forest plot for 15 studies of treatment with magnesium following myocardial infarction. A

random effects model was used.
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in the positive direction. Furthermore, 6 of the 15 had confidence intervals
excluding 1 and therefore were statistically significant.

The question then arises as to whether we can tell from studies we have at hand
whether there might be publication bias. Egger et al. (1997) recommend a graph-
ical technique called a funnel plot. A funnel plot is a scatterplot of studies in which
the estimated effect size is plotted on the horizontal axis and the reciprocal of the
standard error (precision) of the estimate is plotted on the vertical axis. In the case
of odds ratios, ln(OR) is plotted on the horizontal axis, and SE(ln(OR)) is plotted
on the vertical axis. If there is no publication bias, the plot should be symmetric
left-to-right, looking like an inverted funnel. If there is publication bias, the plot
can be expected to be asymmetric. A funnel plot of these studies appears in
Figure 4.

The plot is clearly asymmetric, with a very large tail of low-precision, high
effect size studies to the left, but no tail whatsoever to the right. The one study
with high precision, LIMIT-2, ought to be at the ‘‘spout’’ of the funnel,
with roughly the same number of studies to its left and to its right. Instead we
find it to be almost at the right edge of the scatterplot, with only two studies
beyond it.

There are two formal tests for symmetry of the funnel plot (Begg and
Mazumdar, 1994; Egger et al., 1997). There is also a technique called trim and fill

(Duval and Tweedie, 2000) for adding studies to a funnel plot until it becomes
symmetric. In the trim phase, studies are removed if they lie beyond 95% con-
fidence limits for what the funnel is estimated to be. In the case of Figure 4, seven
studies were removed. With these studies removed, a new estimate of the pooled
OR is made. Those omitted studies are then returned to the meta-analysis along
with mirror image counterparts. Based on Figure 4, it would seem that more than

1/
se

(lo
gO

R
)

OR (log scale)
.090038 1.25

.601941

6.82255

Fig. 4. Funnel plot for 15 studies of treatment with magnesium following myocardial infarction.
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seven studies should have been trimmed and filled. Perhaps the method did not
work due to the very large number of (apparently) missing studies.

An alternative to attempting to infer the results of unpublished studies is
to become extremely aggressive about searching for such studies. For example,
Cochrane Collaboration studies (discussed further in Section 8) typically involve
searching three electronic databases, Medline, EMBASE, and CENTRAL
(Cochrane Central Register of Controlled Trials) as well as the ‘‘gray litera-
ture,’’ such as presentations at meetings that were never published and therefore
not likely to be indexed in electronic databases.

8. The Cochrane Collaboration

The Cochrane Centre was founded in 1992 and became the Cochrane Collab-
oration a year later in 1993. It is named in honor of the British epidemiologist
Archie Cochrane (1909–1988), who was instrumental in encouraging registry of
all randomized controlled trials, beginning with the Oxford Database of Perinatal

Trials.
As of mid-2005, 13,047 people from 100 different countries were listed as

members of the Collaboration, as advisors, editors, translators, reviewers, and
referees. As of early 2007, Medline indexes 4294 Cochrane Collaboration meta-
analytic reviews of controlled clinical trials. (They may be found by searching
PubMed for the string ‘‘Cochrane Database Syst Rev’’ [Journal].)

In addition to publishing reviews, the Cochrane Collaboration also maintains a
searchable registry of randomized controlled trials. As of early 2007, this database
listed 489,167 randomized clinical trials.

A Cochrane review must first go through a protocol stage in which the authors
list background, objectives, consideration criteria for studies, search methods,
methods to be used in the review, minimum methodological quality for study
inclusion, and potential conflicts of interest. Only after the protocol has been
approved can the actual review be undertaken. Most reviews will eventually be
subject to revision based on availability of future studies.

While meta-analysis can be used for studies other than controlled clinical trials,
the Cochrane Collaboration serves as an excellent example of the quality and
methodology that can be used in systematic reviews.
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The Multiple Comparison Issue in
Health Care Research

Lemuel A. Moyé

Abstract

Multiple analyses in clinical trials comprise the execution and interpretation

of numerous statistical hypotheses within a single clinical research effort. These

analyses appear in many guises, e.g., the effect of therapy on multiple

endpoints, the assessment of a subgroup analysis, and the evaluation of a dose–

response relationship. Both the research and medical communities are

frequently exposed to the results of these analyses, and common forums for

their dissemination are the presentation of clinical trial results at meetings; the

appearance of these results in the peer-reviewed, scientific literature; and

discussions before regulatory agencies that are considering the approval of a

new intervention. Unfortunately, the result of these analyses is commonly

confusing and not illuminating. This chapter provides a useful context in to

interpret these sometimes complex results.

1. Introduction

The multiple comparison problem focuses on the best interpretation of signifi-
cance testing in the multiple analysis setting. Since type I error is accrued with
each statistical hypothesis test, the occurrence of multiple events increases the
likelihood that a type I error has occurred. The correction for multiple compar-
isons is the process by which type I error is distributed across multiple statistical
hypothesis tests in sample-based research. The multiple comparison issue has
expanded to include multiple evaluations of the same endpoint over time, and in
some cases, multiple comparisons of the same endpoint at the same point in time
using different statistical procedures.

Accepted as a useful tool in health care investigations by biostatisticians,
epidemiology has nevertheless retained important concerns, sometimes rising to
crisis levels, over the strategy of allocating type I error in a clinical investigation.
These issues have arisen because of the historical difficulties many epidemiologists

616

dx.doi.org/10.1016/S0169-7161(07)27021-X.3d


retain with the raison dêtre of multiple comparisons, i.e., the use of significance
testing in health care research. These historical concerns have identified important
weaknesses in the strategy of relying on significance testing as the sole arbiter of a
research effort’s results. These limitations are well founded, and must inhabit the
ensuring discussions of multiple comparison strategies.

After a brief discussion of the role of significance testing, this chapter will
review the justification for multiple comparisons, commonly used corrections for
multiple comparisons, and recent advances in the field including sequential
rejective procedures, re-sampling algorithms, and the use of dependent hypothesis
testing. The later will be applied to commonly used analyses (combined end-
points, and subgroup evaluations) in health care research.

2. Concerns for significance testing

Ronald A Fisher’s seminal manuscripts on field experimentation appeared in the
first edition of his 1925 book Statistical Methods for Research Workers (Fisher,
1925) and in a short 1926 paper entitled ‘‘The arrangement of field experiments’’
(Fisher, 1926). This work contained many of Fisher’s principal ideas on the
planning of experiments, including the idea of significance testing. It is here that
the notion of a 5% level of significance first appeared.

Fisher’s example to motivate the use of significance testing was the assessment
of manure’s influence on crop yield. In this circumstance, the yields of two
neighboring acres of land, one treated with manure and the other without were to
be compared. Fisher concluded that if there was only one in twenty chance that
the play of chance would produce a 10% difference in crop yield then,

‘‘y the evidence would have reached a point which may be called the verge of

significance; for it is convenient to draw the line at about the level at which we

can say ‘Either there is something in the treatment or a coincidence has

occurred such as does not occur more than once in twenty trials.’ This level,

which we may call the 5 per cent level point, would be indicated, though very

roughly, by the greatest chance deviation observed in twenty successive trials.’’

(Fisher, 1926).

The development of the null and alternative hypotheses, confidence intervals
rapidly followed (Neyman and Peason, 1933; Pytkowsi, 1932; Neyman, 1937).

However, concerns about significance testing and its role in health care were
raised at once (Edwards, 1972; Berkson, 1942a, b). The concerns were threefold.
First, significance testing, with its emphasis on rejection or non-rejection of the
null hypothesis, focused on the scientific thesis that the investigator did not
believe (Fisher named the null hypothesis to indicate that it was the hypothesis to
be nullified by the data). This was a change in the paradigm of a generation of
scientists schooled to build a scientific case to affirm their concept of the research
question, not to reject a hypothesis that they did not believe. Second, rejection of
the null hypothesis did not mean that the null hypothesis was wrong. To many
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critics, a small p-value should alter the level of belief in the null hypothesis, but
should not lead to its outright rejection, since the null hypothesis may still be true.
Finally, many workers believed Fisher was equating small p-values with a cau-
sality argument (i.e., a small p-value was the sine qua non of a causal relationship).

These concerns were refuted by Fisher and others to the satisfaction of many in
the research community, and significance testing became an accepted tool in
science. The dramatic expansion of its use in health care was fueled by the
explosive growth in medical research in the 1940s and 1950s, with grant reviews
and journal editors turning to the p-value as a way to identify research that was
both fundable and publishable (Goodman, 1999; Fisher, 1925).

It is not necessarily tragic that the use of p-values accelerated; however, it is
unfortunate that they began to take on a new, subsuming, and inappropriate
meaning in the medical research community. Despite Bradford Hill’s attempts
to relegate them to merely supportive (Hill, 1965)], other writing continued to
coronate these measures (Anonymous, 1988), demonstrating that extreme, some-
times irrational conclusions were being based solely on the p-value. The critical
concern expressed in epidemiology was that workers were now replacing their
own thoughtful review of a research effort with the simple evaluation of the
p-value (Poole, 1987). It was inevitable that some scientist would actively resist
this degradation in the scientific thought process, with epidemiologists actively
resisting the use of p-values (Walker, 1986a, b; Fleiss, 1986a, b, c), confusing
statistical significance with clinical importance. Specifically, he feared that many
workers now assumed that a finding of statistical significance was synonymous
with clinical significance and the reverse, i.e., statistically insignificant effects
were clinically insignificant. The sharp debates at the Federal Food and Drug
Administration (FDA) over whether the heart failure drug carvedilol should be
approved, revealed the confusion over the true role of p-values in health care
research (Packer et al., 1996; Moyé and Abernethy, 1996; Fisher, 1999, Moyé,
1999).

3. Appropriate use of significance testing

If statisticians and epidemiologists are to have a shared role in research inter-
pretation, then the appropriate role of significance testing in research efforts has
to be identified. It perhaps might be found in the following line of reasoning.

It is undeniable that sampling error must be addressed in sample-based
research. The compromise investigators make in selecting a sample (mandating
that they give up the ability to answer the research question with certainty) injects
sample-to-sample variability in their work. The tendency of a population with one
effect size to produce different samples each with a different effect size presents an
important obstacle to generalizing sample findings back to the population.

Both the confidence interval and p-value quantify the component of sampling
error in a research effort’s results. The confidence interval, by providing a range
of values for the population parameter, gives an overt expression of this vari-
ability. Alternatively, by providing only one number, the p-value lends itself to
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dichotomous decisions regarding the strength of evidence that an analysis pro-
vides for a particular scientific hypothesis.

It is this final distillation that is one of the roots of difficulty with significance
testing. The concentration of a research result down to a single number is the
foundation of the p-value. The p-value is itself constructed from several compo-
nents: (1) sample size, (2) effect size, (3) the precision of the estimate, and (4) a
sampling error assessment. Each of these ingredients is important in the assess-
ment of research interpretation.

However, by integrating them all into the p-value, investigators commonly
succumb to the temptation of ignoring each of its component pieces. Instead, they
withhold assessment of the research effort until these important components are
mathematically integrated into the p-value, and then use the p-value to assess the
research effort. Thus, they have permitted a multidimensional problem (made up
of sample size, effect size, effect size precision, and sampling error) to be reduced
to a one-dimensional problem (simply assessing the magnitude of the p-value).
Like trying to understand a company by simply examining its yearly income tax
bill, much useful information is lost in this dimensionality reduction (Lang et al.,
1998).

Therefore, p-values can be fine descriptors of the role of sampling error.
However, they are quite deficient in summarizing an analysis and must be sup-
plemented by additional information, specifically research methodology, sample
size, effect size, and effect size precision. The joint consideration of each of these
is necessary in order for the study to have a fair and balanced interpretation.

The methodology of the research effort is an important, perhaps, the most
important consideration in drawing conclusions from a research effort. If the
research is poorly designed or is executed discordantly,1 then statistical estimators
are flawed. In this circumstance, effect size estimators, estimates of its variability,
p-values, and confidence intervals are distorted. In this unfortunate set of cir-
cumstances, the research effort cannot be interpreted.

Multiple comparison procedures are most useful in the environment of a
concordantly executed research program, where p-values are not interpreted in
isolation, but jointly with an assessment of the research methodology, effect size,
effect size variability, and the confidence interval. It is in this optimal research
environment that the ensuring conversation of multiple comparison procedures
should be interpreted.

4. Definition of multiple comparisons

Multiple comparisons (or multiple testing situations) are simply the collection of
statistical hypothesis tests that are executed at the conclusion of a research effort.
These include, but are not limited to dose–response analyses, the examination of

1 Discordant execution is the process by which the study is not executed in accordance with its

protocol, but meanders, changing its endpoints, and analyses based on the observed data. Concordant

execution is a research effort, which follows its prospectively written protocol.
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multiple endpoints, the use of subgroup analyses, and exploratory evaluations.
In reality, these evaluations occur in complicated mixtures. For example, a clin-
ical trial may compare the effect of a single dose intervention to a control group
on several different endpoints, and in addition, examine the same effect in sub-
groups of interest. As another example, a clinical trial may assess the effect of the
active intervention on total mortality, while dose–response information may be
collected on a separate but related combined endpoint. In some circumstances,
multiple comparisons include not just multiple endpoints, i.e., analyses of differ-
ent endpoints, but also, multiple comparisons, using different procedures on the
same endpoint (Moyé, 2003).

5. Rational for multiple comparisons

Significance testing focuses on decision-making; its original motivation was to
draw a single conclusion concerning a single effect. In order to accomplish this,
one experiment would be concordantly executed, producing one conclusion (such
as therapy A yields a better clinical result on average than placebo). However,
investigative circumstances have arisen in which the final results of the program
involve not just one endpoint, but a collection of endpoints. For example, an
observational study comparing the hospital stays of stroke patients versus
patients with closed head injuries may choose to focus on duration of hospital
stay. However, in reality, more than just one variable reflecting the outcome of a
patient would be measured. Multiple comparisons are a natural byproduct of the
complexity of these clinical research efforts. There are three motivations for
conducting multiple comparisons. They are (1) to provide logistical efficiency,
(2) to strengthen the causal argument, and (3) to explore new ideas and establish
new relationships between risk (or beneficial) factors and disease. We will briefly
discuss each of these in turn.

5.1. Efficiency

One of the motivations that generate multiple comparisons is the drive of both the
investigator and the sponsor2 for efficiency. Their natural expectation for the
greatest return for resources invested translates into making the research effort as
productive as possible, generating a full panoply of results in order to justify the
commitment of the logistical and financial resources required for the research
endeavor’s execution.

Consider a controlled clinical trial, which involves randomizing patients to
either the intervention group or the control group, following these patients
until they have a fatal or nonfatal stroke, or the predefined follow-up period ends.

2 The sponsor of the trial is the organization, which funds the study. It could be a government-funded

study, underwritten by institutes, e.g., the National Eye Institute, or the National Institute of En-

vironmental Health Services. Alternatively, the clinical trial could be funded by a private pharma-

ceutical company.
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The investigators focus on this one measure of effectiveness. However, other com-
peting measures are available. For example, the researchers might also measure the
number of transient ischemic attacks (TIAs), duration of hospitalization, or cer-
ebral blood flow studies. The incremental costs of these additional studies are
relatively small given that the study is to be carried out to measure the impact of
therapy on the fatal/nonfatal stroke rate. Thus, one can triple the number of
endpoints and increase the number of statistical analyses (increasing the likelihood
of a positive result on at least one), without tripling the cost of the experiment.

5.2. Epidemiologic strength

The careful selection of endpoints might be used to elicit further evidence from
the data about the true nature of the relationship between exposure and disease
(i.e., is it associative or causal?). Embedding an examination of the evidence that
sheds light on Bradford Hill’s causality tenets (Hill, 1965) (particularly those of
dose–response, biologic plausibility, consistency, and coherency) could lead to
their inclusion within the research enterprise; however, their incorporation would
likely include additional endpoints in the study.

For example, an observational study that examines the relationship between
the use of an anti-diabetic drug and liver failure may also focus on the relation-
ship between exposure duration and the incidence of acute liver failure. This
would require an odds ratio (with corresponding confidence interval and p-value)
for each dose-duration category. In addition, one could measure the proportion
of patients who have elevated liver enzymes. This collection of evaluations im-
proves the quality of the assessment of the true nature of the exposure–disease
relationship. However, each requires an additional analysis.

5.3. The need to explore

Confirmatory research executes a protocol that was designed to answer a pro-
spectively asked scientific question. Exploratory research is the evaluation of a
dataset for new and interesting relationships that were not anticipated. This will
be covered in detail in the next section.

6. Multiple comparisons and analysis triage

Investigators will follow their nature, examining every endpoint with every
analysis procedure they think will provide illumination. However, this intellec-
tually and curiosity satisfying proclivity must be tempered with discipline so that
sampling error can be managed and the research effort is interpretable.

One might integrate each of these actions by triaging analyses in accordance
with some prospectively declared guidelines. This strategy of endpoint control
permits the investigators the freedom to completely evaluate and analyze all
of their endpoints measures; however, they must be clear about their plans for
interpreting these.
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The process is straightforward. The investigators should first identify each of
the analyses that they wish to assess at the study’s conclusion. Once this exhaus-
tive process of analysis identification has completed, the investigators should then
choose the small number of endpoints for which a type I error rate will be
allocated. It is over this final subset of endpoints that the overall type I error level
will be controlled. Other analyses that cannot be recognized prospectively will fall
into the class of exploratory analyses.

6.1. Confirmatory versus exploratory analyses

Confirmatory analyses are those examinations that were prospectively selected by
the researcher to answer the scientific questions that motivated the research effort.
Exploratory evaluations were not anticipated by the researcher. Through their
interrogation of the database, the investigators identify relationships that were
not anticipated, but that the sample suggests are present. In exploratory analyses,
the dataset suggests answers to questions that the researchers never prospectively
thought to ask. As Miles (1993) points out ‘‘If the fishing expedition catches a
boot, the fishermen should throw it back, not claim that they were fishing for
boots.’’

The confirmatory evaluation provides the clearest measure of the magnitude
of the effect of interest. Being chosen to answer the a priori research question,
the sample is optimally selected and configured for the relationship that
was suggested in the prospectively declared research protocol. Also, with the
analysis fixed (i.e., the variable in which interest lies has been chosen pro-
spectively and plans for its evaluation are already in place) the statistical
estimators perform well, providing a reliable estimate of effect magnitude and the
degree to which that magnitude may vary from sample-to-sample. Generalization
from the sample to the population is strongest when it rests on a confirmatory
finding.

Alternatively, exploratory analyses introduce two problems that make it diffi-
cult to generalize their sample-based results to the larger population. The first is
that the sample was not chosen with the exploratory research question in mind.
For example, the sample may be too small, or not have the most precise measure
of the exploratory effect of interest. In addition, the usual sample statistical
estimators are undermined because the assumption on which their accuracy is
based is false (Moyé, 2003). Since the endpoints have been selected randomly (i.e.,
the dataset, containing sampling error, produced ‘‘endpoints’’ in an essentially
random manner), the analysis has become random, the hallmark of random
research (Moyé, 2003). These two influences combine to reduce the accuracy of
any conclusions drawn from exploratory evaluations.

Certainly, investigators want to cover new ground, and commonly enjoy the
exploration process. Exploratory analyses can evaluate the unanticipated,
surprising effects of an exposure in an observational study, or a randomly
allocated treatment in a controlled clinical trial. These evaluations are powerful
motivation for multiple comparisons, and make valuable contributions if
appropriately relegated to the hypothesis-generating arena.
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6.2. Primary versus secondary analyses

If the analysis is prospectively determined, then the next step is to determine if the
evaluation should be a primary or a secondary evaluation.

Primary analyses are the primary focus of the study. Their prospective dec-
laration protects them from data driven changes during the course of the study’s
execution, thereby preserving the accuracy of the statistical estimators. In addi-
tion, since type I error is prospectively allocated to these primary endpoints
in a way that controls the familywise error rates (FWERs), the analysis of these
endpoints permits type I error conservation in accordance with community
standards.

Secondary analyses are the prospectively declared evaluations that are
assessed at the nominal 0.05 a level. They are not included in the calculations
to control the overall a error level. These endpoints, being prospectively
selected, produce trustworthy estimators of effect size, standard error, confi-
dence intervals, and p-values, all of which measure the effect of the clinical
trial’s intervention. However, drawing confirmatory conclusions from these
secondary endpoints is not permissible since conclusions based on these second-
ary endpoints will increase the overall type I error level above the prospectively
declared acceptable levels. The role of secondary endpoints is simply to provide
support for the study’s conclusions drawn from the trial’s primary analyses. For
example, they can provide information about the mechanism of action by which
an intervention works. Alternatively, they can provide useful data about the
dose–response relationship between the intervention and the clinical endpoint of
interest.

7. Significance testing and multiple comparisons

The afore mentioned concerns of logistical efficiency, in concert with the need to
build strong epidemiologic arguments, serve as solid motivation for conducting
multiple comparisons in a modern health care research effort. However, since
each of these analyses involves a statistical hypothesis test, and each hypothesis
test produces a p-value, a relevant question is how should these p-values be
interpreted?

This issue has been debated as statistical inference has matured. Some workers
contend that many of these p-values should be ignored, (Nester, 1996; Rothman,
1990) allowing the reader to focus on the effect size. Others have argued that
p-values should be interpreted as though the value of 0.05 is the cutoff point for
statistical significance, regardless of how many p-values have been produced by
the study. This is called using ‘‘nominal significance testing’’ or ‘‘marginal sig-
nificance.’’ Others have debated whether investigators should be able to analyze
all of the data, and then choose the results they want to disseminate (Fisher, 1999;
Moyé, 1999).

Commonly investigators do not prospectively state the analysis rule they will
carry out during a research effort. The study results may suggest a multitude of

The multiple comparison issue in health care research 623



ambiguous conclusions. The investigators believe they have the authority to
choose the interpretation of the multiple findings in a way of their choosing.
However, the resulting interpretation is problematic.

Consider, for example, four analyses from a randomized clinical trial designed
to measure the effect of therapy of an intervention in patients with a propensity
for gastrointestinal (GI) disease. Assume in this hypothetical example that the
four endpoints are

P1 – the effect of therapy on the cumulative total mortality rate.
P2 – the effect of therapy on the cumulative incidence of upper GI bleeds.
P3 – the effect of therapy on the cumulative incidence of upper GI obstruc-

tions.
P4 – the effect of therapy on hospitalizations for upper GI illness.

The investigators make no prospective statement about which of these is the
most important, but plan to use a nominal 0.05 level to determine significance.
At the conclusion of the study, they report the results (Table 1).

Table 1 provides the relative risk and p-value for each of these evaluations. The
relative risk reveals that the therapy has produced an effect that is beneficial in the
sample. The investigators want to know which of these is positive.

One tempting approach would be to say that P1, P2, and P3 are positive, ac-
cepting that any analysis that produces a p-valuer0.05 is a positive one. This is the
nominal approach to p-value assessment. The tack of interpreting each of several
p-values from a single experiment, one at a time, based on whether they are greater
or less than the traditional threshold of 0.05 may seem like a natural alternative
to the post hoc decision structure. In fact, the nominal p-value approach is very
alluring at first glance. The rule to use nominal p-values is easily stated prospec-
tively at the beginning of the trial and is easy to apply at that trial’s end.

However, there are unfortunate consequences of this approach. The acceptance
of nominal p-values would require us to conclude that the population has not
produced a misleading sample result for any of the total mortality, GI bleed, GI
obstruction. How likely is this ‘‘triple positive result’’ to be true? The probability
that no type I error occurs for any of these three evaluations, is easily computed3 as

no type I error ¼ ð1� 0:015Þð1� 0:049Þð1� 0:025Þ ¼ 0:913.

Table 1

Analysis of four endpoints and their p-values

Endpoint Rel Risk p-Value

P1 0.81 0.015

P2 0.82 0.049

P3 0.79 0.025

P4 0.83 0.076

3 This computation assumes that the hypothesis tests are independent of each other.
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The probability of at least 1 type I error is 1 – 0.913 ¼ 0.087. Thus, the prob-
ability that the population has misled us just through a sampling error is 0.087,
larger than the 0.05 level. We cannot accept the triple-veracity in this case because
the likelihood of a type I error is too large.

However, the circumstances are even more perilous than that. Why did the
investigators choose to focus only on analyses P1, P2, and P3 as positive? Most
likely because the p-values were all less than 0.05. If, for example, they had chosen
P4 as the most important analysis, the expended type I error would be too large.
Thus, looking at the data, they excluded analysis P4 from further consideration
because its p-value was too large. Thus, they made their decision to focus on P1,
P2, and P3, based on the observed results, and not on a prospective statement
declared before the data were collected.

The point is that with no prospective plan, the investigators are drawn to
interpret the research endeavor in the most positive, attractive way they can.
However, other investigators or readers would interpret the results differently.
With no prospective plan to guide the community, every one falls into the temp-
tation of using analysis rules for the study’s interpretation that are based on the
data. This is the hallmark of random research (Moyé, 2003).

8. Familywise error rate
4

The calculation on the preceding section demonstrates how multiple statistical
hypothesis tests propagate type I error rates. If there are two statistical analyses,
one on the effect of the intervention on the total mortality rate and the second
on the intervention’s impact of the fatal and nonfatal stroke rate, then a type I
error means that the population has produced (by chance alone) a sample that
gives a false and misleading signal that the intervention reduced the cumulative
total mortality incidence rate, the fatal/nonfatal stroke rate, or both. The key
observation is that there are three errors of which we must now keep track
when there are two endpoint analyses, and the misleading events of interest can
occur in combination. A comprehensive method to track the magnitude of
this combination of sampling errors is the FWER (Hochberg and Tamhane,
1987 ;Westfall and Young, 1993) and will be designated as x. This is simply
the probability that at least one type I error has occurred across all of the
analyses.

There is a critical difference between the standard type I error level for a single
endpoint and x. The type I error probability for a single, individual endpoint
focuses on the occurrence of a misleading positive result for a single analysis. This
is the single test error level, or test-specific error level. The familywise error level
focuses on the occurrence of at least one type I error in the entire collection of
analyses.

A natural setting for multiple hypothesis testing where FWER control is
essential is in analysis of variance, where several groups are evaluated. Tukey’s

4 The terms error probability, error rate, and error levels will be used interchangeably.
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procedure, Duncan’s test, and Student–Newman–Keuls procedures are com-
monly used. Also, a very useful procedure is that of Dunnett. In this setting each
of several groups of data is compared to an overall control. A detailed discussion
of these procedures is available.

9. The Bonferroni inequality

The previous section’s discussion provides important motivation to control the
type I error level in clinical trial hypothesis testing. One of the most important,
easily used methods to accomplish this prospective control over type I error rate is
through the use of the Bonferroni procedure (Miller, 1981).

Carlo Emilio Bonferroni was born on January 28, 1892, in Bergamo, Italy.5

After studying the piano at the Conservatory in Torino, and completing a tour of
duty in the Italian army engineers corps during World War I, he studied the
mathematics of finance, writing two articles that established useful inequalities in
his municipal and fiscal computations (Bonferroni, 1935; Bonferroni, 1936). This
work contained the genesis of the idea that led to the inequality that now bears his
name. The modern implementation of Bonferroni’s inequality began with the
rediscovery of his inequalities by Dunn (Dunn, 1959, 1961).

Its implementation is quite simple. Assume a research effort has K analyses,
each analysis consisting of a hypothesis test. Assume also that each hypothesis
test is to be carried out with a prospectively defined type I error probability of a;
this is the test-specific type I error level or the test-specific a level. We will also
make the simplifying assumption that the result of each of the hypothesis tests is
independent of the others. This last assumption allows us to multiply type I error
rates for the statistical hypothesis tests when we consider their possible joint
results.

Our goal in this evaluation is to compute easily the familywise type I error
level, x. This is simply the probability that there is a least one type I error among
the K statistical hypothesis tests. Then x, the probability of the occurrence of at
least one type I error, is one minus the probability of no type I error among any of
the K tests, or

x ¼ 1�
YK
j¼1

ð1� aÞ ¼ 1� ð1� aÞK . (1)

This is the precise estimate of type I error, in the setting of disjoint hypothesis
tests. The exact value of x requires some computation. However, a simplification
provided by Bonferroni demonstrates that x �

PK
i¼1ai: If each of the test-specific

type I error levels is the same value, a, this reduces to x r Ka, or a r x/K. The
conservatism of this computation is well recognized, and the correspondence

5 The source of this material is a lecture given by Michael E. Dewey from the Trent Institute for

Health Services Research, University of Nottingham. The lecture itself is posted at mi-

chael.dewey@nottingham.ac.uk, http://www.nottingham.ac.uk.	mhzmd/bonf.html.
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between the Bonferroni approximation and the exact FWER is closest when the
type I error for each individual test is very small.6 Thus, a reasonable approxi-
mation for the a level for each of K hypothesis tests can be computed by dividing
the familywise error level by the number of statistical hypothesis tests to be carried
out. This is the most common method of applying the Bonferroni procedure.

Note that if a researcher wishes to keep x at less than 0.05, the number of
analyses whose results can be controlled (i.e., the number of analyses that can be
carried out and still keep the familywise error level r0.05) depends on the sig-
nificance level at which the individual analyses are to be evaluated. For example,
if each of the individual analyses is to be judged at the 0.05 level (i.e., the p-value
resulting from the analyses must be less than 0.05 in order to claim the result is
statistically significant), then only one analysis can be controlled, since the fam-
ilywise error level for two analyses exceeds the 0.05 threshold. The researcher can
control the familywise error level for three analyses if each is judged at the 0.0167
level. If each test is evaluated at the 0.005 level, then 10 independent hypothesis
tests can be carried out.

Important criticism of tight control of x is commonly based on the fact that the
type I error rate for any particular test must be too small in order to control the
FWER. For example, if one were to conduct 20 hypothesis tests, the type I error
threshold for each test must be 0.05/20 ¼ 0.0025, a uselessly small type I error
rate threshold for many. However, a difficulty with this line of reason is the
assumption that all statistical hypothesis tests are essential. In health care, pivotal
research efforts result from well-considered literature reviews. This review and
early discussion will commonly produce not 20, but two or three clinically rel-
evant analyses among which type I error may be dispersed. Casting a wide net for
a positive finding is the hallmark of exploratory, not confirmatory research work.

In addition, the main reason for controlling type I error rates in clinical
research is that it represents the probability of a mistaken research conclusion for
the treatment of a disease just due to sampling error. This sampling based error
has important implications for the population of patients and the medical com-
munity. While sample-based research cannot remove the possibility of this mis-
take, the magnitude of this error rate must be accurately measured and discussed,
so that the effectiveness of an exposure can be appropriately balanced against that
exposure’s risks.7 This approach is very helpful for interpreting clinical trials
designed to assess the risk–benefit ratio of a new therapy.

It is easy for the lay community to focus on the potential efficacy of new
interventions for serious diseases (Adams, 2002). However, it is a truism in med-
icine that all therapies have risks ranging from mild to severe. Sometimes these
risks can be identified in relatively small studies carried out before the invention is
approved for use in larger populations. However, in addition to the occurrence of

6 This is because the higher powers of a (a2, a3,y, aK) become very small when a itself is small.
7 We are setting aside the kinds of errors in clinical trial design that would produce a reproducible,

systematic influence on the results. An example of such a bias would be a study in which compliance is

so poor with the active therapy that patients do not receive the required exposure to see its anticipated

beneficial effect.
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specific, anticipated adverse events, there are circumstances in which serious
adverse events are generated in large populations without warning. This occurs
when the clinical studies (completed before regulatory approval of the compound
was granted) are not able to discern the occurrence of these adverse events
because the studies contained too few patients.

It is important to acknowledge that regardless of whether the drug is effective
or not, the population will have to bear adverse events. Consider the following
illustration: The background rate of primary pulmonary hypertension (PPH) is
on the order of one case per 1,000,000 patients per year in the United States.
Assume that a new drug being evaluated in a pre-FDA approved clinical trial
increases this incidence by 20-fold, to one case per 50,000 patients exposed per
year, representing a 20-fold increase in risk. However, in order to identify this
effect, 50,000 patients would have to be exposed to the compound for one year to
see one case of PPH. This is a cohort whose size dwarfs the size of studies that are
conducted prior to the therapy’s approval. The increased risk of PPH remains
hidden, revealed only in the marketplace. If this drug were approved and released
for general dispersal through the population for which the drug is indicated,
patients would unknowingly be exposed to a devastating, unpredicted adverse
event.

The fact that a research effort, not designed to detect an adverse effect, does
not find the adverse effect is characterized by the saying ‘‘absence of evidence is
not evidence of absence’’ (Senn, 1997). This summarizes the point that the
absence of evidence within the clinical trial is not evidence that the compound has
no serious side effect.

Thus, we expect adverse events to appear in the population regardless of
whether the intervention demonstrates benefit or not. Some (perhaps the ma-
jority) of these adverse events are predictable; others may not be. In addition,
the financial costs of these interventions are commonly considerable and must
be weighed in the global risk–benefit assessment. Therefore, regardless of
whether the medication is effective, the compound is assured to impose an
adverse event and a financial/administrative burden on the patients who receive
it. The occurrences of these events represent the risk side of the risk–benefit
equation.

The use of the intervention is justified only by the expectation that its benefits
outweigh these health and financial costs. The consequence of a type I error for
efficacy in a clinical trial that is designed to measure the true risk–benefit balance
of a randomly allocated intervention is the reverse of the Hippocratic Oath,
succinctly summarized as ‘‘first do no harm.’’8 In health care research, type I
errors represent ethical issues as much as they do statistical concerns. In these
studies, which are commonly the justification for the use of interventions in
large populations, the familywise error level must be controlled within acceptable
limits.

8 This problem is exacerbated by the inability to measure type I error accurately, a situation generated

by the random research paradigm.
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An analogous line of reasoning is used in evaluating the relationship between
an exposure that is believed to be dangerous and the occurrence of disease. The
large number of evaluations carried out in these studies can commonly produce a
plethora of p-values, and the occurrence of any positive p-value out of the col-
lection can be used as evidence of harm. However, the possibility that sampling
error has produced the small p-value must be overtly considered in concordant
research; control of the FWER is a useful tool in this effort. Ethical consider-
ations can require that the criteria for demonstrating harm be less stringent than
the criteria for benefit; however, ethical considerations do not negate the need for
prospectively declared assessment rules for controlling the FWER.

10. Alternative approaches

One of the many criticisms of the Bonferroni approximation is that it is too
conservative. This conservatism leads to an unacceptably high possibility of
missing a clinically important finding. There are several alternative approaches to
the multiple analysis problem. Two of the most recent developments are sequen-
tial rejective procedures, and re-sampling p-values.

10.1. Sequentially rejective procedures

The sequential procedure approach is easy to apply. Assume that there are K

statistical null hypotheses in a clinical trial and each statistical hypothesis gen-
erates a p-value. Let p1 be the p-value for the first hypothesis test H0,1, p2 be the
p-value for the second hypothesis test H0,2, concluding with pk as the p-value for
the Kth and last hypothesis test H0,K. These p-values must first be ranked from the
smallest to largest. We will denote p[1] as the smallest of the K p-values, p[2] the
next largest p-value y to p[K] which is the maximum p-value of the K p-values
from the clinical trial.

Once the p-values have been ranked, several evaluation procedures are avail-
able to draw a conclusion based on their values. One device proposed by Simes
(1986) compares the jth smallest p-value, p[j] to xj/K. The procedure is as follows:

(1) Rank order the K p-values such that p[1]rp[2]rp[3]r?rp[K].
(2) Compare the smallest p-value, p[1] to the threshold x/K If p[1]rx/K, then reject

the null hypothesis for which p[1] is the p-value.
(3) Compare p[2] to 2x/K. If p[2]r2x/K, then reject the null hypothesis for which

p[2] is the p-value.
(4) Compare p[3] to 3x/K. If p[3]r3x/K, then reject the null hypothesis for which

p[3] is the p-value.
(5) Continue on, finally comparing p[K] to x. If p[K]rx, then reject the null hy-

pothesis for which p[K] is the p-value.

The procedure ceases at the first step for which the null hypothesis is not
rejected. Thus, as j increases, p-values that are increasing are compared to sig-
nificance levels, which are themselves increasing in a linear fashion. If the tests
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are independent one from another, then the familywise error level x is preserved.
This procedure is more powerful than the Bonferroni procedure. Holm (1979),
Hommel (1988), and Shaffer (1986) have developed similar procedures. It has
been suggested that because these methods are easy to apply and less conservative
than the classic Bonferroni procedure, they are preferable for hypothesis testing in
which FWER control is critical (Zhang et al., 1997).

10.2. Re-sampling p-values

Another modern device to assist in the assessment of multiple comparisons is the
use of re-sampling tools. This approach has been developed by Westfall et al.
(Westfall and Young, 1993; Tukey et al., 1985; Dubey, 1985) and has figured
prominently in the methodologic literature evaluating the multiple analysis issue.
These workers focus on the smallest p-value obtained from a collection of hy-
pothesis tests, using the re-sampling concept as their assessment tool.

Re-sampling is the process by which smaller samples of data are randomly
selected from the research dataset. Essentially, this approach treats the research
data sample as a ‘‘population’’ from which samples are obtained. Re-sampling is
allowed to take place thousands of times, each time generating a new ‘‘sub-
sample’’ and a new p-value from that sub-sample. Combining all of these p-values
from these sub-samples produces, in the end, a distribution of p-values. The
adjusted p-value measures how extreme a given p-value is, relative to the prob-
ability distribution of the most extreme p-value.

However, the new ingredient in this approach is that the investigator no longer
sets the a threshold for each evaluation. Since the data determine the magnitude
of the p-values, and therefore the rank ordering of the p-values, then the data
must determine the order of hypotheses to be tested. We must also recognize that,
as the significance level threshold varies from analysis to analysis, the link be-
tween the endpoint and the significance threshold is not set by the investigator
but, again, is set by the data.

This latter point is of critical concern to the investigator. The collection of
sequentially rejective significance testing rules and the family of procedures that
fall under the p-value re-sampling provide increased statistical power when com-
pared to the Bonferroni procedures. However, the clinical investigators lose the
ability to determine the significance threshold for each of the analyses they wish
to carry out. The requirement that each of the p-values be rank ordered essentially
automates the significance testing procedures, locking the investigators out of
choosing the type I error level thresholds for each analysis. Therefore, while
sequentially rejective and re-sampling procedures might be useful in statistics in
general, the fact that they take control of hypothesis testing away from the
investigator could severely constrain their utility in health care research.

In addition, False Discovery Rate (FDR) offers a new and interesting per-
spective on the multiple comparisons problem. Instead of controlling the chance
of any false positives (as Bonferroni does), the FDR controls the expected
proportion of false positives among all tests (Benjamini and Hochberg, 1995;
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Benjamini and Yekutieli, 2001) It is very useful in micro-array analyses in which
thousands of significance tests are executed.

11. Dependent testing

Commonly in health care research statistical hypothesis tests are not independent.
Analyses that are related to each other can produce some conservation of the type
I error rate. This conservation can lead to an increase in test-specific a levels
above those suggested by the strict application of the Bonferroni procedure.

Assume that investigators designing their clinical research settle on two pri-
mary endpoints, P1 and P2. The statistical hypothesis test for P1 that will test the
exposure at issue on P1 is H1. H1 is assigned an a priori type I error level a1.
Analogously, the statistical hypothesis test for the effect of the intervention on the
endpoint P2 is H2, and the type I error level for hypothesis test H2 is a2. What
does ‘‘independent hypothesis testing’’ mean in this circumstance? Specifically,
independence means that execution of hypothesis test H1 neither educates us nor
predicts for us the result of H2. It would be useful to examine the nature of the
relationship between H1 and H2 in terms of the type I error rate, since ultimately
this is the error whose level we seek to control. In the end, we hope to learn the
likelihood that we will commit a type I error in drawing conclusions from both H1

and H2 since this is the information that we need to control the familywise error
level x.

If this is the investigator’s goal, then, specifically, independence tells us that
knowledge about the commission of a type I error for hypothesis test H1 reveals
nothing about the occurrence of a type I error for hypothesis test H2; it does not
inform us one way or the other about the commission of a type I error for the
second hypothesis test. Before any hypothesis test proceeds, the best estimate of
the likelihood of a type I error for H2 is a2. If H1 and H2 are truly independent,
then after the evaluation of the hypothesis test for the primary endpoint P1, our
best estimate for the type I error level for the execution of H2 remains a2.

An adjustment that became popular for taking dependency between hypothesis
tests into account was that recommended by Tukey et al. (1985). He suggested
that an adjustment for dependence between hypothesis tests may be simply com-
puted by calculating the test-specific type I error probability as a, where

a ¼ 1� ð1� xÞ1=
ffiffiffi
K
p

. (2)

This computation produces larger values of the type I error rate than that
produced from the Bonferroni procedure.

One limitation of this approach is that the test-specific a is computed under the
assumption that the test-specific a level is the same for each of the K primary
hypothesis tests. In addition, it is difficult to see the degree of dependency between
the endpoints from an examination of formula , i.e., Eq. (2).

The works of Dubey (1985) and of O’Brien (1984) have provided other related
procedures for computing the test-specific a levels when the statistical hypothesis
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tests are correlated. If there are K hypothesis tests to be evaluated, each for a
separate endpoint, then the calculation they suggest for the test-specific a level is

a ¼ 1� ð1� xÞ1=mk (3)

and

mk ¼ K1�rk and rk ¼

PK
jak

rjk

K � 1

where rk is the average of the correlation coefficients reflecting the association
between the K endpoints to be evaluated. An advantage of this method over
Tukey’s is that the actual correlations are built into the computation. However, in
simulation analyses, Sankoh (Sankoh et al., 1997) points out that the Tukey
procedure still works best when there are large numbers of highly correlated
endpoints. Sankoh also noted that the procedure suggested by Dubey and
O’Brien required additional adjustment at all correlation levels despite its specific
inclusion of endpoint correlation.

Hochberg and Westfall discuss an important subset of multiplicity problems in
biostatistics in general (Hochberg and Westfall, 2000). James uses multinomial
probabilities when dealing with the issue of multiple endpoints in clinical trials
(James, 1991). Neuhauser discusses an interesting application of multiple clinical
endpoint evaluation in a trial studying patients with asthma (Neuhauser et al.,
1999). Reitmeir and Wasmer (1996) discuss one-sided hypothesis testing and
multiple endpoints, and Westfall, Ho, and Prillaman engage in a deeper discus-
sion of multiple union–intersection tools in the evaluation of multiple endpoints
in clinical trials (Westfall et al., 2001). Closed testing is discussed by Zhang
(Westfall and Wolfinger, 2000). Weighted a-partitioning methods are available
for the Simes’ test as well (Hochberg and Liberman, 1994).

11.1. Multiple comparisons and the dependency parameter

An additional approach may be developed along the following lines. Assume that
a research effort produces K prospectively declare primary hypothesis tests H1,
H2, H3, y HK. Let Hj denote the jth hypothesis test. For each of these K

hypothesis tests, specify the prospectively specified type I error levels a1, a2, a3, y
aK. Define Tj for j ¼ 1, 2, 3, y, K as a variable that captures whether a type I
error has occurred for the jth hypothesis test, i.e., Tj ¼ 0 if there is no type I error
on the jth hypothesis test, and Tj ¼ 1 if the jth hypothesis test produces a type I
error. Thus, we can consider K pairs, (H1, T1), (H2, T2), (H3, T3), y, (HK, TK),
where Hj identifies the statistical hypothesis test and Tj denotes whether a type I
error has occurred for that test, i.e., P[Tj ¼ 1] ¼ aj.

Using the customary definition of the familywise error as the event that there is
at least one type I error among the K prospectively defined primary analyses
(Hochberg and Tamhane, 1987; Westfall and Young, 1993) define x as the fam-
ilywise error level, and Tx as the variable that denotes whether a familywise type I
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error level has occurred. Then x ¼ P[Tx ¼ 1] and P[Tx ¼ 0] is the probability that
there were no type I errors among the K hypothesis tests. Therefore,

PðTx ¼ 0Þ ¼ PðfT1 ¼ 0g \ fT2 ¼ 0g \ fT3 ¼ 0g \ � � � \ fTK ¼ 0gÞ (4)

and

PðTx ¼ 1Þ ¼ 1� PðfT1 ¼ 0g \ fT2 ¼ 0g \ fT3 ¼ 0g \ � � � \ fTK ¼ 0gÞ

¼ 1� P
\K

j¼1
Tj ¼ 0

� �
. ð5Þ

When the K individual hypotheses are independent of one another, then
Pð\K

j¼1Tj ¼ 0Þ ¼
QK

j¼1PðTj ¼ 0Þ ¼
QK

j¼1ð1� ajÞ: However, if the K prospectively
specified hypothesis tests are dependent, then the evaluation of the expression
Pð\K

j¼1Tj ¼ 0Þ becomes more complicated.
In the independence setting for K ¼ 2, write

P½T1 ¼ 0 \ T2 ¼ 0� ¼ P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0�. (6)

This will be a useful equation for us as we develop the notion of dependency in
hypothesis testing, since the key to computing the probability of a familywise
error P[Tx ¼ 0] is the computation of the joint probability P[T1 ¼ 0\T2 ¼ 0].
This calculation is straightforward in the independence scenario.

P½T2 ¼ 0jT1 ¼ 0� ¼
P½T1 ¼ 0 \ T2 ¼ 0�

P½T1 ¼ 0�
¼
ð1� a1Þð1� a2Þ
ð1� a1Þ

¼ 1� a2

(7)

The opposite, extreme circumstance from that of dependence might be con-
sidered ‘‘perfect dependence.’’ Perfect dependence denotes that state between two
statistical hypothesis tests in which the occurrence of a type I error for H1 au-
tomatically produces a type I error for statistical hypothesis test H2. In this
situation, the two tests are so intertwined that knowledge that a type I error
occurred for the first hypothesis test guarantees that a type I error will occur for
the second hypothesis test. Perfect dependence dictates that the conditional
probability from Eq. (6) is one, i.e.,

P½T2 ¼ 0jT1 ¼ 0� ¼ 1. (8)

Recalling that x ¼ 1� P½T1 ¼ 0 \ T2 ¼ 0�; compute that

x ¼ 1� P½T1 ¼ 0 \ T2 ¼ 0� ¼ 1� P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0�

¼ 1� ð1Þð1� a1Þ ¼ a1. ð9Þ

Since the occurrence of a type I error on the first statistical hypothesis test
implies that a type I error has occurred on the second hypothesis test, the joint
occurrence of type I errors is determined by what occurs on H1. We can, without
any loss of generality, order these two hypothesis tests prospectively such that
a1 Z a2. In the setting of perfect dependence, one can execute two hypothesis
tests and maintain x at its desired level by simply allowing a2 to take any
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value such that a2ra1 ¼ x. As an example, consider the hypothetical case of a
clinical trial in which there are two prospectively defined primary hypothesis
tests H1 and H2 with associated test-specific a error levels a1 and a2. Choose
a1 ¼ a2 ¼ 0.05. In the familiar case of independence, it is clear that x ¼
1–(0.95)(0.95) ¼ 0.0975. However, under the assumption of perfect dependence x
remains at 0.05.

In clinical trials, rarely does one have either a collection of prospectively
declared primary analyses that are completely independent of one another,
or, a set of a priori analyses that are perfectly dependent. Our goal is to examine
the range of dependency between these two extremes, and then compute x
and a2 as needed. Since these two extremes reflect the full range of dependence,
write

1� a2 � P½T2 ¼ 0jT1 ¼ 0� � 1. (10)

Let the measure D2, reflect this level of dependence, 0rD2r1, D ¼ 0 corre-
sponds to the condition of independence between the statistical hypothesis tests,
and D ¼ 1 denotes perfect dependence, i.e., the case in which the conditional
probability of interest P[T2 ¼ 0|T1 ¼ 0] attains its maximum value of one. If we
are to choose a value of D that will have the aforementioned properties, then we
can write D in terms of the conditional probability

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1� P½T2 ¼ 0jT1 ¼ 0�ð Þ

a2

s
. (11)

In general, we will not use Eq. (11) to compute D. Our ultimate goal
is to supply the value of D, and then write the familywise error level in terms
of D2.

P½T2 ¼ 0jT1 ¼ 0� ¼ ð1� a2Þ þD2½1� ð1� a2Þ�

¼ 1� a2ð1�D2Þ. ð12Þ

The familywise error level for the two statistical hypothesis tests H1 and H2

may be written as

x ¼ 1� P½T2 ¼ 0 \ T1 ¼ 0�

x ¼ 1� P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0�

¼ 1� ½1� a2ð1�D2Þ�ð1� a1Þ. ð13Þ

Therefore, the familywise error is formulated in terms involving the test-specific
a error rates a1, a2 where a1Za2, and the dependency parameter D.

During the design phase of the trial, as investigators work to select the
appropriate levels of the test-specific a error levels for the study, they can first
fix x, and then choose a1 and D, moving on to compute the acceptable range of a2.
This is easily accomplished, recalling the assumption that the hypothesis tests are
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ordered so that a1Za2.

a2ðmaxÞ ¼ min a1;
x� a1

ð1� a1Þð1�D2Þ

� �
. (14)

Equation (14) provides the maximum value of a2 that will preserve the fam-
ilywise error. Denote this maximum value as a2(max).

The case for K ¼ 3 is a straightforward generalization of the consideration for
two endpoints and we can carry forward the same nomenclature developed above.
In that circumstance, we find

D3j1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
ð1� P½T3 ¼ 0jT1 ¼ 0 \ T2 ¼ 0�Þ

a3

s
. (15)

D3|1,2 measures the degree of dependence between H3 given knowledge of H1

and H2, and

a3ðmaxÞ ¼ min a2;
1� fð1� xÞ=½1� a1�½1� a2ð1�D2

2j1Þ�g

1�D2
3j1;2

" #
. (16)

Results for the circumstance for K43 are available.

12. Multiple comparisons and combined endpoints

A particularly useful application of multiple comparisons in epidemiology is in its
interpretation of combined endpoints. A combined endpoint is a clinically rel-
evant endpoint that is constructed from combinations of other clinically relevant
endpoints, termed component endpoints or composite endpoints. Two examples of
component endpoints are (1) the cumulative incidence of stroke and (2) the
cumulative incidence of TIAs. In this case, a patient experiences a combined
endpoint if they have either a stroke, a TIA, or both.

Combined endpoints are an important component of clinical research design.
Their use can improve the resolving ability of the clinical research effort,
strengthening its capacity to pick out weaker signals of effect from the back-
ground noise of sampling error. For example, a well-designed clinical trial that
prospectively embeds a combined endpoint into its primary analysis plan can be
appropriately powered to measure clinically relevant but small effects. However,
combined endpoints are double-edged swords. In some circumstances, the com-
bined endpoint can be exceedingly difficult to analyze in a straightforward, com-
prehensible manner. In addition, the components of the endpoint, if not carefully
chosen, may produce a conglomerate endpoint that measures different but rel-
atively unrelated aspects of the same disease process. The medical community’s
resultant difficulty in understanding the meaning of this unbalanced combined
endpoint can cast a shadow over the effect of the clinical trial’s intervention.
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12.1. Combined endpoint construction

In order to usefully and accurately depict the relationship between the exposure
and the disease, a combined endpoint must be carefully constructed. The impor-
tant properties of a combined endpoint can be described as (1) coherence, (2)
endpoint equivalence, and (3) effect homogeneity.

Coherence means that the component endpoints from which the combined
endpoint is constructed should measure the same underlying pathophysiology
process and be consistent with the best understanding of the causes of the disease.
Consideration of coherence requires an examination of the degree to which
different component endpoints may measure related pathology. The components
need not be mutually exclusive, nor should they be coincident, but should meas-
ure different but closely related manifestations of the same disease. An example
would be the combined endpoint of congestive heart failure (CHF), death +
CHF hospitalization.

The equivalence assumption, i.e., each of the component endpoints has the same
set of clinical implications, while commonly clinically indefensible, must be con-
sidered in the construction of the combined endpoint. Its necessity arises from the
absence of optimal analysis tools for combined endpoints. The state-of-the-art
statistical analyses of component endpoints which are either continuous or
dichotomous is well described and easily executed (Meinert, 1986; Piantadosi,
1997). However, the analysis for combinations of these endpoints is complex,
commonly making untenable assumptions.

As an illustration, consider a clinical trial whose prospectively defined com-
bined endpoint is assembled from two dichotomous component endpoints, death
and hospitalization. The commonly accepted analysis in this setting is the
duration of time until the first event. The patient is considered to have met the
criteria for the combined endpoint (said to have ‘‘reached’’ the combined
endpoint) if they have either died during the course of the trial, or the patient
survived the trial but was hospitalized during the study. In the case of a patient
who is hospitalized and then dies during the clinical trial, only the first endpoint is
counted.

While this analysis is useful, it makes the explicit assumption that each of the
two components of this combined endpoint is analytically equivalent to the other.
This is the equivalence feature of the combined endpoint. Whether a patient meets
the hospitalization part of the endpoint or the mortality part of the endpoint
doesn’t matter as far as the analysis is concerned. Nevertheless, hospitalization is
in general not the same as death. This equivalence is a clinically troubling as-
sumption and can complicate acceptability of the combined endpoint. Of course,
there are alternative algorithms available that would provide different ‘‘weights’’
for the occurrence of the various component endpoints of a combined endpoint.
For example, one might assume that for the combined endpoint of death or
hospitalization, a death is w times as influential as a hospitalization. However, it is
very difficult for investigators to reach a consensus on the correct weighting
scheme to use, and any selection of weights that the investigators choose that is
different from equal weighting of the components can be difficult to defend.
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The analysis complexities deepen when continuous and dichotomous compo-
nent endpoints are joined into a combined endpoint. Although complicated
analysis procedures that address this issue have been developed (Moyé et al.,
1992); these endpoints can be difficult to understand and their acceptance by the
medical community is guarded at best (Transcript, 1993). Investigators are better
off by choosing components whose clinical implications are as close to equiv-
alence as possible.

The effect homogeneity concept addresses the purported relationship between
the exposure and the combined endpoint. In general, it is assumed that the
relationship between the exposure or intervention being assessed in the study and
each component endpoint is the same.

12.2. Multiple comparisons and combined endpoints

An example of the incorporation of dependency between two prospectively
declared statistical endpoints in a clinical trial could be embedded into its design
is that of the CURE (Clopidogrel in Unstable Angina to Prevent Recurrent
Events) trial (Trials Investigators, 2001). CURE examined the role of thienopyri-
dine derivatives in preventing death and cardiovascular events in patients with
unstable angina pectoris or acute coronary syndrome. To test the benefit of these
thienopyridine derivatives, a clinical trial was designed to examine the effect of
the oral anti-coagulation agent clopidogrel when compared to standard care for
patients at risk of acute coronary syndrome.

CURE was a randomized, double-blind, placebo-controlled trial with two
arms. Patients who had been hospitalized with acute coronary syndromes within
24 h of their symptoms but who did not demonstrate evidence of ST-segment
elevation on their electrocardiograms were recruited. All of these patients received
the standard care for this condition including the administration of aspirin. In
addition, patients randomized to the active arm of the study received clopidogrel,
while patients in the control group arm received placebo therapy.

The investigators prospectively designed this study for the analysis of two
primary endpoints. The first primary endpoint was a combination of death from
cardiovascular causes, or the occurrence of a nonfatal myocardial infarction (MI)
or a nonfatal stroke. The second primary endpoint consisted of the first primary
endpoint or the occurrence of refractory ischemia.9 Thus, a patient meets the
criteria for this second prospectively defined primary endpoint if (1) they meet the
criteria for the first, or (2) they do not meet the criteria for the first primary
endpoint, but they have refractory ischemia. Secondary outcomes included severe
ischemia, heart failure, and the need for revascularization.

The idea of dependency between the two primary endpoints is an admissible
one. However, the level of dependence requires some discussion. Certainly, if
there are very few patients with recurrent ischemia, then the second primary
endpoint is the same as the first, and we would expect strong dependence between

9 Refractory ischemia was defined as recurrent chest pain lasting more than 5 min with new ischemic

electrocardiographic changes while the patient was receiving ‘‘optimal’’ medical therapy.
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the two hypothesis tests. However, if there are many patients who have recurrent
ischemia, knowledge of a type I error for the first primary endpoint will provide
less information about the probability of a type I error for the second primary
endpoint, and the measure of dependency is reduced.10

The investigators in CURE utilized selected a1 ¼ 0.045 and a2 ¼ 0.010. Use of
the Bonferroni approximation reveals that x ¼ 1�(1 � 0.045)(1�0.010) ¼ 0.065,
suggesting that if the overall type I error was to be 0.05 then there was some
conservation of the type I error through dependency. Apply formula, i.e., Eq. (13)
and solving for the dependency parameter D, we find

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

a2
1�

1� x
1� a1

� �s
.

Using a1 ¼ 0.045, a2 ¼ 0.010, and x ¼ 0.05, reveals D ¼ 0.69. Thus, the CURE
investigators assume a moderate level of dependency between the two primary
endpoints for their study design. While the investigators do not tell us the degree
of dependency between these two primary endpoint analyses, they do state that
‘‘partitioning the a maintains an overall level of 0.05 after adjustment for the
overlap between the two sets of outcomes.’’ An alternative analysis plan has also
been provided in the literature (Berger, 2002).

As an example of how dependency might be used in the assessment of the effect
of therapy for the evaluation of effect measures for a combined endpoint, con-
sider the circumstances of investigators interested in assessing the effect of an
intervention to reduce the occurrence of upper gastrointestinal (UGI) disease.
They define the combined endpoint of the occurrence of UGI illness, consisting of
either (1) fatal or nonfatal (UGI) bleed, or (2) fatal or nonfatal UGI obstruction.
The investigators wish to assess the effect of the intervention on the rate of UGI
illness as defined by these endpoints, allocating type I error across these three
assessments in order to conserve the familywise error. During the design phase of
the study, they carry out a simple sample size computation (Table 2).

Table 2 reports the cumulative control group events rates for the combined
endpoint (Combined UGI illness) and each of its component endpoints. The size
of the study would need to be at least 3867 patients if the investigators desire
adequate power for each of the three analyses. However, the type I error has not
been conserved across all three evaluations.

The investigators next conserve the FWER, applying a Bonferroni style
adjustment (Table 3).

In this circumstance, the majority of the type I error is allocated for the first
combined endpoint analysis, leaving a residual a error rate of 0.010 to be dis-
tributed among its two component endpoints (each of which is itself a combined

10 For example, there could be a strong beneficial effect of therapy for the first primary endpoint.

However, a large number of patients with recurrent ischemia and the absence of a beneficial effect of

this therapy on recurrent ischemia could produce a different finding for this second primary endpoint.

The occurrence of a type I error for the first primary endpoint would shed no light on the probability

of the type I error for the second primary endpoint in this circumstance.
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endpoint). The reduction in the type I error rate for each specific test produces a
dramatic increase in sample size.

However, the investigators recognize the dependency between the combined
endpoint and each of its composite endpoints. They choose the measure of de-
pendency between the evaluation of the fatal/nonfatal bleed and the combined
UGI illness endpoint, D2|1 ¼ 0.80, and the measure of dependency between these
first two evaluations, and the third, D3|1,2 ¼ 0.90. Using Eq. (14) they compute
the maximum type I error available for the evaluation of the two component
endpoints is 0.029. Of this they allocate 0.020 to the effect of therapy on the fatal/
nonfatal bleed evaluation. Using Eq. (16) they have 0.017 type I error rate for the
allocation of the effect of therapy on the cumulative incidence of fatal/nonfatal
obstruction (Table 4).

From Table 4, we observe that the test-specific type I error levels are sub-
stantially higher for each of the three specific evaluations. In addition, the larger
type I error rates decrease the required size of the study from 6152 to 4949, a 20%
reduction. Thus, the direction incorporation of dependency within the statistical
inference structure of the combined endpoint has produced a substantial reduc-
tion in sample size, in addition to the increased type I error levels for each of the
combined endpoint’s components.

12.3. Conclusions on combined endpoints

The implementation of combined endpoints in clinical trials holds both promise
and danger. A carefully constructed combined endpoint can helpfully broaden the

Table 2

Alpha allocation example for therapy effect on UGI illness: Scenario 1

Primary Analyses Cumulative

Control Group

Event Rate

Efficacy Alpha (two-

tailed)

Power Sample Size

Combined UGI illness 0.300 0.20 0.050 0.90 2291

Fatal/nonfatal bleed 0.200 0.20 0.050 0.90 3867

Fatal/nonfatal obstruction 0.200 0.20 0.050 0.90 3867

No attempt has been made to adjust the familywise error rate.

Table 3

Alpha allocation example for therapy effect on UGI illness: Scenario 2

Primary Analyses Cumulative

Control Group

Event Rate

Efficacy Alpha (two-

tailed)

Power Sample Size

Combined UGI illness 0.300 0.20 0.040 0.90 2425

Fatal/nonfatal bleed 0.200 0.20 0.005 0.90 6152

Fatal/nonfatal obstruction 0.200 0.20 0.005 0.90 6152

Bonferroni procedure has been applied, with a consequent increase in sample size.
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definition of a clinical endpoint when the disease being studied has different
clinical consequences. This expansion commonly increases the incidence rate of
the endpoint, reducing the sample size of the trial. Alternatively, if the larger
sample size is maintained, the combined endpoint serves to decrease the sensitivity
of the experiment to detect moderate levels of therapy effectiveness. However,
if the combined endpoint is too broad it can become un-interpretable and
ultimately meaningless to the medical and regulatory communities. Thus,
the combined endpoint should be broad and simultaneously retain its interpret-
ability. Additionally, there should be some experimental evidence or at least
theoretical motivation justifying the expectation that the effect to be studied
will have the same effect on each of the component endpoints of the combined
endpoint.

These can be elaborated as a collection of principles, adapted from.

Principle 1. Both the combined endpoint and each of its component endpoints

must be clinically relevant and prospectively specified in detail (principle of

prospective deployment).

Principle 2. Each component of the combined endpoint must be carefully

chosen to add coherence to the combined endpoint. The component endpoint

that is under consideration must not be so similar to other components that it

adds nothing new to the mixture of component endpoints make up the com-

bined endpoint; yet, it should not be so dissimilar that it provides a measure

which is customarily not clinically linked to the other component endpoints

(principle of coherence).

Principle 3. The component endpoints that constitute the combined endpoint

are commonly given the same weight in the statistical analysis of the clinical

trial. Therefore, each of the component endpoints must be measured with the

same scrupulous attention to detail. For each component endpoint, it is im-

portant to provide documentation not just that the endpoint occurred, but also

to confirm the absence of the component endpoint (principle of precision).

Principle 4. The analysis of the effect of therapy on the combined endpoint

should be accompanied by a tabulation of the effect of the therapy for each of

Table 4

Alpha allocation example for therapy effect on UGI illness: Scenario 3

Primary Analyses Cumulative

Control Group

Event Rate

Efficacy Alpha (two-tailed) Power Sample

Size

D ¼ 0.050

Combined UGI illness 0.300 0.20 0.040 0.90 2425

D ¼ 0.80

Fatal/nonfatal bleed 0.200 0.20 0.020 0.90 4790

D ¼ 0.90

Fatal/nonfatal obstruction 0.200 0.20 0.017 0.90 4949
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the component endpoints. This allows the reader to determine if there has been

any domination of the combined endpoint by any one of its components, or if

the findings of the effect of therapy for component endpoints are not consistent

(principle of full disclosure).

13. Multiple comparisons and subgroup analyses

Well-trained research investigators diligently work to identify every potentially
valuable result. Having invested great time and effort in their studies, these sci-
entists want and need to examine the data systematically and completely. They
are well aware that interesting findings await them in non-prospectively declared
analyses. Commonly, investigators believe that, like real gems, these tantalizing
surprises lie just below the surface, hidden from view, waiting to be unearthed.

In addition, others can also raise intriguing questions concerning the inves-
tigators’ analyses. In the process of publication, journal reviewers and editors will
sometimes ask that additional analyses be carried out. These analyses can include
considering the effect of the exposure in subsets of the data. Similar inquiries can
come from the manuscript’s readers.

The research program’s cost-effectiveness and the investigator’s desire for
thoroughness require that all facets of a research effort’s data be thoroughly
examined. However, as we have seen, the need to protect the community from the
dissemination of mistaken results from research programs can collide with the
need to make maximum use of the data that has been so carefully collected. These
problems are exemplified in subgroup analyses.

13.1. Definitions

A subgroup analysis is the evaluation of the exposure–disease relationship within
a fraction of the recruited subjects. While the concept of subgroup analyses is
straightforward, the terminology can sometimes be confusing.

A subgroup is the description of patient-based characteristic, e.g., gender that
can be subdivided into categories. For example, if an investigator is interested in
creating a gender subgroup, patients are classified into one of two groups – male
or female. These groups are referred to as levels or strata. There is one stratum for
each category.

The traditional subgroup analysis is an evaluation of the effect of therapy
within each of the subgroup strata. In a gender-based subgroup, the subgroup
analysis consists of an evaluation of the exposure for males and then for females.
Thus, each stratum analysis generates its own effect size, standard error, con-
fidence interval, and p-value.

A critical preliminary task in subgroup analysis is the proper classification of
patients into each of the subgroup strata. Although membership determination
may appear to be a trivial task, there are circumstances in which this classification
is problematic. These concerns revolve around the timing of the subgroup
membership determination.
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There are two important possibilities for determination of the timing of sub-
group membership. The first is the classification of patients into the correct sub-
group stratum when the patients are randomized. The second choice is to classify
patients into subgroup strata at some time during the execution of the study.
While each has advantages, the determination of subgroup membership at the
beginning of the study is preferred.

Determining subgroup membership at the beginning of the trial requires that
not only must the subgroup be defined at the beginning of the study, but also
subgroup strata membership should be defined prospectively as well. This is a
straightforward procedure to apply to the gender subgroup with its two strata.
However, for other subgroups of clinical interest, the process can be complex. For
example, consider a clinical trial that assesses the effect of an agent that reduces
cholesterol levels on stroke. In this case, it is relatively easy to evaluate the
relationship between baseline cholesterol level strata (1) less than 175mg/dl and
(2) greater than or equal to 175mg/dl and the cumulative incidence of stroke.
However, the evaluation of these strata when they are based on follow-up levels
of cholesterol is problematic.

The problems arise for two reasons. The first is that patients can change sub-
group strata as the study progresses and their cholesterol levels fluctuate. By
making it difficult to definitively and convincingly determine subgroup member-
ship, the analysis can suffer from the observation that changing the subgroup
membership of just a few patients can change the results of the subgroup analysis.
Such brittle evaluations are unpersuasive.

Second, there are many influences that affect lipid measurements over time.
If the exposure being evaluated reduces cholesterol levels, then patients with
lower cholesterol levels are more likely to have received active therapy, and
patients with the higher levels would have a greater chance of being in the control
group. Thus, the evaluation of lipid levels will be confounded with exposure to the
agents after the study was initiated, confusing the attribution of the observed
effect on the endpoint.

There were many factors that influence baseline lipid levels. Race/ethnicity,
gender, family history, prior treatment are but a few of them. However, the
randomly assigned intervention did not influence baseline LDL-cholesterol levels.
It is the absence of any relationship between the randomly allocated therapy and
the baseline LDL-cholesterol level that allows a clear examination of the effect of
LDL-cholesterol level on the relationship between the intervention and stroke.
A subgroup whose strata membership criteria are based on baseline character-
istics of the patient is called a proper subgroup (Yusuf et al., 1991). Improper
subgroups are those whose strata membership can only be determined after the
patient has been randomized. Because membership based on follow-up data can
be influenced by the randomly allocated therapy, the interpretation of these
results is complicated.

Despite the problems posed by improper subgroup evaluations, there are cir-
cumstances in which this type of analysis is nevertheless carried out. If the in-
vestigators are interested in an evaluation of the effect of lower blood pressure on
the incidence of stroke, regardless of how the blood pressure was lowered, then
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analysis procedures are available.11 However, these evaluations are exceedingly
complicated and the results must be interpreted with great caution. Similar eval-
uations have examined the relationship between lipid lowering and atherosclerotic
morbidity and mortality (Pedersen, 1998; West of Scotland, 1996; Sacks et al.,
1998).

Finally, we will hold aside the issue of the analysis of a proper subgroup
defined post hoc. In that circumstance, the subgroup criteria using baseline var-
iables is defined at the end of the study. Since the subgroup analysis was planned
after the data were examined, the analysis is exploratory.

13.2. ‘‘Intention-to-treat’’ versus ‘‘as treated’’

The proper versus improper subgroup analyses frameworks adds another level of
complication to the multiple analysis problem, complicating the result interpre-
tation. Perhaps the most commonly occurring example of proper versus improper
subgroup analyses in clinical trials is the distinction between ‘‘intention-to-treat’’
versus the ‘‘as treated’’ evaluations. Consider a clinical trial in which patients are
randomized to receive an intervention to reduce the total mortality rate from end
stage renal disease. At the inception of the study, patients are randomized to
receive either control group therapy or the intervention. At the conclusion of the
study, the investigators will compare the cumulative mortality rates of patients in
each of the two treatment groups. However, at the end of the study, how will the
investigators decide what patients should be assigned to each group in the final
analysis? The commonly used approach is to assign treatment group membership
simply as the group to which the patient was randomized. This is the ‘‘intention-
to-treat’’ principle.

The ‘‘intention-to-treat’’ principle of analysis is the standard analysis proce-
dure for the evaluation of clinical trial results. Undoubtedly, this analysis tends to
be a conservative one, since not every patient is treated as they were ‘‘intended.’’
For example, some patients randomized to the active group may not take their
medication. These patients, although randomized to the active group, will have
the control group experience and will therefore produce endpoints at rates similar
to that of the control group. However, they would be included in the active group
since they were randomized to and ‘‘intended to be treated’’ like active group
patients. The inclusion of these patients in the active group for analysis purposes
tends to make the active group experience look more like the control group
experience, increasing the overall active group event rate.12

Similarly, patients who are randomized to the control group may nevertheless
be exposed to active group medication. These patients will experience event rates
similar to the rates of the active group, but since they are considered as part of the

11 Cox hazard analysis with time dependent covariates has been one useful tool in this regard.
12 There are occasional complications in an ‘‘intention-to-treat’’ analysis. In some cases, a patient is

tested and randomized, but then, subsequent to the randomization the test result reveals that the

patient is not eligible for the trial for a prospectively stated reason. In this case, there was no ‘‘intent’’

to randomize this patient when the test result was known, and the patient is removed from the study.
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control group, the inclusion of these patients will produce an event rate for the
control group that is closer to that of the active group.

Thus, the control group rate will approach that of the active group, while the
cumulative event rate in the active group will be closer to that of the control
group (described in the previous paragraph). This effect of these combined rate
alterations reduces the magnitude of the treatment effect, thereby diminishing the
power of the clinical trial.

An alternative analysis to the ‘‘intent to treat’’ principle is one that analyzes the
endpoint results using an ‘‘as-treated’’ analysis. In this case, although patients are
still randomized to receive either placebo or active therapy, they are classified for
analysis purposes based on whether they actually took their medication or not.
Since this is determined after the patient was randomized to the medication, and
the effect (both perceived beneficial effects, and adverse effects) of the medication
may determine whether the patient takes the medication, the ‘‘as-treated’’ eval-
uation is a confounded analysis. A clearly detailed examination of this issue is
available (Peduzzi et al., 1993). The ‘‘as-treated’’ analysis complicates the sub-
group analysis interpretation.

13.3. Interpretation difficulties

The analysis of subgroups is a popular, necessary, and controversial component
of the complete evaluation of a research effort. Indeed, it is difficult to find a
manuscript that reports the results of a large observational study or clinical trial
that does not report findings within selected subgroups.

Subgroup analyses as currently utilized in clinical research are tantalizing
and controversial. The results from subgroup assessments have traditionally
been used to augment the persuasive power of a clinical research effort’s
overall results by demonstrating the uniform effect of the therapy in patients
with different demographic and risk factor profiles. This uniformity leads
to the development of easily understood and implemented rules to guide the
use of therapy.13 Some research efforts have reported these results in the man-
uscript announcing the trial’s overall results (Pfeffer et al., 1992; Sacks et al.,
1996; SHEP, 1991; LIPID Study Group, 1998). Others have separate manu-
scripts dealing exclusively with subgroup analyses (Moyé et al., 1994; Lewis
et al., 1998a, b). Such subgroup analyses potentially provide new information
about an unanticipated benefit (or hazard) of the exposure of interest on the effect
measure.

However useful and provocative these results can be, it is well established that
subgroup analyses are often misleading (Peto et al., 1995; MRFIT, 1982; ISIS,
1986; Lee et al., 1980). Assmann et al. (2000) has demonstrated how commonly
subgroup analyses are misused, while others point out the dangers of accepting
subgroup analyses as confirmatory (Bulpitt, 1988). A fine example of the

13 The finding that a particular lipid lowering drug works better in women than in men can complicate

the already complex decisions that practitioners must make as the number of available compounds

increase.
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misleading effects of subgroup analyses is in the PRAISE I and II clinical trials, in
which a subgroup evaluation, raised to prominence (Packer et al., 1996) could not
be confirmed (Packer, 2000).

Nevertheless, the medical community continues to be tantalized by spectacular
subgroup findings from clinical trials. A recent example is the subgroup analysis-
based suggestion that medication efficacy is a function of race; this has appeared
in both peer-reviewed journals (Exner et al., 2001; Yancy et al., 2001) and the lay
press (Stolberg, 2001).

13.4. Effect domination principle

The examination of individual subgroup strata effects in health care research can
be misleading for reasons that have been elaborated. If we cannot believe the
event rates that are present in the stratum are the best measures of that stratum’s
response to the exposure, then what is the best measure of the effect of an
exposure on a subgroup stratum?

Some illumination is provided in the following example. An auditorium
that can seat 300 people is divided down the middle into two sections of
seats, with 150 on each of the left and right side of the room. Three hundred
occupants seat themselves as they choose, distributing themselves in an unre-
stricted manner among all the seats in the auditorium. When all are seated,
we measure the height of each person, finding that the average height is exactly
68 in. Does that mean that the average height of those seated on the left-hand side
of the classroom will be 68 in? Because the 68 in measurement was produced
from all 300 attendees in the room, not just the 150 on the left-hand side, we
would expect the average height of those seated on the left side of the room would
not be 68 in.

However, if the average height of the occupants on the left-hand side of the
classroom is greater than 68 inches, then those seated on the right-hand side must
have an average height less than 68 inches. Thus, those sitting on the left-hand
side have a greater height than those on the right-hand side. While the fact is
undeniable in this one auditorium during this one seating, it would of course be
inappropriate to generalize this conclusion to the population at large. The ran-
dom aggregation of observations has induced a subgroup effect that is based only
on the play of chance here. Specifically, the ‘‘subgroup effect’’ was induced by
selectively excluding individuals from the computation of the mean. The best
predictor of the height of the occupants seated on the left side of the room is in
general the average height of all attendees.

Allowing the overall measure of effect in the entire cohort to dominate the
subgroup stratum effects can be termed the effect domination principle and is
attributable to Yusuf et al. (1991).

This principle of effect domination is not very provocative, containing little of
the excitement of exploratory analyses. However, it is far more reliable, given the
general non-confirmatory analyses that the majority of subgroup analyses in
health care results constitute.
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13.5. Confirmatory subgroup analyses and multiple comparisons

Since subgroup analyses have and will, in all likelihood, continue to engender the
interest of the medical community, it is logical to ask why there are not more
confirmatory analyses involving subgroup evaluations. This is an especially
interesting question since there are clear circumstances in which subgroup eval-
uations can produce confirmatory results of the therapy effect within (or across)
subgroup strata. When executed, these confirmatory results stand on their own,
separate and apart from the result of the effect of therapy in the overall cohort.
The criteria for these evaluations are readily identified.

The first of these criteria for the development of confirmatory analyses in
clinical trials is that the subgroup analysis must be prospectively designed and
proper. This structure is required so that (1) the therapy effect size estimators that
the subgroup analysis produces are trustworthy; and (2) that the effect of therapy
to be evaluated in a subgroup is not confounded by (i.e., bound up with) post-
randomization events. In general, there has been no difficulty with meeting this
requirement of confirmatory subgroup analyses. Many clinical trials make state-
ments in their protocols describing the plans of investigators to evaluate the effect
of therapy within their subgroups of interest. These subgroups are, by and large,
proper subgroups, e.g., demographic traits.

However, the final requirement for a confirmatory subgroup analysis is the
prospective allocation of type I and type II error rates in the setting of adequate
power. This last criterion has proved to be especially troublesome because of the
severe sample size constraints this places on subgroup analyses. As we have
pointed out earlier, the allocation of type I error rates for confirmatory testing
must be such that the FWER, x, is conserved. This requires that statistical testing
at the level of subgroup analyses will be governed by test-specific a error rates that
are generally less than 0.05.

The difficulty of executing subgroup analyses in the presence of FWER control
and adequate statistical power is not difficult to understand. In fact, resources are
generally strained to the breaking point for the analysis of the effect of therapy in
the overall cohort. This overall analysis is typically carried out with the minimum
acceptable power (80%) because of either financial constraints or patient
recruitment difficulties. By definition, subgroup analyses (and certainly within-
stratum subgroup analyses) will involve a smaller number of patients; it is a
daunting task to prospectively allocate type I and type II error rates at acceptable
levels in a smaller number of patients, although the methodology for the accurate
computation of sample size is available (Neyman, 1938). Thus, the growth of the
use of subgroups as confirmatory tools has, to some extent, been stunted by the
difficulty of constructing a prospective clinical trial with an embedded, prospec-
tively defined proper subgroup for which tight statistical control is provided for
type I and type II statistical errors.

13.6. Assessment of subgroup effects

The evaluation of subgroup effects in clinical trials focuses on the effect of the
randomly allocated therapy on the subgroup of interest. However, this assessment
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can be carried out in two complementary manners. The first is the determination
of a differential effect of therapy across subgroup strata. The second is the eval-
uation of the effect of therapy within a single subgroup stratum. Each approach,
when prospectively planned and concordantly executed, can supplement the
information provided by the evaluation of the main effect of a clinical trial.

We commonly think of the effect of the randomly allocated intervention in a
clinical trial as an effect across the entire research cohort. The examination of a
dataset for this effect, while complicated, has become a routine part of the eval-
uation of the randomly allocated therapy’s influence in a clinical trial. The finding
of both clinical and statistical significance for this analysis suggests that the effect
of therapy is different for one subgroup stratum than for another.

This type of subgroup effect is commonly referred to as a treatment by sub-

group interaction (exposure by subgroup interaction); a notable product of this
analysis is the p-value for interaction. Typically, the analysis result is described as
identifying how the subgroup strata interacts with the therapy to alter the
occurrence of the endpoint, and the evaluation is called an interaction analysis.
Alternatively, this approach is described as effect modification, i.e., it examines the
degree to which the subgroup stratum modifies the effect of treatment on the
endpoint.

We should not be surprised by the observation that statistically significant
effect modification analyses in research are uncommon. The subgroup analyses
involve an evaluation of an effect difference between smaller subsets of patients
within the research cohort. Everything else being equal, the smaller sample sizes
reduce the statistical power of the hypothesis tests. Since, the presence of a test
statistic that does not fall in the critical region in a low power environment is not
a null finding, but merely an uninformative one, many of these subgroup analyses
are unhelpful and not generalizable.

13.7. Within-stratum effects

The evaluation of a subgroup-mediated effect modification may not directly
address the question the investigators have raised about the subgroup. This is
because the investigators’ interest may not be in the entire subgroup, but only in
selected subgroup strata. Specifically, the investigators may not ask whether the
effect of therapy is the same across subgroup strata, but instead ask whether there
is an explicit effect of the intervention in the prospectively defined subgroup
stratum of interest. This is a different question than that addressed by an inter-
action analysis.

One such situation would be when the stratum is composed of patients who
have a very different prognosis from that of patients in other strata of the sub-
group. While investigators may be most interested in the effect of a new inter-
vention on thyroid cancer, they may be particularly interested in the effect of the
therapy in patients with an advanced stage of the disease. This interest does not
require the investigators to ask whether the effect of therapy in patients with less
advanced thyroid cancer is different from that of patients with advanced thyroid
cancer; they simply desire confirmatory evidence that the therapy has explicit
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efficacy in patients with advanced thyroid cancer. Similarly, a new therapy for the
treatment of CHF may hold promise for reducing mortality in all patients with
CHF, but the investigator is motivated to demonstrate the effect of this therapy in
patients with CHF whose etiology is non-ischemic. She is not interested in com-
paring or contrasting the efficacy of the intervention between ischemic versus
non-ischemic etiologies of CHF. She is instead focused on two questions: (1) Is
the therapy effective in the entire cohort and (2) Can the effect of this therapy be
confirmed in the subcohort with CHF–non-ischemic etiology?

This approach begs the question of whether the therapy could be effective in
the entire cohort but not the subcohort of interest. In order to address this,
consider the possibility that the therapy in fact is effective for patients with CHF–
ischemic etiology but ineffective for patients with a non-ischemic etiology for
their CHF. Let the research sample primarily contain patients with CHF–is-
chemic etiology, with only a small number of patients who have a non-ischemic
etiology for their heart failure. Since the research sample contains primarily those
patients who will respond to the therapy, the result of the concordantly executed
clinical trial will be positive (barring an effect that is driven by sampling error).
The investigator will then argue that, since the trial is positive, this positive
finding will apply to the CHF–non-ischemic subgroup as well. Essentially, the
conclusion about the non-ischemic subcohort is based primarily on the findings of
patients who are not in that subcohort at all. This is the consequence of the effect
domination principle, in which the findings in the overall cohort devolve on each
of the subgroup strata. In this example, the principle produces the wrong con-
clusion; nevertheless, it is the best conclusion available in the absence of a con-
firmatory subgroup analysis. In order to avoid this possibility, the investigator is
interested in reaching a confirmatory conclusion about the population of patients
with non-ischemic etiology for their CHF.

As another illustration of a circumstance in which prospectively specified,
stratum-specific subgroup analyses can make an important contribution, consider
the situation in which the adverse event profile of a therapy that is being studied
in a controlled clinical trial is known to be different between women and men. As
an illustration, consider a cholesterol-reducing drug that produces pre-malignant
breast disease in women. In this circumstance, the risk–benefit profile of this drug
is different for women than it is for men. Since women will be exposed to a greater
risk with this therapy, it is reasonable to require investigators to produce a
statistically valid demonstration of efficacy in women. The investigators are not
disinterested in an effect in men; however, the relatively low risk of the drug
in men allows the investigators to be satisfied with deducing the effect of the
therapy in men from the effect of therapy in the overall cohort. It is the greater
adverse event risk in women that requires an explicit demonstration of efficacy in
them.

13.8. Multiple comparisons and designing confirmatory subgroup analyses

In designing confirmatory subgroup analyses, the investigators have several tools
at their disposal. A common assumption in clinical research development is that
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the design parameters necessary for the computation for clinical trials are the
same in all subgroup strata. However, the information is commonly available to
the investigators that would lead to other conclusions. For example, event rate
differences can be well established across subgroup strata. These differential event
rates will have an important impact on the computed sample size.

Another design parameter that investigators have complete control over is
efficacy. The investigators choose this measure of effect size, being guided by the
twin concerns of research community standard and resource constraints for the
execution of the clinical trial. However, the occurrence of serious adverse events
at different frequencies across the subgroup strata affects the computation of
efficacy. By shifting the level or risk in the risk–benefit calculation, the level of
efficacy may need to be greater in the subgroup strata with the greatest adverse
events.

Just as we recognized that the execution of prospectively defined analyses for a
combined endpoint and its component endpoints was a research environment in
which dependency between statistical hypothesis tests was very likely, we can
easily see that this same concept of dependency can be applied to a collection of
well-designed hypothesis tests carried out in both an entire cohort of patients as
well as in a subgroup of them. Developments in dependent hypothesis testing can
be employed in generating confirmatory subgroup analyses. We can write the
dependency parameter D as D ¼ c, where c is the proportion of patients in the
entire cohort that are included in the subgroup stratum of interest.

These features can be used to compute the sample size required for a con-
firmatory analysis in each of the overall cohort and the subgroup of interest in the
study, producing useful measures of within-stratum effects.

As an example of the use of these features, consider the circumstance of
investigators interested in demonstrating the effect of a medication, which has
anti-platelet activity in patients with essential hypertension. The investigators
plan to recruit patients with essential hypertension, and then randomly assign
them to one of two arms; the control arm or the active medication arm. Patients
who are randomized to the control arm will receive instruction on adjustment of
their lifestyle (including exercise, diet and sodium chloride control, smoking ces-
sation, and stress management). They will then have their essential hypertension
managed using a standard anti-hypertensive regimen. These control group sub-
jects will also receive a placebo pill that they must take each day.

Patients who are randomized to the active treatment arm receive control group
therapy plus, instead of the placebo, the anti-platelet agent which they must take
every day for the duration of the trial. The trial designers believe that they will be
able to recruit approximately 7000 patients for this trial.

The primary endpoint of this study will be the combined endpoint of fatal and
nonfatal stroke. However, the anti-platelet agent is known to be associated with a
different constellation of adverse events in elderly patients (including but not
limited to bleeding). The investigators have a prospective interest in demonstrat-
ing that the benefits of anti-platelet therapy justify its use in this higher risk
subcohort. Thus, they prospectively design two primary analyses in this study:
(1) the effect of the anti-platelet agent on the cumulative incidence rate of
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fatal/nonfatal stroke in the entire cohort, and (2) the effect of the anti-platelet
agent on the fatal/nonfatal stroke rate in the elderly cohort (Table 5).

The investigators have assumed a control group cumulative event rate of 12%.
An initial examination of the efficacy issue in the total cohort leads the inves-
tigators to the assessment that the minimum clinical efficacy is 20%. For their
first evaluation, the trial designers assume that the minimum clinical efficacy is the
same for the elderly subcohort.

The sample size computation of Table 5 reveals that over 7020 patients are not
only required for the evaluation of therapy effect in the total population, but 7020
patients are required for the evaluation in the elderly population as well. This is
the classic conundrum of sample size computations in subgroups. In general, the
investigators believe they will only be able to recruit 2500 elderly patients.

However, the researchers now bring several aspects of the subgroup charac-
teristics to bear to plan for the prospective multiple analysis. The first is that the
event rate is observed to be larger in the subgroup of elderly patients than in the
overall cohort. Second, the investigators required a larger efficacy in the elderly
patients to help offset the greater frequency of adverse events associated with the
therapy. In addition, statistical dependency can be built into the structure of the
evaluation. It is anticipated that 30% of the entire subcohort will be elderly. Thus,
the dependency parameter is Ds ¼ 0.30. In addition, the investigators have re-
duced the power of the elderly evaluation to 85%. (Table 6).

In this evaluation, a confirmatory evaluation is now available for the effect of
therapy in each of the overall cohort, and the subgroup of the elderly.

Numerous examples and scenarios of the execution of subgroup stratum-
specific analyses are available.

Table 5

Design paramters for stroke trial: Demonstration 1

Primary Analyses Cohort Cumulative Control

Group Event Rate

Efficacy Alpha (two-

tailed)

Power Sample

Size

Fatal/nonfatal stroke Total 0.120 0.20 0.050 0.90 7020

Fatal/nonfatal stroke Elderly 0.120 0.20 0.050 0.90 7020

Table 6

Design paramters for stroke trial: Demonstration 1

Primary Analyses Cohort Cumulative

Control Group

Event Rate

Efficacy Alpha (two-tailed) Power Sample

Size

Fatal/nonfatal stroke Total 0.120 0.20 0.035 0.90 7677

D ¼ 0.300

Fatal/nonfatal stroke Elderly 0.150 0.30 0.017 0.85 2562
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14. Data dredging

Data dredging is the methodological examination of a database for all significant
relationships. These database evaluations are thorough, and the analysis proce-
dures are wide ranging, spanning the gamut from simple t-testing to more
complex time-to-event evaluations, repeated measures assessments, and structure
equation modeling. Typically, little thought is given to endpoint triage or the
conservation of type I error rates across analyses.

The notion that, if they look hard enough, work long enough, and dig deep
enough they will turn up something ‘‘significant’’ in the database drives the data
dredger. Indeed, the investigators may identify a relationship that will ultimately
be of great value to the medical community. However, while it is possible to
discover a jewel in this strip mining operation, for every rare jewel identified, there
will be many false finds, fakes, and shams. As Miles pointed out, datasets that are
tortured long enough will provide the answers that the investigators seek, whether
the answers are helpful, truthful, or not.

Unfortunately, many of the important principles of good experimental meth-
odology are missing in the direct examination of interesting subgroups. Inadequate
sample size, poorly performing estimators, low power, and the generation of mul-
tiple p-values combine to create an environment in which the findings of the data
dredging operation are commonly not generalizable. Accepting the ‘‘significant’’
results of these data dredging activities can misdirect researchers into expending
critical research resources in fruitless pursuits, a phenomenon described by Johnson.
In his 1849 text Experimental Agriculture, Johnson stated that a badly conceived
experiment was not only wasted time and money, but leads to both the adoption
of incorrect results and the neglect of further research along more productive lines.
It can therefore take tremendous effort for the medical and research community to
sort out the wheat from the data-dredged chaff, often at great expense.

References

Adams, C. (2002). At FDA, approving cancer treatments can be an ordeal. The Wall Street Journal

December 11, 1.

Anonymous (1988). Evidence of cause and effect relationship in major epidemiologic study disputed

by judge. Epidemiology Monitor 9, 1.

Assmann, S., Pocock, S., Enos, L., Kasten, L. (2000). Subgroup analysis and other (mis)uses of

baseline data in clinical trials. Lancet 355, 1064–1069.

Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological)

57(1), 289–300.

Benjamini, Y., Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under

dependency. The Annals of Statistics 29(4), 1165–1188.

Berger, V.W. (2002). Improving the information content of categorical clinical trial data. Controlled

Clinical Trials 23, 502–514.

Berkson, J. (1942a). Experiences with tests of significance. A reply to R.A. Fisher. Journal of the

American Statistical Association 37, 242–246.

The multiple comparison issue in health care research 651



Berkson, J. (1942b). Tests of significance considered as evidence. Journal of the American Statistical

Association 37, 335–345.

Bonferroni, C.E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del

Professore Salvatore Ortu Carboni. Rome, pp. 13–60.

Bonferroni, C.E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R
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Wilhelmsen, L., Haghfelt, T., Thorgeirsson, G., Pyörälä, K., Miettinen, T., Christophersen, B.,
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Power: Establishing the Optimum Sample Size

Richard A. Zeller and Yan Yan

Abstract

This paper focuses on power, which is the probability that a real clinical pattern

will be detected. Power depends on (a) the effect size, (b) the sample size, and

(c) the significance level. But if the clinical researcher knew the size of the

effect, there would be no reason to conduct the research! Researcher designers

use power analysis to minimize the likelihood of both false positives and

false negatives (Type I and Type II errors, respectively). Both software and

simulation approaches to establishing power in research design are described in

this paper. Basic software, such as SamplePower1.0, is effective for establish-

ing power for means, proportions, ANOVA, correlation, and regression. Ad-

vanced softwares, such as UnifyPow and PASS, establish power for more

complex designs. generalized estimating equations (GEEs) are designed for

correlated data. Complex designs such as repeated measures ANOVA. Monte

Carlo simulations provide an alternative and a validity check for software

power analyses. Criteria for establishing sample sizes that are large enough, but

not too large, are discussed.

1. Introduction

A crucial question faced by designers of clinical research is the determination of
the sample size. How many observations should the clinical researcher seek
to make? The sample should be large enough to reliably establish the clinical
pattern. But the sample should not be so large as to waste precious research time,
energy, money, and resources. In order to establish an optimal sample size, stat-
isticians use the statistical tool of the null hypothesis.

A null hypothesis is a statement of no relationship. Traditionally, the null
hypothesis has been used as the criterion for reliably establishing a clinical pat-
tern. When a researcher establishes that the probability that ‘‘no reliable pattern
exists’’ is less than .05, the researcher then claims that the clinical pattern has been
reliably established. A Type I error is the rejection of a null hypothesis when, in
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fact, the null hypothesis is true. The significance level is the probability of making
a Type I error when conducting a null hypothesis test.

Not wanting to find ‘‘false positives,’’ the clinical researcher would like to have
a low likelihood of making a Type I error. How low should the significance
level be? It is standard protocol to set the significance level at the low probability
of .05. This sets the probability of making a ‘‘false positive’’ Type I error at
5 chances in 100.

Null hypotheses are almost always false. An infinitesimal proportion of elec-
tions are ties. In elections, 50%+1 vote is sufficient to win the election. But in
clinical research the difference between 50%+1 and 50%�1 is trivial. Clinical
researchers want to find important clinical patterns. But statistical theory focuses
on the principle of falsification. This principle argues that we cannot prove
anything to be true, but we can prove something to be false. The logical basis of
the null hypotheses is that, if the null hypothesis is false, something else has to be
true. That ‘‘something else’’ is the ‘‘clinical pattern.’’

The null hypothesis focuses on the lack of a clinical pattern, but the clinical
researcher is not interested in the lack of a clinical pattern! Instead, the clinical
researcher is interested in establishing an important clinical pattern! Instead of
asking: ‘‘How likely is it that no relationship is not so?’’, the clinical researcher
wants to ask: ‘‘Is there an important relationship?’’ More specifically, the clinical
researcher wants to know, in advance, the likelihood of a research design de-
tecting a real and important clinical effect. In asking this question, the clinical
researcher is posing a question of statistical power.

The power of a significance test is the probability that a real clinical pattern will
be detected. A Type II error is the failure to reject a null hypothesis when, in fact,
there is a relationship between our variables in the population. Thus

Power ¼ 1� Probability of a Type II error:

The clinical researcher wants to know how powerful the research design is.
Specifically, the clinical researcher wants to know how likely it is that a research
design with a specific sample size will detect a real, important clinical effect. That
is, the researcher would like to have a research design in which the odds of
detecting the effect are high. Not wanting to waste time, energy, and resources to
find ‘‘false negatives,’’ the clinical researcher would like to have a low likelihood
of making a Type II error. How high should power be? It is standard protocol to
set power at the high probability of .80. This sets the probability of correctly
inferring the effect at .80. It makes the odds of making a ‘‘false-negative’’ Type II
error into 20 chances in 100.

The power of a significance test to detect a real pattern is based on

� the effect size,
� the sample size, and
� the significance level.

But if the clinical researcher knew the size of the effect, there would be no
reason to conduct the research! In order to conduct power analyses, the researcher
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must guess at the size of the effect before the study is conducted! There are ways to
make this guess reasonable. What does the literature say? What does the re-
searcher’s clinical experience suggest? What does a pretest indicate? Sometimes
this estimated effect size comes from how big the effect must be to be ‘‘clinically
important.’’ However, the fact remains that in order for a researcher to establish

the power of the sample size for a research design, the researcher must estimate in

advance the effect size!

2. Illustrating power

Consider an illustration of power analysis. You specify the following parameters
for a two-group, independent observations comparison:

� the effect size is equal to one fourth of a standard deviation unit (.25z),
� the sample size equals 100 cases (N ¼ 100), and
� the significance level equals 1 chance in 20 of a Type I error (a ¼ .05).

What is the likelihood that a clinical trials random assignment experiment with
these parameters will detect this effect? Alternatively asked: What is the power of
this study? The answer, derived from the formulas of power analysis, is .70. If a
researcher conducted an infinite number of studies with the above parameters,
70% of those studies would result a statistically significant outcome, whereas
30% would not. We know this because statisticians, such as Cohen (1977) and
Cohen and Cohen (1983, pp. 59–61, 116–119), have gone to great lengths to solve
for formulas that result in that 70% power rate.

But suppose that you are skeptical. Suppose that you want to see it to believe it. In
one sense, we cannot satisfy your skepticism. We cannot conduct an infinite number
of studies with the above parameters. However, we can conduct a large number of
such studies and examine what percentage of those studies detect the effect. If we
are unsuccessful at doing this, your skepticism is warranted. If, on the other hand,
we successfully do this, your skepticism about power formulas should dissipate.
The purpose of this section is to conduct a large number of studies with the above
parameters. The result of this exercise will be to evaluate the degree to which the .70
power indicated by the formulas is also indicated by the illustration.

In order to conduct this illustration, we needed many thousands of random
numbers. Prior to the widespread use of digital computers, statisticians had to
select random outcomes one at a time. That made illustrations such as this one
difficult to do. Today, however, we can create hundreds of thousands of random
numbers in seconds. For example, we can create 100,000 random numbers using
Microsoft Excel as follows:

� in cell A1, type: ¼ rand(),
� copy cell A1,
� paste the copied material into an area of 10 columns by 10,000 rows.

Just like that, you have produced 100,000 random numbers between .0000 and
.9999.
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For this illustration to be effective, the skeptic must be satisfied that the
numbers are ‘‘really random.’’ In the universe, the mean of each variable ¼ .500
and each standard deviation ¼ .2887. Table 1 presents the analysis of means
and standard deviations for the 10 variables of N ¼ 10,000 ‘‘population’’
created above. The means in Table 1 should be quite close to .5000 and the
standard deviation quite close to .2887. The results of this analysis are presented
in Table 1. An examination of Table 1 reveals that the means hover closely
around .5000; these means range from X̄ ¼ :4945 to X̄ ¼ :5056: Moreover, the
standard deviations hover closely around .2887; these standard deviations vary
from s ¼ .2873 to s ¼ .2904.

But, the skeptic quite properly points out, the important thing is the lack of
correlation between the variables, not the means and standard deviations. Each
variable should have a sample correlation with each other variable quite close to
.0000. The results of this analysis are presented in Table 2. An examination of
Table 2 reveals that the correlations hover closely around .0000; these correlations
range from r ¼ �.024 to r ¼ .020. They have a mean correlation of .0004 and a
standard deviation of .0102.

The standard deviation of these sample correlations are called the standard
error. Thus, the estimates of the standard error of correlations generated from
the above ‘‘simulation’’ are quite low. Thus, our population of N ¼ 10,000 is
consistent with a universe of 10 variables composed of random numbers. Based
on these analyses, a reasonable skeptic should be satisfied that these numbers are
‘‘really random.’’

The value of matrices of random numbers to power analysis is that we can
conduct both simple and complex Monte Carlo simulations of power analyses
where the effect sizes in the universe are known. That is, some combinations of
variables will give us large populations that approximate universes where we know
that the null hypothesis is true (i.e., that the effect size is zero); other combinations
of variables will give us large populations that approximate universes where we
know that the null hypothesis is false (i.e., that the effect size is not zero). More
importantly, these populations will have known effect sizes. When we know the

Table 1

Descriptive statistics for 10 variables of N ¼ 10,000 random numbers

N Minimum Maximum Mean Standard Deviation

R1 10000 .00 1.00 .4945 .2898

R2 10000 .00 1.00 .5056 .2873

R3 10000 .00 1.00 .5020 .2896

R4 10000 .00 1.00 .5016 .2889

R5 10000 .00 1.00 .5022 .2876

R6 10000 .00 1.00 .4992 .2892

R7 10000 .00 1.00 .5001 .2904

R8 10000 .00 1.00 .5010 .2886

R9 10000 .00 1.00 .4979 .2891

R10 10000 .00 1.00 .5010 .2895

Valid N (listwise) 10000
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effect sizes in the population, we can then sample from that population repeatedly.
Using these multiple samples of a specific sample size from the same universe, we
can solve for the proportion of significance tests that are in the critical region of
rejection. This proportion provides us with an unbiased estimate the power of a
research design that has to detect the effect for a sample size of that size.

Consider the question raised above. What is the power of an experiment
to detect a .25z effect with N ¼ 100 and a ¼ .05? The power formula said
that power ¼ .70. To satisfy the skeptic, we conducted a Monte Carlo power
simulation. Using the 100,000 random numbers created above, we

� standardized each N ¼ 10,000 variable of random numbers as follows: ½z ¼
ðX ¼ X̄ Þ=sd�;
� added the .25z effect (by adding .5 to one cell and .0 to the other cell);
� created 100 independent random samples of N ¼ 100 from this population;
� conducted the ANOVA F ratios for the difference between two means;
� counted the number of F ratios that were pr.05.

There were, in our simulation, 73 out of 100 such significant F ratios. Thus, the
Monte Carlo simulated power estimate was .73 compared to the formula-driven
power of .70.

Table 2

Correlation matrix among 10 variables of N ¼ 10,000 random numbers

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 R 1 �.010 .013 �.006 .006 �.006 �.006 �.004 �.004 .005

Significance .326 .207 .530 .567 .557 .558 .703 .711 .587

R2 R �.010 1 �.008 .003 �.016 .003 .017 .005 .002 �.006

Significance .326 .413 .746 .099 .789 .092 .586 .833 .546

R3 R .013 �.008 1 �.011 .008 �.002 �.001 �.011 .013 .003

Significance .207 .413 .258 .409 .854 .919 .268 .210 .766

R4 R �.006 .003 �.011 1 .005 �.009 �.006 �.011 �.007 �.024�

Significance .530 .746 .258 .630 .353 .570 .261 .511 .018

R5 R .006 �.016 .008 .005 1 .008 �.005 .016 .006 .012

Significance .567 .099 .409 .630 .398 .638 .119 .525 .236

R6 R �.006 .003 �.002 �.009 .008 1 .007 �.017 �.009 �.001

Significance .557 .789 .854 .353 .398 .501 .091 .380 .900

R7 R �.006 .017 �.001 �.006 �.005 .007 1 .001 �.011 .015

Significance .558 .092 .919 .570 .638 .501 .957 .293 .136

R8 R �.004 .005 �.011 �.011 .016 �.017 .001 1 .020� .017

Significance .703 .586 .268 .261 .119 .091 .957 .041 .098

R9 R �.004 .002 .013 �.007 .006 �.009 �.011 .020� 1 �.012

Significance .711 .833 .210 .511 .525 .380 .293 .041 .225

R10 R .005 �.006 .003 �.024� .012 �.001 .015 .017 �.012 1

Significance .587 .546 .766 .018 .236 .900 .136 .098 .225

Note: The statistical purist will point out that the correlations are, technically, not ‘‘independent.’’

What we actually did was to correlate two variables made up of random numbers with eight other

variables made up of random numbers. Thus, there is a lack of independence in the analyses. Given the

low absolute values of the correlations, this fact is true and trivial. Listwise N ¼ 10,000.
� Correlation is significant at the .05 level (two-tailed).
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This evidence shows that power derived from this Monte Carlo simulation is
consistent with this formula-driven power. These two techniques for establishing
power provided, in this instance, roughly equal power estimates. But what would
happen if we changed the parameters? Would the formula-driven power and the
Monte Carlo simulated power be roughly equal if the effect sizes varied? y if the
sample size varied?

2.1. Varying sample sizes and effect sizes

Table 3 and Fig. 1 present power likelihoods when sample sizes and effect
sizes vary. In Fig. 1, software power estimates are defined by lines with
squares; Monte Carlo simulation power estimates are defined by lines with tri-
angles. When the null hypothesis (e.g., H0: m1 ¼ m2) is true, the effect size is zero
and ‘‘power’’ is equal to the a of .05. Thus, the a priori specified probability of
making a Type I error, a false positive, when the null hypothesis is true 5 in 100.
The power formula specifies this .05 a level in its calculations; the Monte Carlo
simulation shows that this .05 a level is approximated with false positive rates
of between .01 and .05. In this situation, there is no effect of sample size on
the power analysis. Increasing the sample size does not alter the probability of a
false positive.

When the null hypothesis (e.g., H0: m1 6¼ m2) is false, the effect size varies.
SamplePower1.0 specifies that an effect size of .10z is a ‘‘small effect,’’ an effect
size of ‘‘.25a’’ is a ‘‘medium effect,’’ and an effect size of .40z is a ‘‘large effect.’’
Table 3 and Fig. 1 present the power likelihoods when sample sizes vary from 10
to 1000 and effect sizes vary from .10z to .40z. An examination of Table 3 and
Fig. 1 shows that power, the likelihood of detecting an effect:

� increases as the effect size increases,
� increases as the sample size increases, and
� is estimated almost identically using formulas and simulations.

Let us discuss each of these patterns.

Table 3

Power analyses using software and Monte Carlo simulations

Effect Type Cell (N)

5 (10) 10 (20) 25 (50) 50 (100) 100 (200) 250 (500) 500 (1000)

.00 Software .05 .05 .05 .05 .05 .05 .05

Simulation .04 .01 .05 .05 .05 .03 .05

.10 Software .06 .07 .11 .17 .29 .61 .88

Simulation .04 .10 .11 .18 .30 .64 .91

.25 Software .11 .19 .41 .70 .94 1.00 1.00

Simulation .08 .17 .38 .73 .92 .99 1.00

.40 Software .20 .40 .79 .98 1.00 1.00 1.00

Simulation .11 .38 .78 .99 1.00 1.00 1.00
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2.2. Power and effect size

As effect size increases, power increases. This principle is illustrated in Table 3
and Fig. 1. When N ¼ 50, 25 per cell, the power to detect this effect is .11 for a
.10z effect, .41 for a .25z effect, and .79z for a .40z effect. Thus, for a ‘‘small’’
effect size, the power of .11 is only a small amount higher than the .05 power
when the null hypothesis is true. For a ‘‘large’’ effect size, the power of .79 is
nearly the industry standard of .80.

For very small sample sizes, differences in power by effect size are minor. For
example, when N ¼ 10, 5 per cell, the power to detect this effect is .06 for a .10z

effect, .11 for a .25z effect, and .20z for a .40z effect. A larger effect size increases
power, but the odds are still strongly against discovery of the effect when the
sample size is this small.

For very large sample sizes, differences in power by effect size are also minor.
For example, when N ¼ 1000, 500 per cell, the power to detect this effect is .88 for
a .10z effect, 1.00 for a .25z effect, and 1.00z for a .40z effect. A larger effect size
increases power, but the odds are still strongly in favor of discovery of the effect
when the sample size is this large.

Table 3 presents an apparent contradiction. We know that the likelihood of
detecting an effect is never a ‘‘sure thing.’’ There is always the possibility, however
remote, of conducting a study and failing to detect an effect. But some of the
‘‘power likelihoods’’ reported in Table 3 are ‘‘1.00.’’ How could this be? Power
formulas do not produce perfect powers, i.e., 1.00 powers. However, when power is
Z.995, power, rounded to two decimal places, is reported as 1.00. In Monte Carlo
simulations, we conducted 100 simulations within each effect size – sample size
condition. If all 100 tests were po.05, we reported the simulated power to be 1.00.
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Fig. 1. Graphic plot of power curves from Table 3.
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2.3. Power and sample size

As sample size increases, power increases. This principle is illustrated in Table 3
and Fig. 1. Consider a .25z effect size. The power to detect this effect is .11 for
N ¼ 10, .41 when N ¼ 50, .94 when N ¼ 200, and 1.00 when N ¼ 1000.

There is a diminishing marginal return on increasing sample size. In this ex-
ample, it makes good cost-effective research design sense to increase the sample
size from 10 to 50; this sample size increase results in an increase in power from
.11 to .41 for a .25z effect. However, it makes only marginal sense to increase the
sample size from 100 to 200; this sample size increase results in an increase in
power from .70 to .94 for a .24z effect. Moreover, it makes no sense whatever to
increase the sample size from 500 to 1000; this sample size increase results in an
increase less than .005. Both power estimates are Z.995.

3. Comparing simulation and software approaches to power

Table 3 and Fig. 1 present power derived from a software approach and from a
simulation approach. Software based upon power formulas is the gold standard
of power calculations. Given this,

� How does simulation validate software?
� In what power situations does software apply?
� In what power situations does simulation apply?

We now turn to these questions.

3.1. How simulation validates software

Probability is the likelihood of the occurrence of an event. Probability (p) is
assessed on a scale from zero to one. A zero probability means that under no
circumstances will that event occur. In fact, that circumstance is a ‘‘non-event’’
because it cannot happen. This ‘‘non-event’’ is symbolized: p ¼ 0. A ‘‘perfect’’
probability is a ‘‘sure bet.’’ ‘‘The sun rising tomorrow’’ is as close as we can get to
an ‘‘always-event.’’ This ‘‘always-event’’ is symbolized as p ¼ 1. A common major
league baseball batting average is p ¼ .250. For every 4 ‘‘at bats,’’ a batter will get
one ‘‘hit.’’ The probability that a baby is a boy is roughly 50–50; pffi.5. (Note: We
say ‘‘roughly’’ because, while the probability that a baby is a boy is close to .5, it is
not .5 exactly.)

Statisticians construct theory about how probability operates. Probability
theory makes assumptions and draws out the likelihood implications of those
assumptions. Virtually all of inferential statistics is based on probability theory.
Power analysis is an extension of probability theory. Beyond the assumptions of
probability theory, the primary assumption of power analysis is effect size. Effect
size is an assumption because, as we argued earlier, if the researcher knew the
effect size, there would be no need for conducting the research.

But assumptions are tricky things. In some situations, the researcher can safely
ignore an assumption. The statistical analysis will have the same inferential
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properties as if the assumption had been met. In other situations, the violation of
an assumption can render the inferential properties moot.

A robust assumption is an assumption that, if violated, will not alter the
inferential outcome of a statistical analysis. The effect size assumption that
the size of the effect that the researcher assumes is, in fact, the effect size in
the universe of all observations from which the sample is to be drawn. The effect
size assumption is not robust! An error in an estimated effect size will result in
an erroneous power probability. An over-estimation of the effect size will
overstate the power; an under-estimation of the effect size will understate the
power. Because an effect size error consistently biases power inferences, it must be
taken very seriously.

The assumption that a variable is normally distributed is robust! Data drawn
from an evenly distributed rectangular distribution will result in the same prob-
ability inferences as if the data were drawn from a normal distribution. This
principle is illustrated above. All 2800 F ratios in Table 3 and Fig. 1 were drawn
from such a rectangular distribution. Those 2800 F ratios behaved consistently
with the normal distribution assumption required by such ANOVA tests.

The fact that the 2800 F ratios in Table 3 and Fig. 1 were drawn from
rectangular, not normal, distributions supports not only the robustness of
the normality assumption of ANOVA, it also provides application validity for
the accuracy of the probability theory-derived formulas that produced those
power values. The logic for this assertion is as follows: probability theory that
assumed normal distributions was used to derive the formulas which were, in
turn, used to program the software to produce power likelihoods with varying
universe parameters. This was used for the ‘‘software’’ power calculations in
Table 3 and Fig. 1.

These same universe parameters were used to create an N ¼ 10,000 population,
but the distributions were rectangular. The characteristics of this population were
very similar to the universe parameters. Many repeated simple random samples
were drawn from this N ¼ 10,000 population. ANOVAs were calculated on each
of these samples, and the proportion of them that rejected the null hypothesis
was calculated. This was used for the ‘‘simulation’’ power calculations in Table 3
and Fig. 1.

The fact that the ‘‘software’’ and ‘‘simulation’’ power calculations produced
nearly identical power probabilities, even in the face of different distributions,
provides credibility for both of the techniques. Given that the probability-based
software power calculations are the ‘‘gold standard,’’ why do we need the sim-
ulations? In addition to providing validity for the probability-based software
power calculations, the simulations can be applied to areas where the software
formulations have not yet been applied. Before we turn to this matter, let us
consider the variety of situations where software has been applied.

3.2. Use of software

There are a variety of commercially available software packages currently on
the market. We recommend SamplePower1.0. SamplePower1.0 is a computer
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software package that allows the user to specify the sample size needed for a
specific power given specified universe parameters of a research situation. Sam-
plePower1.0 addresses questions of statistical power for means, proportions,
correlations, ANOVA’s, and regression equations. For example, if a researcher
wants to conduct an ANOVA, the researcher will need to specify whether the
ANOVA or ANCOVA has one or more factors.

The above sections of this chapter described power analysis software and
simulation methods in social behavior research. For epidemiologists and medical
statisticians, there are various software packages, SAS macros, R or S+ functions
available for performing the power analysis and/or sample size calculations based
on different research questions.

UnifyPow, developed by O’Brien (1998) in Cleveland Clinic Foundation, is a
freeware SAS module/macro that performs statistical power analysis and sample
size determination with a variety of test statistics. One-group tests include the
t-test, Wilcoxon for single group or paired continuous data, the binomial and Z

approximation for single proportion, McNemar’s paired proportions, and
Fisher’s r-to-Z correlation coefficients. Two-group tests include t-test and
Wilcoxon–Mann–Whitney for continuous data, chi-square, likelihood ratio
(LR), Fisher’s exact tests for proportions, and r-to-Z for correlation coefficients.
K-group tests include ANOVA via the cell-means model with general linear
contrasts, chi-square and LR tests for 2�K tables with general linear contrasts
on K logits. Regression tests include the likelihood-based tests for a regression
coefficient at a specified value in multiple linear regression model, logistic, log-
linear, or Cox survival models.

PASS (power analysis and sample size) is a stand-alone commercial software
that has the capacity similar to UnifyPow for power analysis and sample size
determination related to the commonly used statistical tests. In addition, it in-
cludes more topics for specific research applications (e.g., cross-over, equivalences
and non-inferiority, group sequential, two- or three-stage, post-marketing
surveillance, etc.). Some clinical studies require power analysis and sample size
determination specific to their circumstances. From time to time, when these new
methods are developed, their authors often distribute the software through SAS
macros, S+, or R routines.

In recent years, there are many new developments in sample size determination
and power analysis, especially for correlated data. In this section, we review some
of these new developments based on generalized estimating equations (GEEs)
approach. Correlated data occurs frequently in clinical and epidemiological stud-
ies. Example included repeated measurements in longitudinal studies in which
several observations are collected from each study subject, neighborhood studies
in which observations of individuals from the same neighborhood are correlated,
urological studies in which both kidneys from an individual patient share some
similarities, and so on.

When research interest is marginal average, then the GEE developed by Liang
and Zeger (1986) is the most widely used statistical method for data analysis.
GEE accommodates both discrete and continuous outcomes, and even when
working correlation matrix is misspecified, the regression coefficient estimator is
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still consistent and asymptotically normal, and the robust covariance estimator
can be used to draw proper statistical inference. GEE-based sample size/power
analysis methods include general approach that accommodates various types of
outcome measurements, and specific approach that is applicable to a certain
situation.

3.3. Theoretical developments in software

Liu and Liang (1997) extended work by Self and Mauritsen (1988) into correlated
data setting. Let yi be the ni� 1 vector of response (yi1, y, yini)

0 for ith cluster,
i ¼ 1, 2,y m. Suppose the research questions can be formulated through a pop-
ulation average marginal model:

gðuijÞ ¼ x0ijcþ z0ijl,

where uij ¼ E(yij) and g is a link function relating the expectation of yij to vectors
of covariates xij and zij. Here c is p� 1 vector of parameters of interest and l is
q� 1 vector of nuisance parameters. The hypothesis interested is H0: c ¼ c0 vs.
H1: c ¼ c1.

For example, a cohort study is initiated to determine the relationship of four
types of cancer (A–D) and development of disabilities. Each patient will be eval-
uated once every year for 4 years. Patients with no cancer serve as the reference
group (E) and age is major confounding variable categorized into three groups
(o65, 65–74, and 75+). The sample size determination aims to testing the null
hypothesis that odds ratios of disability of patients A–D vs. referent patients E
are equal to 1, i.e., OR(A vs. E) ¼ OR(B vs. E) ¼ OR(C vs. E) ¼ OR(D vs.
E) ¼ 1 against the alternative hypothesis OR(A vs. E) ¼ OR(B vs. E) ¼ 2.5,
OR(C vs. E) ¼ OR(D vs. E) ¼ 2, adjusting for confounding effect of age. Al-
though the research interest is the effects of cancer type on the risk of disability
and age effects are the nuisance parameters, we have to specify these parameter
values under the alternative hypothesis, for example, with patients younger than
65 years old as the reference group, OR(65–74 vs. o65) is 1.5 and OR(75+ vs.
o65) is 3.

H0 : c ¼ ð0; 0; 0; 0Þ vs: H1 : c ¼ ðlog 2:5; log 2:5; log 2; log 2Þ.

They considered the following GEE quasi-score test statistic

T ¼ Scðc0; l̂0; aÞ
0
X�1
0

Scðc0; l̂0; aÞ,

where

Scðc0; l̂0; aÞ ¼
Xm

i¼1

@mi

@c

� �0
V�1i ðyi � miÞ,

X
0
¼ covH0

½Scðc0; l̂0; aÞ�.

R. A. Zeller and Y. Yan666



And l̂0 is an estimator of l under H0: c ¼ c0 obtained by solving

Slðc0; l0; aÞ ¼
Xm

i¼1

@mi

@l

� �0
V�1i ðyi � miÞ ¼ 0.

Under H0, T converges as m-N to a chi-square distribution with p degree of
freedom; whereas under H1: c ¼ c1 and l ¼ l1, T follows a non-central chi-
square distribution asymptotically with the non-centrality parameter

n ¼ x0
X�1
1

x,

where x and S1 are the expectation and covariance of Scðc0; l̂0; aÞ under H1.
See Liu and Liang (1997) for detailed expressions of x and S1: Therefore,
the statistical power for testing H0: c ¼ c0 vs. H1: c ¼ c1 can be obtained from
the non-central chi-square distribution. Specifically, let Fw2pðnÞ is the cdf of w

2
pðnÞ; a

chi-square random variable with degree of freedom p and a non-centrality pa-
rameter n. For a given level of Type I error a, let d1�a be the (1�a)th percentile of
w2pð0Þ; then the power is given by 1� F w2pðnÞðd1�aÞ:

To determine sample size, they assume that cluster size are identical across all
clusters, i.e., ni ¼ n for all i, and that covariates {(xij, zij), j ¼ 1, y, n} are discrete
with L distinct values. With these assumptions, they derived

x ¼ m~x and
X
1

¼ m
~X
1

,

where ~x and ~S1 contain the weights based on the probabilities of joint distribution
of x and z with L distinct values. The non-centrality parameter n can be expressed as

n ¼ m~x
0 ~X�1

1
~x,

therefore, the sample size needed to achieve the nominal power is given by

m ¼
n

~x
0 ~S
�1

1
~x
.

Note, n is a non-centrality parameter, which can be derived from a non-central
chi-square distribution with degree of freedom of p – length of vector c given the
nominal power and significant level of the test.

Using the quasi-score test statistic for power analysis and sample size deter-
mination provide a general approach for correlated data. There is no close
form for this general approach, thus the numeric methods is needed. However, in
some special cases, this approach leads to simple close expressions. For example,
for a simple two-group comparison of n repeated continuous measurements, the
sample size formula is

m ¼
ðz1�a=2 þ z1�bÞ

2s2

p0p1d
2
ð10R�11Þ

,
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where s2 is the variance of measurements assumed to be same in two groups, and
p0 and p1 are the proportions of sample in groups A and B, respectively. d is the
difference between the average response for groups A and B under the alternative
hypothesis H1. R is a correlation matrix for repeated measurements, and 1 is a
n� 1 vector of ones.

For a simple two-group comparison of n repeated binary measurements, the
sample size formula is

m ¼
ðz1�a=2 þ z1�bÞ

2
½p1p0ð1� p0Þ þ p0p1ð1� p1Þ�

p0p1ðp1 � p0Þ
2
ð10R�11Þ

,

where p0 and p1 are the probabilities of outcome in groups A and B, respectively.
Note, if one assumes exchangeable correlation matrix R, i.e., 1 for diagonal
elements and r otherwise, then

10R�11 ¼
n

1þ ðn� 1Þr
.

The quantity (1+(n�1)r) is known as the design effect.
Another general approach for sample size calculations with GEE framework

was based on Wald tests, developed by Rochon (1998). Assuming there are S

subpopulations under consideration, indexed by letter s. The subpopulations
could be treatment comparison groups only, or treatment comparison groups
with stratifying variables. In a three-group clinical trial design, there are S ¼ 3
subpopulations, corresponding to the three treatment groups. If we compare
the three treatments within four different age strata, then we have 3� 4 ¼ 12
subpopulations.

In each S subpopulation, patients are scheduled for T times repeated meas-
urements, with expected values across the T measurements ms ¼ [ms1 y msT]. An
appropriate link function g(ms) is chosen to link ms with linear predictors Zs, along
with the variance function v(ms). With v(ms), As, a diagonal matrix with v(ms) as the
diagonal elements, is well defined; and together with the assumed correlation
matrix Rs(a), Vs, the covariance matrix among the set of repeated measurements,
is then well specified. Solving for b̂ by the weighted least squares estimator:

b̂ ¼
X

s

X0sDsV
�1DsXs

" #�1 X
s

X0sDsV
�1DsgðmsÞ

" #
,

where Ds ¼ (qms/qZs). The ‘‘model-based’’ covariance matrix of b̂ is obtained as

covðb̂Þ ¼ n
X

s

D0sV
�1
s Ds

" #�1
¼ n�1X,

where Ds ¼ DsXs.
For testing specific hypothesis:

H0 : Hb ¼ h0 vs: H1 : Hbah0;
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the Wald-type test statistic

T ¼ nðHb̂� h0Þ
0
½HXH0��1ðHb̂� h0Þ

is asymptotically distributed as a chi-square distribution, with non-centrality
parameter

n � nðHb̂� h0Þ
0
½HXH0��1ðHb̂� h0Þ.

With the given Type I error and power, one can derive the non-centrality
parameter, n. Therefore, one can derive the sample size n with the estimated b̂ and
covariance matrix of b̂:

Kim et al. (2005) extended the Rochon’s sample size method to ordinal re-
sponse case. Suppose that a categorical random variable of value k (k ¼ 1, y, K)
is being observed for each of repeated T measurements in ith subject (i ¼ 1, y,
N), let Zit ¼ k (k ¼ 1, y, K) denote the ordinal response measured at tth time for
ith subject and Yitk ¼ I (Zit ¼ k) be an indicator variable that takes a value of 1 if
the response for the tth time of the ith subject is in kth category, and 0 otherwise.
Denote the corresponding marginal probabilities by Pr[Zit ¼ k], and the
corresponding marginal cumulative probabilities by Pr[Zitpk]. Under propor-
tional odds model with the cumulative logit link, the marginal cumulative
probabilities can be expressed as a liner function of covariates. With the GEE
method of Lipsitz et al. (1994), a set of regression coefficient estimates and their
covariance matrix can be obtained. For sample size determination and power
analysis, we need to specify the marginal probabilities Pr[Zit ¼ k], expected
at the end of study, in each K categories of each measurement time in each s
subpopulation. With the specification of design matrix for each s population, and
common correlation structure, Ds, As, and Vs can be determined, therefore,
the estimated b̂ and covariance matrix of b̂ can be obtained. Given the Type I
and Type II error and the hypothesis matrix H and h0, the sample size can be
determined.

Although Rochon’s method can accommodate a wide variety of clinical research
designs, it has to categorize continuous covariates to formulate subpopulations.
Therefore, that approach does not effectively incorporate continuous covariates in
the power analysis and sample size determination. Tu et al. (2004) proposed a
method for extending the existing approach and rendering the limitation moot. For
testing specific hypothesis:

H0 : Hb ¼ 0 vs: H1 : Hb ¼ d,

the Wald-type test statistic

T ¼ nðHb̂Þ0½HXH0��1ðHb̂Þ

is asymptotically distributed as a central chi-square distribution under H0, and as a
non-central chi-square distribution under H1. The non-centrality parameter is

n ¼ nd 0½HXH0��1d.
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When the link function is identity link (i.e., normal outcome data), the GEE es-
timates b̂ can be expressed in a closed form; with assumed first two moments
(expectation and variance of covariates, and the expectation of cross-product
of covariates), the covariance of b̂ can be easily obtained. For non-linear links,
covariance of b̂ is not in closed form, and does not depend on covariates through its
first two moments. Therefore, the entire distribution of covariates has to
be specified. Let F(g) denote the probability distribution function of covariates
X, then,

O ¼
Z

D0ðgÞV�1ðgÞDðgÞdFðgÞ
� ��1

.

As Tu noted, for discrete X, the above quantity can be easily expressed in
closed form. For continuous X, the quantity is generally not in the closed form;
therefore, approximation through Monte Carlo simulation is needed. That is, by
generating a sample of size M from the distribution of X, one can approximate O
by the sample average:

O �
1

M

Xm

k¼1

D0kV�1k Dk

" #�1
.

3.3.1. Specific approach based on robust variance estimator

Pan (2001) extends Shih’s (1997) approach to derive the closed form expression
for sample size determination for the repeated binary outcome of two-treatment
comparison based on the robust variance estimator. He considers two scenarios:
one is that the treatment is given at the cluster level. In this scenario, all cluster
members receive the same treatment. Another scenario is that each cluster re-
ceives both treatments. The goal is to test the treatment effect, and the hypothesis
of interest can be formulated as

H0 : b ¼ 0 vs: H1 : b ¼ b40;

where b is the log-odds ratio. Since
ffiffiffiffiffi
N
p
ðb̂� bÞ has an approximately normal

distribution N(0, v), a z-statistic can be used to test the null hypothesis and power
analysis. In the first scenario where a cluster is the unit of treatment allocation,
the robust variance estimator of

ffiffiffiffiffi
N
p
ðb̂� bÞ is

v ¼ N
10ni

R�1w R0R
�1
w 1ni

ðSN
i¼11

0
ni
R�1w 1ni

Þ
2
� A,

where R0 and Rw are true correlation and working correlation matrices,
respectively. The term A only involves the proportion of patients in each study
group and the assumed probabilities of the event in each group. For various cases
with three commonly used correlation structures – the independence, compound
symmetry(CS), and the first-order autoregressive (AR(1)) in assumed working/
true correlation matrix – explicit formula are derived for the robust variance
estimator v.
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In the second scenario where a cluster member is the unit of treatment allo-
cation, close formula for v in two special cases (Rw and R0 both with CS, or Rw

with independence but R0 with CS) are derived.

3.3.2. Specific approach for comparing slopes

Jung and Ahn (2003, 2005) derived sample size formula for comparing slopes in
repeated measurements of continuous and binary data. In continuous-data case,
the model can be expressed as

yij ¼ b1 þ b2ri þ b3tij þ b4ritij þ �ij ,

where ri is the treatment indicator taking 0 for control group and 1 for treatment
group. b1 and b2 are intercept and slope for the control group and b3 and b4 are
differences between two treatment groups in intercept and slope, respectively.
Here, b4 is the parameter of interest. For easier calculation, the model can be
reparameterized as

yij ¼ b1 þ b2ðri � r̄Þ þ b3tij þ b4ðri � r̄Þtij þ �ij .

With GEE method, parameter estimates of bs and their covariance matrix can be
obtained. For testing hypothesis H0: b4 ¼ 0 vs. H1: b4 ¼ b, the test statistic

ffiffiffi
n
p

b̂4=ŝ4
is used, where ŝ24 is the (4, 4)-component of the covariance matrix of regression
parameter estimates. Given Type I and Type II errors (a, g), the required sample
size is

n ¼
s2ðz1�a=2 þ z1�gÞ

2

b2
.

In order to obtain the estimate of s2, Jung and Ahn (2003, 2005). derived the closed
form expression of the covariance matrix of regression parameter estimates. In
their derivation, two missing patterns can be accommodated. One is the inde-
pendent missing pattern, where missing at time tj is independent of missing at tj0.
Another is the monotone missing pattern, where missing at time tj imply missing at
all times following tj. Two ‘‘true’’ correlation structures – CS and the first-order
autoregressive – can be incorporated in the closed form.

For repeated binary measurements, the marginal model for the expectation of
binary response measured at jth time from ith subject in kth treatment group is

pkijðak; bkÞ ¼ g�1ðak þ bktkijÞ ¼
expðak þ bktkijÞ

1þ expðak þ bktkijÞ
,

where coefficient bk represents the rate of change in log-odds per unit change in
measurement time. To test the difference in the rate of change between two
groups, they give the test statistic as follow,

b̂1 � b̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂1=n1 þ v̂2=n2

p ,
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where vk is the (2, 2) component of covariance matrix of GEE (ak, bk) estimates.
Given Type I error a, in order to have a power of 1�g for H1:|b1�b2| ¼ d, the
required sample size is

n ¼
ðz1�a=2 þ z1�gÞ

2
ðv̂1=r1 þ v̂2=r2Þ

d2
,

where r1 and r2 are the proportion of patients allocated to groups 1 and 2,
respectively. To estimate the sample size, Jung et al. derived explicit expression for
estimate of vk, which can accommodate the same missing pattern and correlation
structures as in continuous outcome.

4. Using power to decrease sample size

As shown above, power analysis can be used to establish how many cases are
needed so that a research design has sufficient power to detect an effect of spec-
ified size. Indeed, recent advances in software applications of the principles of
probability have resulted substantial increases in the capability of establishing
power probabilities for complex designs. The purpose of this section is to argue
that power analyses can be used to decrease sample size requirements without
information loss. Indeed, we seek to simultaneously increase information value-
add and decrease sample size!

The search for efficient, powerful research designs with small sample sizes
requires the comparison of simple and complex designs. This search complicates
the challenge faced by the power analyst, for power analyses now need to be
calculated for each research design under consideration. At the same time, as the
design becomes more complex, the formulas and software designed to establish
power probabilities become more opaque. Moreover, the more opaque the for-
mulas and software designed to establish power probabilities, the more skeptical
the skeptic becomes. The skeptic who needed satisfaction with the power analyses
designed for the relatively simple research designs has an even greater need for
satisfaction when the designs are complex. We now turn our attention to this
important use of power analysis. There are many ways to credibly demonstrate a
causal clinical effect. Let us compare the experimental design with the repeated
measures experimental design.

Using the experimental design, subjects are randomly assigned to the ‘‘treat-
ment’’ or ‘‘control’’ conditions. After the treatment is administered to the treat-
ment group, the outcome is measured. If the outcome is significantly superior in
the treatment group compared to the control group, the clinical researcher can
credibly claim that the treatment has a beneficial effect. The strength of the
experimental is that this design clearly satisfies the causal criteria of correlation,
time ordering, and non-spuriousness. The weaknesses of the experimental design
are the difficulty of making useful generalizations and implementing this design’s
protocols. Moreover, the experimental design demands a relatively large number
of observations needed to have sufficient power to detect clinically important
effects. That is, the experimental design lacks power.
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The repeated measures experimental design adds one feature to the
experimental design. This additional design feature is that subjects are measured
before and after the treatment is administered to the treatment group. These
are usually called the ‘‘pre-score’’ and ‘‘post-score’’ measures, respectively.
Because of random assignment, the treatment and control ‘‘pre-score’’ means are
approximately equal. If the ‘‘post-score’’ mean is significantly superior in
the treatment group compared to the control group, the clinical researcher can
credibly claim that the treatment has a beneficial effect. The repeated measures
experimental design enjoys the same strengths and suffers from the same weak-
nesses as the experimental design except that the repeated measures experimental
design

(1) measures change from ‘‘pre-score’’ to ‘‘post-score’’ and
(2) requires a relatively small number of observations to have sufficient power to

detect clinically important effects.

That is, the repeated measures experimental design is powerful. The power of
this design derives from the fact that the ‘‘pre-score’’ and the ‘‘post-score’’ are
usually positively correlated. Often this positive correlation is substantial (e.g.,
r ¼ .7). This positive correlation between ‘‘pre-score’’ and ‘‘post-score’’ results in
a reduction in the within means variance. The reduction in the within means
variance results in an increase in the F ratio. The most useful way to use power
analysis to reduce sample size is to capitalize on the over-time non-zero corre-
lations inherent in repeated measures designs. The formulas and software appli-
cations in Section 3 demonstrate this. For the skeptic, we now wish to provide a
Monte Carlo simulation demonstrating how such designs work.

4.1. Creation of a non-zero correlation matrix

The random numbers that we created had universe inter-correlations of zero,
as shown in Table 2. We now wish to create universe inter-correlations of non-
zero values (e.g., r2 ¼ .500). To combine X and Y into a non-zero correlation,
divide X2 by the sum of a fraction of (X+Y)2. For example, if X and Y are
standardized random numbers, the universe correlation squared between X and
X+Y is

Y 2 ¼
X 2

ðX þ Y Þ2
¼

X 2

X 2 þ 2XY þ Y 2
¼

X 2

X 2 þ Y 2
¼

1

2
¼ :5.

Because X and Y are random, the expected value of 2XY is zero. The logic of
this formulation is that X and Y share half of their variance. The respective
correlation is

r ¼
ffiffiffiffi
:5
p
¼ :707.

Correlations ranging from 0 to 1 can be created by changing the mix of common
and unique components of this formula. For example, a .8 universe squared
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correlation is

r2 ¼
X 2

ðX þ :5Y Þ2
¼

1

1:25
¼ :8.

And a .2 universe squared correlation is

r2 ¼
X 2

:5X 2 þ Y 2
¼

1

5
¼ :2.

Table 4 presents the universe and population correlations and correlations
squared using various combinations of common and unique, random components.
With this capability, the power analyst can create a Monte Carlo simulation for

repeated measures designs using any specified between-time correlation. Thus, the
Monte Carlo simulation becomes reasonable, useful, and productive for complex
research designs. Specifically, using these statistical principles, clinical researchers
can conduct power analyses for complex designs to satisfy the skeptic that the
newly created formulas are properly specifying power probabilities. We now turn
to the creation of a repeated measures Monte Carlo simulated power analyses.

4.2. Simulating power for repeated measures power analyses

Using the repeated measures design, subjects are observed before and after a
treatment. If the outcome is significantly superior after the treatment compared to

Table 4

Correlationsa created by random numbers

Correlation of X with r r2 Universe r2 Calculation

Universe Population Universe Population

Y.1 X+.1Y .995 .995 .990 .990 X2/(X2+.1Y2)

Y.2 X+.2Y .981 .980 .962 .960 X2/(X2+.2Y2)

Y.3 X+.3Y .958 .957 .917 .916 X2/(X2+.3Y2)

Y.4 X+.4Y .928 .928 .862 .861 X2/(X2+.4Y2)

Y.5 X+.5Y .894 .893 .800 .797 X2/(X2+.5Y2)

Y.6 X+.6Y .857 .856 .735 .733 X2/(X2+.6Y2)

Y.7 X+.7Y .819 .817 .671 .667 X2/(X2+.7Y2)

Y.8 X+.8Y .781 .778 .610 .605 X2/(X2+.8Y2)

Y.9 X+.9Y .743 .739 .552 .546 X2/(X2+.9Y2)

XY X+Y .707 .702 .500 .493 X2/(X2+Y2)

X.9 .9X+Y .669 .664 .447 .441 X2/(.9X2+Y2)

X.8 .8X+Y .625 .618 .390 .382 X2/(.8X2+Y2)

X.7 .7X+Y .573 .566 .329 .320 X2/(.7X2+Y2)

X.6 .6X+Y .514 .506 .265 .256 X2/(.6X2+Y2)

X.5 .5X+Y .447 .438 .200 .192 X2/(.5X2+Y2)

X.4 .4X+Y .371 .361 .138 .130 X2/(.4X2+Y2)

X.3 .3X+Y .287 .276 .083 .076 X2/(.3X2+Y2)

X.2 .2X+Y .196 .184 .038 .034 X2/(.2X2+Y2)

X.1 .1X+Y .100 .087 .010 .008 X2/(.1X2+Y2)

a Population N ¼ 10,000.
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before the treatment, the clinical researcher can credibly claim that the treatment
has a beneficial effect. The strength of the repeated measures design derives from
over-time within-subject correlations. When this major source of variation is
removed from ‘‘error,’’ the power to detect the effect increases dramatically.

However, the claim of a beneficial effect in a repeated measures design suffers
from all the extraneous factors that are associated with time. Indeed, the good
doctor allows the passage of time to be one of the ‘‘medicines’’ by which patients
are treated, for the ‘‘wisdom of body’’ often makes the superior outcome occur if
nothing were done! Therefore, the ‘‘credibility’’ of the repeated measures design
outcome is called into question.

In order to quash the criticism of repeated measures designs, the clever re-
searcher will combine the comparative design with the repeated measures design.
In the tradition of the comparative design, the researcher will randomly assign
subjects to the treatment or control conditions. Then this researcher will observe
the outcome before and after the treatment group gets the treatment but the
control group does not. This design assures that the treatment and control group
are ‘‘identical’’ prior to the treatment, and that only subjects in the treatment
group enjoy the improvement in the outcome that results from the treatment over
any improvement in the outcome that results from the passage of time.

But this is a complex research design. In statistical terms, the researcher is
primarily interested in the ‘‘treatment’’ by ‘‘time’’ interaction effect! This complex
design requires the advanced software described above. In addition, the careful
researcher designer is advised to conduct a Monte Carlo simulation.

Let us specify the parameters of such a random assignment clinical trials re-
search design for burn itch reduction. Then we will conduct a power analysis
using both the software and the simulation specifications as follows:

� The ‘‘pre-post’’ correlation is
ffiffiffiffi
:5
p
¼ :707:

� The cell means and standard deviations are presented in Table 5.

The fact that subjects are randomly assigned means that the pre-scores will,
within the limits of probability, be equal. If these scores are measured before
treatment conditions are assigned, they can be constrained to be equal (Zeller
et al., 1997).

Table 5

Universe and population means and standard deviations for simulation

Group Universe

Mean

Universe

Standard

Deviation

Population

Mean

Population

Standard

Deviation

Population

N

Pre Treatment 6 1 5.9927 1.00120 5000

Control 6 1 6.0073 .99885 5000

Total 6 1 6.0000 1.00000 10000

Post Treatment 4 1 3.9983 1.00044 5000

Control 5 1 5.0017 .99966 5000

Total 4.5 1.11834 4.5000 1.11879 10000
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A traditional approach to this question has the researcher conducting a be-
tween groups independent variables t-test comparing the treatment and control
groups on the post-scores. However, a more powerful approach is to examine
the pre–post by treatment–control interaction effect. The reason this latter
approach is more powerful is that the variance within subjects is removed from
the error term.

In the Monte Carlo simulation, we created a population of N ¼ 10,000 con-
sistent with the universe specifications above. The population correlation between
the pre and post variables was .702, close to the universe specified correlation of
.707. The pre- and post-scores were standardized and the effects were added as
follows:

Pre-score ¼ Pre-variable+6
Post-score ¼ Post-variable+4a

a An additional 1 was added for subjects in the control group.

These transformations produced the descriptive statistics presented in Table 5.
The observant reader will note that the population means and standard
deviations are very good approximations or the universe specifications. As ex-
pected, the transformations inserting the effects reduced the pre–post correlation
to .631.

A total of 100 samples of N ¼ 20 were randomly drawn from this N ¼ 10,000
population. A repeated measures ANOVA was conducted on each of these 100
samples. The results of this analysis showed the following statistically significant
F ratios at the .05 level:

� 100 F ratios for the pre–post time main effect were significant;
� 79 of the 100 F ratios for the time by treatment group interaction effect were
significant; and
� 19 of the 100 F ratios for the treatment group between subjects main effect were
significant.

Thus, using 20 cases, the Monte Carlo simulation estimated the power of the
group by time interaction effect to be .79 and the group effect to be .19. Because
the substantively important null hypothesis was the group by time interaction
effect, 20 cases was sufficient to establish the sample size needed for the research
design with these specifications.

Baker et al. (2001) used a more complex 2� 4 research design that randomly
assigned subjects to treatment and control conditions. A Monte Carlo simulation
provided Baker et al. (2001) with the needed power analysis. The Baker Monte
Carlo simulation specified 20 cases. Baker et al. (2001) ran 17 cases, found
a statistically significant interaction effect, declared the study to be done, and
published the results. Now, fewer burn patients must tolerate a severe itch be-
cause we know which of two protocols reduces itch the most.
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5. Discussion

Power analysis is a valuable tool for establishing an appropriate sample size.
Traditional formula-driven power analyses and their software derivatives provide
useful tools for simple null hypothesis testing power analyses. Important ad-
vances have been made in using software to solve for power likelihoods in rel-
atively complex designs. The mathematical bases of these software power
likelihoods are presented in this paper. These formula-driven power analysis are
validated by Monte Carlo simulations. As the research design becomes complex,
it becomes more difficult to apply the software. In these situations, and when
clinical observations are difficult to get, the use of the more cumbersome but
effective Monte Carlo simulations makes sense. Indeed, the analyses presented in
this paper suggest that traditional advice may have greatly overstated the sample
sizes needed for repeated measures analyses.
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Statistical Learning in Medical Data Analysis

Grace Wahba

Abstract

This article provides a tour of statistical learning regularization methods that

have found application in a variety of medical data analysis problems. The

uniting feature of these methods is that they involve an optimization problem

which balances fidelity to the data with complexity of the model. The two

settings for the optimization problems considered here are reproducing kernel

Hilbert spaces (a brief tutorial is included) and ‘1 penalties, which involve

constraints on absolute values of model coefficients. The tour begins with

thin plate splines, smoothing spline ANOVA models, multicategory penalized

likelihood estimates, and models for correlated Bernoulli data for regression, in

these two settings. Leaving regression, the tour proceeds to the support vector

machine, a modern and very popular tool for classification. Then classification

based on dissimilarity information rather than direct attribute information is

considered. All of the learning models discussed require dealing with the so-

called bias-variance tradeoff, which means choosing the right balance between

fidelity and complexity. Tuning methods for choosing the parameters governing

this tradeoff are noted. The chapter ends with remarks relating empirical Bayes

and Gaussian process priors to the regularization methods.

1. Introduction

In this article we will primarily describe regularization methods for statistical
learning. In this class of methods a flexible, or nonparametric, statistical learning
model is built as the solution to an optimization problem which typically has a
term (or group of terms) that measures closeness of the model to the observations,
balanced against another term or group of terms which penalizes complexity of
the model. This class of methods encompasses the so-called ‘‘kernel methods’’ in
the machine learning literature which are associated with support vector machines
(SVMs) – SVMs are of primary importance for nonparametric classification and
learning in biomedical data analysis. The classic penalized likelihood methods are
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also regularization/kernel methods, and between SVMs, penalized likelihood
methods, and other regularization methods, a substantial part of statistical
learning methodology is covered.

The general learning problem may be described as follows: we are given a
labeled (or partly labeled) training set – fyi;xðiÞ; i ¼ 1; . . . ; ng; where xðiÞ is an
attribute vector of the ith subject and yi a response associated with it. We
have x 2 X; y 2 Y; but we are deliberately not specifying the nature of either X or
Y – they may be very simple or highly complex sets. The statistical learning
problem is to obtain a map f ðxÞ ! y for x 2 X; so that, given a new subject with
attribute vector xn 2 X; f(x), generalizes well. That is, f ðxnÞ predicts ŷn 2 Y; such
that, if yn associated with xn were observable, then ŷn would be a good estimate of
it. More generally, one may want to estimate a conditional probability distribu-
tion for y|x. The use to which the model f is put may simply be to classify, but in
many interesting examples, x is initially a large vector, and it is of scientific
interest to know how f or some functionals of f depend on components or groups
of components of x – the sensitivity, interaction, or variable selection problem. A
typical problem in demographic medical studies goes as follows: sets of fyi;xðiÞg
are collected in a defined population, where the attribute vectors are vectors
of relevant medical variables such as age, gender, blood pressure, cholesterol,
body mass index, smoking behavior, lifestyle factors, diet, and other variables of
interest. A simple response might be whether or not the person exhibits a par-
ticular disease of interest ðy 2 fyes;nogÞ: A major goal of evidence-based medicine
is to be able to predict the likelihood of the disease for a new subject, based on its
attribute vector. Frequently the nature of f (for example, which variables/patterns
of variables most influence f) is to be used to understand disease processes and
suggest directions for further biological research.

The statistical learning problem may be discussed from different points of
view, which we will call ‘‘hard’’ and ‘‘soft’’ (Wahba, 2002). For hard classifica-
tion, we would like to definitively assign an object with attribute xn to one of the
two or more classes. For example, given microarray data it is desired to classify
leukemia patients into one of the four possible classes (Brown et al., 2000; Lee
et al., 2004). In the examples in Lee et al. (2004) classification can be carried out
nearly perfectly with a multicategory SVM (MSVM) (for other methods, see
the references there). The difficulty comes about when the attribute vector is
extremely large, the sample size is small, and the relationship between x and y is
complex. The task is to mine the data for those important components or func-
tionals of the entire attribute vector which can be used for the classification. Soft
classification as used here is just a synonym for risk factor estimation where one
desires to form an estimate of a probability measure on a set of outcomes – in
typical demographic studies, if the outcome is to be a member of one of the
several classes, the classes are generally not separable by attribute vector, since
two people with the same attribute vector may well have different responses. It is
just that the probability distribution of the responses is sensitive to the attribute
vector. The granddaddy of penalized likelihood estimation for this problem
(O’Sullivan et al., 1986) estimated the 19 year risk of a heart attack, given blood
pressure and cholesterol at the start of the study. Classes of people who do and do
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not get heart attacks are generally far from separable on the basis of their risk
factors – people with high blood pressure and high cholesterol can live a long life,
but as a group their life expectancy is less than people without those risk factors.
In both hard and soft classifications, frequently one of the major issues is to
understand which attributes are important, and how changes in them affect the
risk. For example, the results can be used by doctors to decide when to persuade
patients to lower their cholesterol, or for epidemiologists to estimate disease rates
and design public health strategies in the general population. In other problems,
particularly involving genetic data, it is of particular interest to determine
which components of the genome may be associated with a particular response, or
phenotype.

In Section 2 we review soft classification, where the emphasis is on obtaining
a variety of flexible, nonparametric models for risk factor estimation. Vector-
valued observations of various types are considered. A brief review of reproduc-
ing kernel Hilbert spaces (RKHS) is included here. Section 3 describes recent
developments in soft classification where individual variable selection and
variable pattern selection are important. Section 4 goes on to classification with
SVMs, including multiple categories and variable selection. Section 5 discusses
data that are given as dissimilarities between pairs of subjects or objects, and
Section 6 closes this article with an overview of some of the tuning methods for
the models discussed.

2. Risk factor estimation: penalized likelihood estimates

2.1. Thin plate splines

The Western Electric Health Study followed 1665 men for 19 years and obtained
data including men who were alive at the end of the follow-up period and those
who had died from heart disease. Participants dying from other causes were
excluded. Penalized likelihood estimation for members of the exponential family
(McCullagh and Nelder, 1989), which includes Bernoulli data (i.e., zero–one, alive
or dead, etc.), was first proposed in O’Sullivan et al. (1986). The authors used a
penalized likelihood estimate with a thin plate spline (tps) penalty to get a flexible
estimate of the 19 year risk of death by heart attack as a function of diastolic
blood pressure and cholesterol. Figure 1 (O’Sullivan et al., 1986) gives a para-
metric (linear) and nonparametric tps fit to the estimated log odds ratio after
transformation back to probability.

It can be seen that the nonparametric fit has a plateau, which cannot be
captured by the parametric fit. We now describe penalized likelihood estimation
for Bernoulli data, and how the tps is used in the estimate in O’Sullivan et al.
(1986). Let x be a vector of attributes, and y ¼ 1 if a subject with attribute x has
the outcome of interest and 0 if they do not. Let the log odds ratio f ðxÞ ¼

log pðxÞ=ð1� pðxÞÞ; where pðxÞ is the probability that y ¼ 1 given x. Then pðxÞ ¼

e f ðxÞ=ð1þ e f ðxÞÞ: f is the so-called canonical link for Bernoulli data (McCullagh
and Nelder, 1989). Given data fyi;xðiÞ; i ¼ 1; . . . ; ng; the likelihood function is
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Qn
i¼1pðxðiÞÞyi ð1� pðxðiÞÞ1�yi ; and the negative log likelihood can be expressed as a

function of f:

Lðy; f Þ ¼
Xn

i¼1

�yif ðxðiÞÞ þ logð1þ ef ðxðiÞÞÞ. (1)

Linear (parametric) logistic regression would assume that f ðxÞ ¼ S‘c‘B‘ðxÞ; where
the B‘ are a small, fixed number of basis functions appropriate to the problem,
generally linear or low degree polynomials in the components of x.

The penalized likelihood estimate of f is a solution to an optimization problem
of the form: find f in H to minimize

Lðy; f Þ þ lJðf Þ. (2)

Here H is a special kind of RKHS (Gu and Wahba, 1993a). For the Western
Electric Study, Jðf Þ was chosen so that f is a tps. See Duchon (1977), Meinguet
(1979), O’Sullivan et al. (1986), Wahba (1990), and Wahba and Wendelberger
(1980) for technical details concerning the tps. For the Western Electric Study,
the attribute vector x ¼ ðx1;x2Þ ¼ ðcholesterol; diastolic blood pressureÞ was
of dimension d ¼ 2; and the two-dimensional tps penalty functional of order 2
(involving second derivatives) is

Jðf Þ ¼ J2;2ðf Þ ¼

Z 1
�1

Z 1
�1

f 2
x1x1
þ 2f 2

x1x2
þ f 2

x2x2
dx1 dx2, (3)

Fig. 1. Nineteen year risk of a heart attack given serum cholesterol and diastolic blood pressure. (Left)

Linear model in the log odds ratio. (Right) tps estimate. (From O’Sullivan et al. (1986), rJournal of

the American Statistical Association, reprinted with permission.)
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where the subscript ð2; 2Þ stands for (dimension, order). In this case f is known to
have a representation

f ðxÞ ¼ d0 þ d1x1 þ d2x2 þ
Xn

i¼1

ciEðx; xðiÞÞ, (4)

where

Eðx;xðiÞÞ ¼ jjx� xðiÞjj2 log jjx� xðiÞjj, (5)

where jj � jj is the Euclidean norm. There is no penalty on linear functions of the
components ðx1;x2Þ of the attribute vector (the ‘‘null space’’ of J2,2). It is known
that ci for the solution satisfy Sn

i¼1ci ¼ 0; Sn
i¼1cix1ðiÞ ¼ 0; and Sn

i¼1cix2ðiÞ ¼ 0; and
furthermore

Jðf Þ ¼
X

i;j¼1;...;n

cicjEðxðiÞ;xðjÞÞ. (6)

Numerically, the problem is to minimize (2) under the stated conditions and using
(6) to obtain d0; d1; d2; c ¼ ðc1; . . . ; cnÞ:

We have described the penalty functional for the tps and something about
what it looks like for the d ¼ 2;m ¼ 2 case in (3). However, the tps is available for
general d and for any m with 2m� d40: The general tps penalty functional in d

dimensions and m derivatives is

Jd;m ¼
X

a1þ���þad¼m

m!

a1! � � � ad !

Z 1
�1

� � �

Z 1
�1

@mf

@xa1
1 � � � @xad

d

� �2Y
j

dxj. (7)

See Wahba (1990). Note that there is no penalty on polynomials of degree less
than m, so that the tps with d greater than 3 or 4 is rarely attempted because of the
very high-dimensional null space of Jd;m:

The choice of the tuning parameter l here governs the tradeoff between
the goodness of fit to the data, as measured by the likelihood, and the complexity,
or wiggliness, of the fit. Note that second derivative penalty functions limit cur-
vature, and tend to agree with human perceptions of smoothness, or lack of
wiggliness. When the data are Gaussian (as in Wahba and Wendelberger, 1980)
rather than Bernoulli, the tuning (smoothing) parameter l can be chosen by the
generalized cross-validation (GCV) method; a related alternative method is
generalized maximum likelihood (GML), also known as restricted maximum
likelihood (REML). The order m of the tps may be chosen by minimizing with
respect to l for each value of m and then choosing m with the smallest minimum.
See Craven and Wahba (1979), Golub et al. (1979), and Gu and Wahba (1991).
As l tends to infinity, the solution tends to its best fit in the unpenalized space,
and as l tends to 0, the solution attempts to interpolate the data. In the case
of biomedical data it is sometimes the case that a simple parametric model
(low degree polynomials, for example) is adequate to describe the data. The
experimenter can design such a model to be in the null space of the penalty
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functional, and then a sufficiently large l will produce the parametric model.
Detailed discussion of tuning parameters for Bernoulli data is in Section 6.

A number of commercial as well as public codes exist for computing the tps,
with the GCV or GML method of choosing the tuning parameters. Public codes
in R (http://cran.r-project.org) include assist, fields, gss, and mgcv. The original
Fortran tps code is found in netlib (www.netlib.org/gcv). Further details on the
tps can be found in the historical papers (Duchon, 1977; Meinguet, 1979; Wahba,
1990; Wahba and Wendelberger, 1980), in the documentation for the fields
code in R, and elsewhere. tps’s are used in the ‘‘morphing’’ of medical images
(Bookstein, 1997), and have been used to fit smooth surfaces to data that
have been aggregated over irregular geometrical shapes such as counties (Wahba,
1981).

2.2. Positive definite functions and reproducing kernel Hilbert spaces

We will give a brief introduction to positive definite functions and RKHSs
here, because all of the so-called ‘‘kernel methods’’ which we will be discussing
have their foundation as optimization problems in these spaces. The reader who
wishes to avoid this technicality may skip this subsection. Let T be some domain,
emphasizing the generality of the domain. For concreteness you may think of T
as Euclidean d-space. Kð�; �Þ is said to be positive definite if, for every n and any
tð1Þ; . . . ; tðnÞ 2T and c1; . . . ; cnXn

i;j¼1

cicjKðtðiÞ; tðjÞÞ 
 0. (8)

In this article we denote the inner product in an RKHS by h�; �i: To every positive
definite function Kð�; �Þ there is associated an RKHS HK (Aronszajn, 1950;
Wahba, 1990) which can be constructed as a collection of all functions of the form

f a
LðtÞ ¼

XL

‘¼1

a‘Kðt; tð‘ÞÞ (9)

with the inner product

hf a
L; f

b
Mi ¼

X
‘;m

a‘bmKðtð‘Þ; tðmÞÞ (10)

and all functions that can be constructed as the limits of all Cauchy sequences in
the norm induced by this inner product; these sequences can be shown to con-
verge pointwise. What makes these spaces so useful is that in an RKHS HK we
can always write for any f 2HK

f ðtnÞ ¼ hKtn ; f i, (11)

where Ktn ð�Þ is the function of t given by Kðtn; tÞ with tn considered fixed. A trivial
example is that T is the integers 1; . . . ; n: There K is an n� n matrix, the elements
of HK are n-vectors, and the inner product is hf ; gi ¼ f 0K�1g: Kernels with
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penalty functionals that involve derivatives are popular in applications. A simple
example of a kernel whose square norm involves derivatives is the kernel K

associated with the space of periodic functions on ½0; 1� which integrate to 0
and which have square integrable second derivative. It is Kðs; tÞ ¼
B2ðsÞB2ðtÞ=ð2!Þ

2
� B4ðjs� tjÞ=4!; where s; t 2 ½0; 1� and Bm is the mth Bernoulli

polynomial; see Wahba (1990). The square norm is known to be
R 1
0 ð f 00ðsÞÞ2ds: The

periodic and integration constraints are removed by adding linear functions to
the space and the fitted functions can be shown to be cubic polynomial splines.
For more on polynomial splines, see Craven and Wahba (1979), de Boor (1978),
and Wahba (1990). Another popular kernel is the Gaussian kernel, Kðs; tÞ ¼
expð�ð1=s2Þjjs� tjj2Þ defined for s; t in Euclidean d space, Ed ; where the norm in
the exponent is the Euclidean norm. Elements of this space are generated
from functions of s 2 Ed of the form KtnðsÞ ¼ expð�ð1=s2Þjjs� tnjj

2Þ; for tn 2 Ed :
Kernels on Ed that depend only on the Euclidean distance between their two
arguments are known as radial basis functions (rbf’s). Another popular class
of rbf’s is the Matern class; see Stein (1999). Matern kernels have been used to
model arterial blood velocity in Carew et al. (2004), after fitting the velocity
measurements, estimates of the wall shear stress are obtained by differentiating
the fitted velocity model.

We are now ready to write a (special case of) general theorem about optimi-
zation problems in RKHS.

The representer theorem (special case) (Kimeldorf and Wahba, 1971): Given
observations fyi; tðiÞ; i ¼ 1; 2; . . . ; ng; where yi is a real number and tðiÞ 2T; and
given K and (possibly) some particular functions ff1; . . . ;fMg on T; find f of the
form f ðsÞ ¼ SM

n¼1dnfnðsÞ þ hðsÞ; where h 2HK ; to minimize

Ilfy; f g ¼
1

n

Xn

i¼1

Cðyi; f ðtðiÞÞÞ þ ljjhjj2HK
, (12)

where C is a convex function of f. It is assumed that the minimizer of
Sn

i¼1Cðyi; f ðtðiÞÞÞ in the span of the fn is unique. Then the minimizer of Ilfy; f g has
a representation of the form:

f ðsÞ ¼
XM
n¼1

dnfnðsÞ þ
Xn

i¼1

ciKðtðiÞ; sÞ. (13)

The coefficient vectors d ¼ ðd1; . . . ; dMÞ
0 and c ¼ ðc1; . . . ; cnÞ

0 are found by sub-
stituting (13) into the first term in (12), and using the fact that
jjSn

i¼1ciKtðiÞð�Þjj
2
HK
¼ c0Knc; where Kn is the n� n matrix with i, jth entry

KðtðiÞ; tðjÞÞ: The name ‘‘reproducing kernel (RK)’’ comes from the fact that
hKtn ;Ksni ¼ Kðtn; snÞ:

The minimization of (12) generally has to be done numerically by an iterative
descent method, except in the case that C is quadratic in f, in which case a linear
system has to be solved. When Kð�; �Þ is a smooth function of its arguments and n

is large, it has been found that excellent approximations to the minimizer of (12)
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for various C can be found with functions of the form:

f ðsÞ ¼
XM
n¼1

dnfnðsÞ þ
XL

j¼1

cij
KðtðijÞ; sÞ, (14)

where tði1Þ; . . . ; tðiLÞ are a relatively small subset of tð1Þ; . . . ; tðnÞ; thus reducing the
computational load. tði1Þ; . . . ; tðiLÞ may be chosen in various ways, as a random
subset, by clustering ftðiÞg and selecting from each cluster (Xiang and Wahba,
1997), or by a greedy algorithm, as, for example, in Luo and Wahba (1997),
depending on the problem.

2.3. Smoothing spline ANOVA models

Thin plate spline estimates and fits based on the Gaussian kernel and other rbf’s
are (in their standard form) rotation invariant in the sense that rotating the
coordinate system, fitting the model, and rotating back do not change anything.
Thus, they are not appropriate for additive models or for modeling interactions of
different orders.

Smoothing spline ANOVA (SS-ANOVA) models provide fits to data of the
form f ðtÞ ¼ C þ Saf aðtaÞ þ Saobf abðta; tbÞ þ � � � : Here f a is in some RKHS Ha;
f ab 2Ha Hb; and so forth. The components of the decomposition satisfy side
conditions which generalize the usual side conditions for parametric ANOVA
which make the solutions unique. The f a integrate to zero, the f ab integrate to
zero over both arguments, and so forth. f is obtained as the minimizer, in an
appropriate function space, of

Ilfy; f g ¼Lðy; f Þ þ
X
a

laJaðf aÞ þ
X
aob

labJabðf abÞ þ � � � , (15)

where Lðy; f Þ is the negative log likelihood of y ¼ ðy1; . . . ; ynÞ given f, Ja; Jab; . . .
are quadratic penalty functionals in RKHS, the ANOVA decomposition is ter-
minated in some manner, and the l’s are to be chosen. The ‘‘spline’’ in SS-
ANOVA models is somewhat of a misnomer, since SS-ANOVA models do not
have to consist of splines. The attribute vector t ¼ ðt1; . . . ; tdÞ; where ta 2TðaÞ; is
in T ¼Tð1Þ Tð2Þ  � � � TðdÞ; where the TðaÞ may be quite general. The in-
gredients of the model are: for each a, there exists a probability measure mðaÞ on
TðaÞ and an RKHS of functions Ha defined on TðaÞ such that the constant
function is in Ha and the averaging operator Eaf ¼

R
f aðtaÞdma is well defined for

any f a 2Ha: Then f is in (a subspace of) H ¼H1 H2 � � �Hd : The ANOVA
decomposition generalizes the usual ANOVA taught in elementary statistics
courses via the expansion

I ¼
Y
a

ðEa þ ðI � EaÞÞ ¼
Y
a

Ea þ
X
a

ðI � EaÞ
Y
baa

Eb

þ
X
aob

ðI � EaÞðI � EbÞ
Y
gaa;b

Eg þ � � � þ
Y
a

ðI � EaÞ. ð16Þ
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The components of this decomposition generate the ANOVA decomposition
of f by

C ¼
Y
a

Ea

 !
f ; f a ¼ ðI � EaÞ

Y
baa

Eb

 !
f ,

f ab ¼ ðI � EaÞðI � EbÞ
Y
gaa;b

Eg

 !
f ; � � � , ð17Þ

and so forth. The spaces Ha are decomposed into the one-dimensional spaces
of constant functions, and HðaÞ; whose elements satisfy Eaf ¼ 0: HðaÞ may be
further decomposed into low-dimensional unpenalized subspaces plus smooth
subspaces that will be penalized. All this allows the exploitation of the geometry
of RKHS to obtain the minimizer of Ilfy; f g of (15) in a convenient manner.
RKs for the various subspaces are constructed from Kronecker products of
the RKs for functions of one variable. SS-ANOVA models are studied in detail in
Gu (2002). Other references include Davidson (2006), Gao et al. (2001), Gu and
Wahba (1993b), Lin (2000), Wahba (1990), Wahba et al. (1995), Wang (1998),
and Wang et al. (2003).

Figure 2 (Wahba et al., 1995) plots the four year probability of progression of
diabetic retinopathy based on three predictor variables, dur ¼ duration of diabe-
tes, gly ¼ glycosylated hemoglobin, and bmi ¼ body mass index. An SS-ANOVA
model based on cubic splines was fitted with the result

f ðtÞ ¼ C þ f 1ðdurÞ þ a glyþ f 3ðbmiÞ þ f 13ðdur;bmiÞ. (18)

In the cubic spline fit, there is no penalty on linear functions. For the gly term, the
estimated smoothing parameter was sufficiently large so that the fit in gly was
indistinguishable from linear; thus f 2ðglyÞ became a gly: For the plot, gly has been
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Fig. 2. Four year probability of progression of diabetic retinopathy as a function of duration of

diabetes at baseline and body mass index, with glycosylated hemoglobin set at its median. (From

Wahba et al. (1995), rAnnals of Statistics, reprinted with permission.)
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set equal to its median. Software for SS-ANOVA models can be found in the R
codes gss, which is keyed to Gu (2002), and assist. Software for main effects
models is found in the R code gam, based on Hastie and Tibshirani (1986).

2.4. Multicategory penalized likelihood estimates

Multicategory penalized likelihood methods were first proposed in Lin (1998); see
also Wahba (2002). In this setup, the endpoint is one of the several categories; in the
works cited, the categories were ‘‘alive’’ or ‘‘deceased’’ by cause of death. Con-
sidering K þ 1 possible outcomes, with K41; let pjðxÞ; j ¼ 0; 1; . . . ;K ; be the
probability that a subject with attribute vector x is in category j, SK

j¼0pjðxÞ ¼ 1: The
following approach was proposed in Lin (1998): let f jðxÞ ¼ log½pjðxÞ=p0ðxÞ�; j ¼
1; . . . ;K ; where p0 is assigned to a base class. Then

pjðxÞ ¼
ef jðxÞ

1þ
PK
j¼1

ef j ðxÞ

; j ¼ 1; . . . ;K ,

p0ðxÞ ¼
1

1þ
PK
j¼1

ef j ðxÞ

. (19)

The class label for the ith subject is coded as yi ¼ ðyi1; . . . ; yiKÞ; where yij ¼ 1 if the
ith subject is in class j and 0 otherwise. Letting f ¼ ðf 1; . . . ; f K Þ; the negative log
likelihood can be written as

Lðy; f Þ ¼
Xn

i¼1

XK

j¼1

�yijf jðxðiÞÞ þ log 1þ
XK

j¼1

ef jðxðiÞÞ

 !( )
, (20)

and an SS-ANOVA model was fitted as a special (main effects) case of (15) with
cubic spline kernels.

Figure 3 (Lin, 1998) gives 10 year risk of mortality by cause as a function of
age. The model included two other risk factors, glycosylated hemoglobin and
systolic blood pressure at baseline, and they have been set equal at their medians
for the plot. The differences between adjacent curves (from bottom to top) are
probabilities for alive, diabetes, heart attack, and other causes. The data are
plotted as triangles (alive, on the bottom), crosses (diabetes), diamonds (heart
attack), and circles (other).

See also Zhu and Hastie (2003), who proposed a version of the multicategory
penalized likelihood estimate for Bernoulli data that did not have a special base
class. The model is

pjðxÞ ¼
ef jðxÞPK

j¼1

ef j ðxÞ

; j ¼ 1; . . . ;K. (21)
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This model is overparameterized, but that can be handled by adding a sum-
to-zero constraint SK

j¼1f jðxÞ ¼ 0; as was done in the multicategory SVM (Lee
et al., 2004) discussed later. The authors show that this constraint is automatically
satisfied in the optimization problem they propose.

2.5. Correlated Bernoulli data: the two-eye problem, the multiple sibs problem

In Gao et al. (2001), a general model including the following is considered: there
are n units, each unit has K members, and there is a Bernoulli outcome that is 0 or
1, for each member. There may be member-specific risk factors and unit-specific
risk factors. Thus, the responses are vectors yi ¼ ðyi1; . . . ; yiK Þ; where yij 2 f0; 1g is
the response of the jth member of the ith unit. Allowing only first-order corre-
lations, a general form of the negative log likelihood is

Lðy; f Þ ¼
Xn

i¼1

XK

j¼1

�yijf jðxðiÞÞ �
X
jak

ajkyijyik þ bðf ; aÞ

( )
, (22)
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Fig. 3. Ten year risk of mortality, by cause. See text for explanation.
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where (suppressing the dependence of f j on xðiÞÞ; we have

bðf ; aÞ ¼ log 1þ
XK

j¼1

ef j þ
X
jak

ef jþf kþajk

 

þ
X

jakal

ef jþf kþf lþajkþajlþakl þ � � � þ e

PK
j¼1

f jþ
P
jak

ajk

1CA. ð23Þ

The ajk are the log odds ratios (log OR) and are a measure of the correlation of
the jth and kth outcomes when the other outcomes are 0:

ajk ¼ log ORðj; kÞ ¼
Prðyj ¼ 1; yk ¼ 1ÞPrðyj ¼ 0; yk ¼ 0Þ

Prðyj ¼ 1; yk ¼ 0ÞPrðyj ¼ 0; yk ¼ 1Þ

�����yr ¼ 0,

raj; k. ð24Þ

The two-eye problem was considered in detail in Gao et al. (2001) where the unit
is a person and the members are the right eye and the left eye. The outcomes are
pigmentary abnormality in each eye. There only person-specific predictor vari-
ables were considered, so that K is 2, f 1ðxÞ ¼ f 2ðxÞ ¼ f ðxÞ; where xðiÞ is the ith
vector of person-specific risk factors, and there is a single a12 ¼ a: In that work a
was assumed to be a constant, f is an SS-ANOVA model, and Ilðy; f Þ of the form
(15) is minimized with Lðy; f Þ of the form (22). The cross-product ratio a12 ¼
logORð1; 2Þ is a measure of the correlation between the two eyes, taking into
account the person-specific risk factors. It may be used to estimate whether, e.g.,
the second eye is likely to have a bad outcome, given that the first eye already has.
The case where the unit is a family and the members are a sibling pair within the
family with person-specific attributes is considered in Chun (2006), where the
dependence on person-specific attributes has the same functional form for each
sibling. Then K ¼ 2 and f jðxðiÞÞ becomes f ðxjðiÞÞ; where xjððiÞÞ is the attribute
vector of the jth sibling, j ¼ 1; 2 in the ith family. Again, an optimization problem
of the form (15) is solved. If a is large, this indicates correlation within the family,
taking account of person-specific risk factors, and may suggest looking for genetic
components.

3. Risk factor estimation: likelihood basis pursuit and the LASSO

3.1. The l1 penalty

In Section 2 the penalty functionals were all quadratic, being square norms or
seminorms1 in an RKHS. Generally if there are n observations there will be n

1 A seminorm here is the norm of the projection of f onto a subspace with orthocomplement of low

dimension. The orthocomplement is the null space of J. The thin plate penalty functionals are semi-

norms.
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representers in the solution; for very large n this is not desirable. This may be
mitigated as in (14), but it is well known that imposing an absolute value penalty
(l1 penalty) on coefficients of the form Sn

i¼1jcij (as opposed to a quadratic form in
the c’s) will tend to provide a sparse solution, i.e., many ci will be zero. Figure 4
suggests why. The concentric ellipses are meant to represent the level curves of a
quadratic function Qðx1;x2Þ in x1 and x2 (with the minimum in the middle) and
the circle and inscribed diamond are level curves of jxjl2 ¼ x2

1 þ x2
2 and jxjl1 ¼

jx1j þ jx2j; respectively. If the problem is to minimize QðxÞ þ jxjlp
for p ¼ 1 or 2, it

can be seen that with the l1 norm, the minimum is more likely to be at one of the
corners of the diamond. The desirability of sparsity comes up in different con-
texts: to select a sparser number of basis functions given an overcomplete set of
basis functions, or to select a smaller number of variables or clusters of variables
out of a much larger set to be used for regression or classification. Likelihood
basis pursuit (Chen et al., 1998) and the LASSO (Tibshirani, 1996) are two basic
papers in the basis function context and variable selection context, respectively.
There is a large literature in the context of variable selection in linear models,
based on the LASSO, which in its simplest form imposes an l1 penalty on the

x1

x2

l1
l2

Fig. 4. Absolute value penalties lead to solutions at the extreme points of the diamond, which means

sparsity in the solution vector.
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coefficients in a linear model; see Efron et al. (2004), Fan and Li (2001), Knight
and Fu (2000), and others. An overcomplete set of basis functions in a wavelet
context was generated in Chen et al. (1998), who then reduced the number of basis
functions in their model via an l1 penalty on the coefficients. In the spirit of Chen
et al. (1998), Zhang et al. (2004) generated an overcomplete set of basis functions
by the use of representers in an SS-ANOVA model to do model fitting and
variable selection in a flexible way, similarly reducing the number of main effects
or interactions by an l1 penalty on basis function coefficients. The method was
used to obtain flexible main effects models for risk factors for eye diseases based
on data collected in the Beaver Dam Eye Study (Klein et al., 1991). Beginning
with Gunn and Kandola (2002) various authors have simultaneously imposed l1
and quadratic penalties in the context of flexible nonparametric regression/kernel
methods; see Zhang and Lin (2006a, 2006b) and Zhang (2006) (who called it
‘‘COSSO’’). Software for the COSSO may be found at http://www4.stat.ncsu.edu/
	hzhang/software.html. Later Zou and Hastie (2005) (calling it ‘‘Elastic Net’’), in
the context of (linear) parametric regression, used the same idea of a two term
penalty functional, one quadratic and the other l1:

3.2. LASSO-Patternsearch

The LASSO-Patternsearch method of Shi et al. (2006) was designed with specially
selected basis functions and tuning procedures to take advantage of the sparsity
inducing properties of l1 penalties to enable the detection of potentially important
higher order variable interactions. Large and possibly very large attribute vectors
x ¼ ðx1; . . . ;xpÞ with entries 0 or 1 are considered, with Bernoulli outcomes. The
log odds ratio f ðxÞ ¼ log½pðxÞ=ð1� pðxÞÞ� is modeled there as

f ðxÞ ¼ mþ
Xp

a¼1

caBaðxÞ þ
X
aob

cabBabðxÞ

þ
X

aobog

cabgBabgðxÞ þ � � � þ c123���pB123���pðxÞ, ð25Þ

where BaðxÞ ¼ xa; BabðxÞ ¼ xaxb; and so forth, and the optimization problem to
be solved is: find f of the form (25) to minimize

Ilfy; f g ¼
Xn

i¼1

�yif ðxðiÞÞ þ logð1þ ef ðxðiÞÞÞ þ l
X
all c

jcj, (26)

where the sum taken over all c means the sum of the absolute values of the
coefficients (the l1 penalty). For small p (say, p ¼ 8), the series in (25) may be
continued to the end, but for large p the series will be truncated. A special purpose
numerical algorithm was proposed that can handle a very large number (at
least 4000) of unknown coefficients, many of which will turn out to be 0. The
‘‘patterns’’ or basis functions in (25) follow naturally from the log linear rep-
resentation of the multivariate Bernoulli distribution; see Shi et al. (2006) and
Whittaker (1990). This approach is designed for the case when the directions of all
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or almost all of the ‘‘risky’’ variables are known and are coded as 1, since then the
representation of (25) is most compact, although this is by no means necessary.
When this and similar problems are tuned for predictive loss, there is a bias
toward overestimating the number of basis functions and including some noise
patterns. However, at the same time it insures a high probability of including all
the important basis functions; see Leng et al. (2006) and Zou (2006). The LASSO-
Patternsearch is a two-step approach, with the first step global, as opposed to a
greedy approach. In the first step the model is fitted globally and tuned by a
predictive loss criteria. Then a second step takes those patterns surviving the first
step and enters them a parametric generalized linear model. Finally, all basis
functions whose coefficients fail a significance test in this model at level q are
deleted, where the value of q is treated as another tuning parameter. This method
uncovered an interesting relation between smoking, vitamins and cataracts as risk
factors in myopia data collected as part of the Beaver Dam Eye study (Klein
et al., 1991). The method has also been successfully used to select patterns of
single nucleotide polymorphisms (SNPs) in DNA data that can separate cases
from controls with a high degree of accuracy. Pseudocode is found in Shi et al.
(2006). Other approaches for finding clusters of important variables include
Breiman (2001), Ruczinski et al. (2002), Yuan and Lin (2006), and Park and
Hastie (2007). These methods rely on sequential, stepwise or greedy algorithms,
and tend to work well in a broad range of scenarios, although stepwise algorithms
are not guaranteed to always find the best subset. Some preliminary results sug-
gest that under certain kinds of correlated scenarios the global aspects of the
LASSO-Patternsearch may prove advantageous over stepwise approaches.

4. Classification: support vector machines and related estimates

SVMs were proposed by Vapnik and colleagues as a nonparametric classification
method in the early 1990s; see Vapnik (1995) and references cited there, where it
was obtained in an argument quite different than the description we give here.
However, in the late 1990s (Evgeniou et al., 2000; Wahba, 1999) it was observed
that SVMs could be obtained as the solution to an optimization problem in an
RKHS. This made it easy to compare and contrast SVMs with other nonpar-
ametric methods involving optimization problems in an RKHS, to develop gen-
eralizations, and to examine its theoretical properties. In any case the efficiency of
the SVM was quickly recognized in practice, and theory soon followed to explain
just why SVMs worked so well. Before giving details, we note the following
books: Cristianini and Shawe-Taylor (2000), Scholkopf et al. (1999, 2004),
Scholkopf and Smola (2002), Shawe-Taylor and Cristianini (2004), and Smola
et al. (2000).

4.1. Two-category support vector machines

Figure 5 illustrates the flexibility of a (two-category) SVM. The locations of the +
and o ‘‘attribute vectors’’ were chosen according to a uniform distribution on the
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unit rectangle. Attribute vectors falling between the two dotted lines were as-
signed to be + or o with equal probability of .5. Points above the upper dotted
(true) line were assigned + with .95 and o with probability .05, and below the
lower dotted line the reverse: o with probability .95 and + with probability .05.
Thus, any classifier whose boundary lies within the two dotted lines is satisfying
the Bayes rule – that is, it will minimize the expected classification error from new
observations drawn from the same distribution.

In the two-category SVM the training data is coded yi � 1 according as the ith
object is in the + class or the o class. The classifier f is assumed to be of the form
f ðsÞ ¼ d þ hðsÞ; where the constant d and h 2HK are chosen to minimize

Ilfy; f g ¼
1

n

Xn

i¼1

Cðyi; f ðtðiÞÞÞ þ ljhj2HK
, (27)

where C is the so-called hinge function: Cðy; f Þ ¼ ð1� yf Þþ; where ðtÞþ ¼ 1 if
t40 and 0 otherwise. A new object will be classified as in the + class if f(x)>0
and in the o class if f(x)o0. From the representer theorem, the minimizer of
Ilfy; f g again has a representation of the form:

f ðsÞ ¼ d þ
Xn

i¼1

ciKðtðiÞ; sÞ. (28)
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Fig. 5. SVM: toy problem, tuned by GACV and the XiAlpha method.
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Using jjSn
i¼1ciKtðiÞð�Þjj

2
HK
¼ c0Knc; where Kn is the n� n matrix with i, jth entry

KðtðiÞ; tðjÞÞ is substituted into (27). The problem of finding d and c1; . . . ; cn is
solved numerically by transforming the problem to its dual problem, which re-
sults in the problem of minimizing a convex functional subject to a family of
linear inequality constraints. Details of this transformation may be found in any
of the books cited, in Evgeniou et al. (2000), Wahba et al. (2000), and elsewhere.

For the toy problem in Fig. 5, the RK Kðs; tÞ was taken as the Gaussian kernel
Kðs; tÞ ¼ e�ð1=2s

2Þjjs�tjj2 ; so that the two tuning parameters l and s2 have to be
chosen. The solid line in Fig. 5 is the 0 level curve of f obtained by choosing l and
s2 by the generalized approximate cross-validation (GACV) method, and the
dashed line by choosing l and s2 by Joachim’s XiAlpha method; see Section 6.4.
The SVMlight software is popular code for computing the two-class SVM, and the
XiAlpha method is implemented in it. See Joachims (1999), http://svmlight.joac-
hims.org. Other codes and references can be found at http://www.kernel-ma-
chines.org.

Figure 6 is a toy example which demonstrates the difference between SVM
and penalized likelihood estimates. The penalized likelihood method provides an
estimate of the probability p that an object is in the ‘‘1’’ class. p is above or below
.5 according as f is positive or negative. Therefore, a classification problem with a
representative number of objects in each class in the training set and equal costs

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

truth
logistic regression
SVM

Fig. 6. Penalized likelihood and the support vector machine compared.
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of misclassification can be solved by implementing the Bayes rule, which is
equivalent to determining whether the log odds ratio f is positive or negative. The
fundamental reason why the SVM works so well is that it is estimating the sign of

the log odds ratio. See Lin (2001, 2002) and Lin et al. (2002) for proofs. This is
demonstrated in Fig. 6. The vertical scale in Fig. 6 is 2p� 1: Three hundred
equally spaced samples in x were selected and assigned the + class with prob-
ability p, given by the solid (‘‘truth’’) line in Fig. 5. The dotted line (labeled
‘‘logistic regression’’) is the penalized likelihood estimate of 2p� 1 and is very
close to the true 2p� 1: The dashed line is the SVM. The SVM is very close to �1
if 2p� 1o0; and close to +1 for 2p� 140: Note however that they result in
almost exactly the same classifier. The SVM is just one member of the class of
large margin classifiers. A large margin classifier is one where Cðy; f Þ depends
only on the product yf. When the data are coded as 71, then the negative log
likelihood becomes logð1þ eyf Þ and so it is also a large margin classifier. From
Lin (2001, 2002) it can be seen that under very weak conditions on Cðy; f Þ ¼
Cðyf Þ; large margin classifiers implement the Bayes rule, i.e., the sign of the
estimate of f is an estimate of the sign of the log odds ratio. Among the special
properties of the SVM, however, is that the hinge function is, in some sense, the
closest convex upper bound to the misclassification counter ½�yf �n; where ½t�n ¼ 1
if t40 and 0 otherwise. Furthermore, due to the nature of the dual optimization
problem, the SVM estimate of f tends to have a sparse representation, i.e., many
of the coefficients ci are 0, a property not shared by the penalized likelihood
estimate.

Regarding the form f ðsÞ ¼ d þ hðsÞ with h 2HK of (27), frequently the kernel
K is taken as a rbf. In some applications, particularly in variable selection prob-
lems as we shall see later, it is convenient to choose K as tensor sums and products
of univariate rbf’s, as in SS-ANOVA models, with one important difference: the
null space of the penalty functional should only contain at most the constant
function. For technical reasons, the SVM may fail to have a unique solution for
larger null spaces.

4.2. Nonstandard support vector machines

The previous (standard) SVM, when appropriately tuned, asymptotically imple-
ments the Bayes rule, i.e., it minimizes the expected cost, when the training set is
representative of the population to be classified in the future, and the costs of each
kind of misclassification are the same. The nonstandard SVM of Lin et al. (2002)
is a modification of the standard SVM which implements the Bayes rule when
neither of these conditions hold. Let pþ and p� ¼ 1� pþ be prior probabilities of
+ and � classes, and let pþs and p�s be proportions of + and � classes in the
training set, and cþ and c� be the costs for false + and false � classifications. Let
gþðxÞ and g�ðxÞ be the densities for x in the + class and the 1 class, respectively.
Let pðxÞ be Pr½y ¼ 1jx� in the population to be classified. Then

pðxÞ ¼
pþgþðxÞ

pþgþðxÞ þ p�g�ðxÞ
. (29)
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Let psðxÞ be Pr½y ¼ 1jx� in a population distributed as the training sample. Then

psðxÞ ¼
pþs gþðxÞ

pþs gþðxÞ þ p�s g�ðxÞ
. (30)

Then the Bayes rule classifies as + when pðxÞ=ð1� pðxÞÞ4cþ=c� and� otherwise,
equivalently when psðxÞ=ð1� psðxÞÞ4ðc

þ=c�Þðpþs =p
�
s Þðp

�=pþÞ: Letting Lð�1Þ ¼
cþpþs p

� and Lð1Þ ¼ c�p�s p
þ; the Bayes rule is then equivalent to classifying as +

when signfps � ½Lð�1Þ=ðLð�1Þ þ Lð1ÞÞ�g40 and � otherwise. The nonstandard
SVM finds f of the form

1

n

Xn

i¼1

LðyiÞ½ð1� yif ðxðiÞÞ�þ þ ljjhjj2HK
(31)

over functions of the form f ðxÞ ¼ hðxÞ þ b: It is shown in Lin et al. (2002) that the
nonstandard SVM of (31) is estimating sign fps � ½Lð�1Þ=ðLð�1Þ þ Lð1ÞÞ�g; again
just what you need to implement the Bayes rule.

4.3. Multicategory support vector machines

Many approaches have been proposed to classify into one of the k possible classes
by using SVMs. A Google search as of 2006 for ‘‘multiclass SVM’’ or ‘‘multi-
category support vector machine’’ gives over 500 hits. For the moment, letting
yj 2 f1; . . . ; kg and considering the standard situation of equal misclassification
costs and representative training sample, if Pðy ¼ jjxÞ ¼ pjðxÞ; then the Bayes rule
assigns a new x to the class with the largest pjðxÞ: Two kinds of strategies appear
in the literature. The first solves the problem via solving several binary problems,
one-vs.-rest, one-vs.-one, and various designs of several-vs.-several. See, for
example, Allwein et al. (2000) and Dietterich and Bakiri (1995). The second
considers all classes at once. Two examples of this are Crammer and Singer (2000)
and Weston and Watkins (1999) with many variants in the recent literature. Many
of these methods are highly successful in general practice, but, in general, sit-
uations can be found where they do not implement the Bayes rule; see Lee et al.
(2004).

The MSVM of Lee and Lee (2003) and Lee et al. (2004) goes as follows: first, yi

is coded as a k-dimensional vector ðyi1; . . . ; yikÞ with 1 in the jth position if yj is in
class j, and �1=ðk � 1Þ in the other positions; thus, Sk

r¼1yir ¼ 0; i ¼ 1; . . . ; n: Let
Ljr ¼ 1 for jar and 0 otherwise. The MSVM solves for a vector of functions
f l ¼ ðf

1
l; . . . ; f

k
lÞ; with f r

ðxÞ ¼ dr
þ hr
ðxÞ; each hk inHK satisfying the sum-to-zero

constraint Sk
r¼1f r
ðxÞ ¼ 0 all x, which minimizes

1

n

Xn

i¼1

Xk

r¼1

LcatðiÞrðf
r
ðxðiÞÞ � yirÞþ þ l

Xk

j¼1

jjhj
jj2HK

, (32)
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equivalently

1

n

Xn

i¼1

X
racatðiÞ

f r
ðxðiÞÞ þ

1

k � 1

� �
þ

þ l
Xk

j¼1

jjhj
jj2HK

, (33)

where catðiÞ is the category of yi:
It can be shown that k ¼ 2 case reduces to the usual two-category SVM. The

target for the MSVM is shown in Lee et al. (2004) to be f ðtÞ ¼ ðf 1
ðtÞ; . . . ; f k

ðtÞÞ

with f j
ðtÞ ¼ 1 if pjðtÞ is bigger than the other plðtÞ and f j

ðtÞ ¼ �1=ðk � 1Þ oth-
erwise, thus implementing an estimate of the Bayes rule. Similar to the two-class
case, there is a nonstandard version of the MSVM. Suppose the sample is not
representative, and misclassification costs are not equal. Let

Ljr ¼
pj

pj
s

� �
cjr; jar, (34)

where cjr is the cost of misclassifying a j as an r and crr ¼ 0 ¼ Lrr: pj is the prior
probability of category j and pj

s the fraction of samples from category j in the
training set. Substituting (34) into (32) gives the nonstandard MSVM, and it is
shown in Lee et al. (2004) that the nonstandard MSVM has as its target the Bayes
rule. That is, the target is f jðxÞ ¼ 1 if j minimizes

Xk

‘¼1

c‘jp‘ðxÞ,

equivalently

Xk

‘¼1

L‘jp
s
‘ðxÞ,

and f jðxÞ ¼ �1=ðk � 1Þ otherwise.
To illustrate the use of the MSVM, Lee et al. (2004) revisited the small round

blue cell tumors (SRBCTs) of childhood data set in Khan et al. (2001). There are
four classes: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin
lymphoma (NHL), and the Ewing family of tumors (EWS), and the data were
cDNA gene expression profiles. There was a training set of 63 samples (NB: 12,
RMS: 20, BL: 8, EWS: 23), and a test set of 20 SRBCT cases (NB: 6, RMS: 5, BL:
3, EWS: 6) and 5 non-SRBCTs. The gene expression profiles contained obser-
vations on 2308 genes; after several preprocessing steps the observations were
reduced to those on 100 genes, and the final data set for classification consisted of
a vector of three principal components based on the 100 gene observations for
each profile. The principal components turned out to contain enough information
for nearly perfect classification.

The four class labels are coded according as EWS: ð1;�1=3;�1=3;�1=3Þ;
BL: ð�1=3; 1;�1=3;�1=3Þ; NB: ð�1=3;�1=3; 1;�1=3Þ; and RMS:
ð�1=3;�1=3;�1=3; 1Þ:
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The top four panels in Fig. 7 show the predicted decision vectors
ðf 1; f 2; f 3; f 4Þ at the test examples. The first six columns are the estimated class
labels for the six EWS cases in the test set: ideally they will be
ð1;�1=3;�1=3;�1=3Þ: As can be seen, of these six cases the f 1 bars (top panel)
are all close to 1, and in the three next lower panels, the f 2; f 3; and f 4 bars are all
negative, so that these six members of the test set are all identified correctly. The
next three columns are the three BL cases in the test set, ideally their estimates are
ð�1=3; 1;�1=3;�1=3Þ – in the second panel they are all about 1, and in the first,
third, and fourth panels they are all negative, so that these BL cases are all
classified correctly. In the next six columns, the six members of the NB class are
classified correctly, i.e., f 3 is close to 1 and the other components are negative,
and the next five RMS cases are all classified correctly. The last five columns are
the five non-SRBT cases, and with one exception none of the bars are close to
one, with the exceptional case having both f 1 and f 4 positive, leading to a dubious
classification (‘‘none of the above’’). The bottom panel gives a measure of the
weakness of the classification, obtained from a bootstrap argument, and it is
suggesting that the classification of all of the ‘‘none of the above’’ cases is weak.
Software for the MSVM can be found at http://www.stat.ohio-state.edu/	yklee/
software.html.
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Fig. 7. Predicted four-dimensional decision vectors for 20 test samples in four classes and 5 test

samples in ‘‘none of the above.’’ (Adapted from Lee et al. (2004),r Journal of the American Statistical

Association, reprinted with permission.)
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4.4. Support vector machines with variable selection

In dealing with classification problems with very large observation vectors such as
occur, for example, in microarray (gene chip) or SNP data, classification is only
part of the problem. It is typically of scientific interest to know which genes out of
the thousands obtained from the gene chip data are important for the classifi-
cation, or which SNPs from the thousands that are observed are important. Go-
ogle provides thousands of hits for ‘‘Variable Selection’’ and SVM. Here we briefly
provide the flavor of three recent papers appropriate to these situations. We de-
scribe only two-category SVMs, but most of the results generalized to the MSVM.

In Zhang (2006), f is modeled as a (low order) SS-ANOVA model which can be
written:

f ðx1; . . . ;xdÞ ¼ d þ
Xd

a¼1

haðxaÞ þ
X
aob

habðxa;xbÞ þ � � � , (35)

with ha 2Ha; hab 2Ha Hb � � � ; and so forth. The proposed SVM optimization
problem becomes

minf2F

Xn

i¼1

½1� yif ðxðiÞÞ�þ þ t
Xd

a¼1

jjhajjHa þ
X
aob

jjhabjjHaHb þ � � �

" #
,

(36)

where x ¼ ðx1; . . . ; xdÞ: Note that (36) uses norms rather than squared norms in
the penalty functional. This formulation is shown to be equivalent to

minf2F

Xn

i¼1

½1� yif ðxðiÞÞ�þ þ
Xd

a¼1

y�1a hak k
2
Ha þ

X
aob

y�1ab jjhabjj
2
HaHb þ � � �

" #
þ l

X
ya þ

X
yab þ � � �

h i
, ð37Þ

where ys are constrained to be nonnegative. Lee et al. (2006) also considered the
approach of (37), in the context of the MSVM of Lee et al. (2004) and applied the
method to the data of Khan et al. (2001) that were used there, to select influential
genes. The home pages of both these first authors cited contain related software
relevant to this problem.

Mukherjee and Wu (2006) performed variable selection via an algorithm which
learns the gradient of the response with respect to each variable – if the gradient is
small enough, then the variable is deemed not important. They applied their
method to the same two-class leukemia data of Golub et al. (1999) that was
analyzed in Lee and Lee (2003).

5. Dissimilarity data and kernel estimates

In many problems direct attribute vectors are not known, or are not convenient to
deal with, while some sort of pairwise dissimilarity score between pairs of objects
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in a training set is known. Examples could be subjective pairwise differences
between images as provided by human observers, pairwise differences between
graphs, strings, sentences, microarray observations, protein sequences, etc. Given
pairwise dissimilarity scores we describe two approaches to obtaining a kernel,
which can then be used in an SVM for classifying protein sequence data.

5.1. Regularized kernel estimation

The regularized kernel estimation (RKE) method (Lu et al., 2005) goes as follows:
given K, a nonnegative definite n� n matrix, the squared distance d̂ ij between the
ith and jth objects in a set of n objects can be defined by d̂ ijðKÞ ¼ Kði; iÞ þ
Kðj; jÞ � 2Kði; jÞ; where Kði; jÞ is the ði; jÞ entry of K. Given a set of noisy, possibly
incomplete, set of pairwise distances fdijg between n objects, the RKE problem is
to find an n� n nonnegative definite matrix which minimizes

min
Kk0

X
ði;jÞ2O

jdij � d̂ ijðKÞj þ l traceðKÞ. (38)

Here O is a set of pairwise distances which forms a connected set, i.e., a graph
connecting the included pairs is connected. This problem can be solved numer-
ically for K by a convex cone algorithm; see Benson and Ye (2004), Lu et al.
(2005), and (Tütüncü et al. (2003)).

Letting K ¼ Kl be the minimizer of (38), the eigenvalues of Kl are set to zero
after the pth largest, resulting in Kl;p; say. Pseudodata zðiÞ; i ¼ 1; . . . ; n; for the n

objects can be found by letting zðiÞ ¼ ðz1ðiÞ; . . . ; zpðiÞÞ; where znðiÞ ¼
ffiffiffiffiffi
ln
p

fnðiÞ; n ¼
1; . . . ; p; with ln and fn being the eigenvalues and eigenvectors of Kl;p: Given
labels on (a subset of) the n objects, a SVM can be built on the pseudodata. To
classify a new object, a ‘‘newbie’’ algorithm is used to obtain the pseudodata
zðnþ 1Þ for the nþ 1st object. The newbie algorithm obtains an ðnþ 1Þ � ðnþ 1Þ
kernel Knþ1 of the form

~Knþ1 ¼
Kn bT

b c

" #
k0 (39)

(where b 2 Rn and c is a scalar) that solves the following optimization problem:

minc
0;b
P
i2C
jdi;nþ1 � d̂ i;nþ1ðKnþ1Þj

such that b 2 rangeðKnÞ; c� bTKþn b 
 0;
(40)

where Kþn is the pseudoinverse of Kn ¼ Kl;p and C a suitably rich subset of
f1; 2; . . . ; ng: Pseudodata zðnþ 1Þ are found on observing that zðiÞTzðnþ 1Þ ¼
Kði; nþ 1Þ ¼ bi: Figure 8 (Lu et al., 2005) gives the 280 eigenvalues for K based on
dissimilarity scores from protein sequence alignment scores from 280 protein se-
quences. The eigenvalues of Kl were truncated after p ¼ 3, and a three-dimensional
black and white plot of the pseudodata is given in Fig. 9. The four classes can be
seen, although the original color plot in Lu et al. (2005) is clearer.
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This approach can easily tolerate missing data, in fact only about 36% of the
pairs were used, and it is robust to very noisy or binned dissimilarity data, for
example, dissimilarity information given on a scale of 1, 2, 3, 4, or 5.

The RKE can be used in the semisupervised situation, where the kernel is built
on both labeled and unlabeled data, and then used to classify both the unlabeled
data used to build it and new observations that were not.

Data from multiple sources, some of which may involve dissimilarity data and
some direct attribute data, can be combined in an SVM once kernels are given for
each source. Let z be a pseudoattribute vector of length p, obtained from the n� n

kernel KZ which was derived from dissimilarity data and then had its eigenvalues
truncated after the pth, and let x be an attribute vector, with an associated kernel
KX ðx;x0Þ to be chosen (for example, a Gaussian kernel). We can define a com-
posite attribute vector as tT ¼ ðzT : xTÞ and build a SVM on the domain of the
composite attribute vectors based on the kernel Kmðt; t0Þ ¼ mZKZðz; z0Þ þ
mX KX ðx;x0Þ; where mZ and mX are nonnegative tuning parameters. KZðz; z0Þ ¼
ðz; z0Þ; the Euclidean inner product, from the way that z was obtained, but some
other kernel, for example, a Gaussian or SS-ANOVA kernel could be built on top
of the pseudodata. Then the (two-category) SVM finds d and c ¼ ðc1; . . . ; cnÞ to
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minimizeXn

i¼1

½1� yif ðxðiÞÞ�þ þ lc0Kmc, (41)

as before where

f ðtÞ ¼ d þ
Xn

i¼1

ciKmðtðiÞ; tÞ, (42)

and m ¼ ðmZ; mX Þ are to be chosen. Generalizations to the MSVM can also be
defined.

5.2. Kernels from constructed attribute vectors

In Lanckriet et al. (2004) a detailed study was carried out using data from several
sources, including both direct data and dissimilarity data. For dissimilarity data
they used a kernel constructed from n-dimensional attribute vectors whose com-
ponents are themselves dissimilarity measures. The method is described in Liao
and Noble (2003) and elsewhere. It goes as follows: the training set consists of n

objects, with
n

2

� �
dissimilarity scores dij available between all pairs. The ith

object is assigned an n-dimensional vector xðiÞ whose rth component is dir: Then
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Kði; jÞ is defined as ðxðiÞ; xðjÞÞ; where the inner product is the Euclidean inner
product.

6. Tuning methods

6.1. Generalized cross-validation

This article has concentrated on Bernoulli and categorical data, since this kind of
data is typically assumed when ‘‘statistical learning’’ is the topic. However, to best
explain several of the tuning methods used in conjunction with Bernoulli and
categorical data, it is easiest to begin by describing tuning for nonparametric
function estimation with Gaussian data. The model is

yi ¼ f ðxðiÞÞ þ �i; i ¼ 1; . . . ; n, (43)

where x 2T (some domain), f 2HK ; and �i are i.i.d. Gaussian random variables
with common unknown variance s2: The estimate f l is obtained as the solution to
the problem: find f 2HK to minimize

Ilfy; f g ¼
1

n

Xn

i¼1

ðyi � f ðxðiÞÞÞ2 þ lJðf Þ, (44)

where Jðf Þ ¼ jjf jj2HK
or a seminorm in HK : The target for choosing l is to

minimize

1

n

Xn

i¼1

ðf ðxðiÞ � f lðxðiÞÞÞ
2, (45)

where f is the ‘‘true’’ f in the model. The GCV to be described (Craven
and Wahba, 1979; Golub et al., 1979) is derived from a leaving-out-one esti-
mate for l which goes as follows: let f

½�k�
l ðxðkÞÞ be the estimate of f based on

the data omitting the kth data point. The leaving-out-one function V 0ðlÞ is
defined as

V0ðlÞ ¼
1

n

Xn

k¼1

ðyk � f
½�k�
l ðxðkÞÞÞ

2, (46)

and the minimizer of V0 is the leaving-out-one estimate. Let AðlÞ be the n� n

influence matrix, which satisfies

ðf lðxð1ÞÞ; . . . ; f lðxðnÞÞÞ
T
¼ AðlÞðy1; . . . ; ynÞ

T, (47)

which exists since the estimate is linear in the data. It is known from the leaving-
out-one lemma (Craven and Wahba, 1979) that

V0ðlÞ �
1

n

Xn

k¼1

ðyk � f lðxðkÞÞÞ
2

ð1� akkðlÞÞ
2

, (48)
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where akk 2 ð0; 1Þ are the diagonal elements of AðlÞ: The GCV function V ðlÞ is
obtained by replacing each akk in (48) by their average, namely ð1=nÞtraceAðlÞ; to
get

V ðlÞ ¼
1

n

Pn
i¼1

ðyi � f lðxðiÞÞÞ
2

ð1� ð1=nÞtrAðlÞÞ2
, (49)

and the estimate of l is the minimizer of V ðlÞ: Theoretical properties are dis-
cussed in Li (1986), and the important randomized trace technique for calculating
trAðlÞ can be found in Girard (1989, 1995) and Hutchinson (1989). A different
calculation method is found in Golub and vonMatt (1997). For comparison to the
methods described below, we note that when Ilfy; f g is as in (44), i.e., J is a
quadratic form in ðf lðxðiÞÞ; . . . ; f lðxðnÞÞÞ; then AðlÞ is the inverse Hessian of Il of
(44) with respect to f i � f lðxðiÞÞ; i ¼ 1; . . . ; n:

6.2. Generalized approximate cross-validation, Bernoulli data, and RKHS penalties

The GACV for Bernoulli data and RK squared norms or seminorms as penalties
was provided in Xiang and Wahba (1996). As in Section 2 Il is of the form

Ilfy; f g ¼
1

n

Xn

i¼1

�yif ðxðiÞÞ þ logð1þ ef ðxðiÞÞÞ þ lJðf Þ, (50)

where Jðf Þ is a squared norm or seminorm in an RKHS. The target for
the GACV is the expected value of the so-called comparative Kullback Liebler
distance (CKL) between the true and estimated probability distributions, and is

CKLðlÞ ¼
1

n

Xn

i¼1

�pðxðiÞÞf lðxðiÞÞ þ logð1þ ef lðxðiÞÞÞ, (51)

where pðxÞ is the true but unknown probability that y ¼ 1jx: The leaving-out-one
estimate of the CKL is

V0ðlÞ ¼
1

n

Xn

k¼1

�ykf
½�k�
l ðxðkÞÞ þ logð1þ ef lðxðkÞÞÞ. (52)

The GACV is obtained from V 0ðlÞ by a series of approximations followed by
averaging over the diagonal elements of a matrix which plays the role of the
influence matrix, and the result is

GACVðlÞ ¼
1

n

Xn

i¼1

�yif lðxðiÞÞ þ logð1þ ef lðxðiÞÞÞ

þ
1

n
trAðlÞ

Pn
i¼1

yiðyi � plðxðiÞÞÞ

n� trW 1=2AðlÞW 1=2
. ð53Þ
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Here AðlÞ ¼ Aðl; f lÞ is the inverse Hessian of Ilfy; f g with respect to f i �

f lðxðiÞÞ; i ¼ 1; . . . ; n; and W ¼W ðl; f lÞ the diagonal matrix with iith entry
plðxðiÞÞð1� plðxðiÞÞÞ; which is the variance of the estimated Bernoulli distribution
as well as the second derivative of logð1þ ef lðxðiÞÞÞ: Figure 10 (Xiang and
Wahba, 1996) gives two plots comparing the true CKLðlÞ with GACVðlÞ in a
simulation experiment where pðxÞ is known. Numerous experimental works show
that the minimizer of the GACV provides a good estimate of the minimizer of the
CKL; but theoretical results analogous to those in Li (1986) for GCV remain to
be found. A generalization of the GACV to the two-eye problem of Section 5
based on leaving-out-one-unit is found in Gao et al. (2001).

6.3. Generalized approximate cross-validation, Bernoulli data, and l1 penalties

A general version of GACV targeted at the CKL adapted for LASSO-type opti-
mization problems appears in Zhang et al. (2004). A special case, for optimization
problems like that of the LASSO-Patternsearch (Shi et al., 2006), goes as follows.
For each trial value of l, there will be, say, N ¼ NðlÞ basis functions in the model
with nonzero coefficients. Let B be the n�N design matrix for the N basis
functions and W be as before. Let Aðl; f lÞ ¼ BðBTWBÞ�1BT and observe that
trW 1=2AðlÞW 1=2 ¼ N: The GACV becomes

GACVðlÞ ¼
1

n

Xn

i¼1

�yif ðxðiÞÞ þ logð1þ ef ðxðiÞÞÞ

þ
1

n
trAðlÞ

Pn
i¼1

yiðyi � plðxðiÞÞÞ

n�N
. ð54Þ

6.4. Support vector machines

A large number of competing methods have been proposed for tuning SVMs.
When sufficiently large data sets are available, a common practice is to divide the
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Fig. 10. Two GACVðlÞ (solid lines) and CKLðlÞ (dotted lines) curves. (From Xiang and Wahba

(1996), rStatistica Sinica, reprinted with permission.)
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data into three parts: a training set, a tuning set for choosing l and any other
tuning parameters, and a test set for evaluating the results. Five-fold and 10-fold
cross-validation are both popular. Several tuning methods related in some way
to cross-validation ideas are described in Chapelle et al. (2002) and Gold and
Sollich (2003). Tuning methods based on structural risk minimization appear in
Lanckriet et al. (2004). A perturbation method which perturbs both inputs
and outputs is proposed in Wang and Shen (2006). A popular method is
Joachims’ (2000) XiAlpha method, which is part of the SVMlight package at
http://svmlight.joachims.org/. A GACV method was derived in Wahba (1999) by
methods analogous to those in Section 2. The XiAlpha and GACV methods are
seen to be related (Wahba et al., 2001), where a generalization of both methods to
the nonstandard case is proposed. A GACV for the multicategory SVM of Lee,
Lin, and Wahba is in Lee et al. (2004).

6.5. Regularized kernel estimates

A leaving out pairs algorithm can be obtained to choose l in the RKE estimate,
although Kl appears to be insensitive to l over a fairly broad range. To date
the choice of p has been made visually by plotting eigenvalues, but when the
pseudodata are used for classification one possibility is to choose it simultane-
ously with the SVM parameters. A definitive automatic procedure is yet to be
obtained.

7. Regularization, empirical Bayes, Gaussian processes priors,

and reproducing kernels

It is well known that there is a duality between zero mean Gaussian processes and
RKHS: for every positive definite function K there is a unique RKHS with K as
its RK, and for every positive definite function K there is an associated zero mean
Gaussian process prior with K as its covariance; see Aronszajn (1950), Kimeldorf
and Wahba (1971), Parzen (1970), and Wahba (1990). When the first term in the
optimization problem is a negative log likelihood Lfy; f g and the penalty term
involves RKHS squared norms, then for fixed tuning parameters the estimate is a
Bayes estimate with a Gaussian Process prior. These remarks extend to the
case when the penalty term involves squared seminorms, which correspond
to an improper prior; see Kimeldorf and Wahba (1971) and Wahba (1990).
Similarly, in the LASSO class of estimates, the l1 penalty corresponds to
negative exponential priors on the coefficients. In typical regularization methods
like those described here the tuning parameters are chosen by generalization and
model selection arguments, in ‘‘frequentist’’ style. There is a large literature
labeled empirical Bayes methods, as well as Gaussian process priors methods, and
the discerning reader may consider the relationships between those and regular-
ization methods.
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Evidence Based Medicine and Medical Decision
Making

Dan Mayer, MD

Abstract

Evidence Based Medicine (EBM) is a movement within the field of medicine to

assure that physicians use the best available evidence from well done clinical

research studies in making the decisions regarding the types of therapies and

diagnostic tests used for their patients. EBM uses many of the tools of ‘‘clinical

epidemiology’’ to help physicians appraise the quality of scientific medical

research studies. However, it is the blending of critical appraisal of the best

evidence, patient preferences, the clinical predicament and clinical judgment

that allow the best evidence to be used in patient care. The critical appraisal

function of EBM becomes synonymous with improved critical thinking by

physicians and other members of the health care team.

Writing about Evidence Based Medicine (EBM) and Medical Decision Making
(MDM) for a textbook on medical statistics is not an easy task. I could simply
write about the tools of EBM and MDM, which I shall do. However, this would
not do justice to a concept that has swept over the practice and changed the
culture of medicine since the early 1990s. What is EBM? Is it simply a repack-
aging of previously elucidated skill sets that formerly belonged to the realm of
epidemiology? Is it simply the application of a hierarchy of study designs to rank
the strength of results of those studies? Does it delineate the boundaries of the
practice of medicine through the application of practice guidelines and clinical
prediction rules? I will discuss the definitions of EBM and its history and then
present some of the tools that are commonly used by EBM practitioners. I will
then give a brief introduction to the field of MDM.

1. The definition and history of evidence based medicine

There are three main goals for physicians. The most obvious is to bring the best
information from medical research (and some would argue, medical technology)
to the patient’s bedside. The second goal is to improve the health of the public
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through control of epidemic diseases (whether caused by microorganisms or en-
vironmental contaminants). Finally, the physician is charged with comforting the
patient and their immediate social group in times of illness. Evidence-based
medicine (EBM) has taken all of these physician roles and asked us to make them
scientific. According to the on-line dictionary, Wikipedia, ‘‘EBM is a medical
movement based upon the application of the scientific method to medical
practice, recognizing that many long-established medical traditions are not yet
subjected to adequate scientific scrutiny.’’ (http://en.wikipedia.org/wiki/Evidence-
based_medicine) According to the Centre for Evidence-Based Medicine, EBM
‘‘is the conscientious, explicit and judicious use of current best evidence in making
decisions about the care of individual patients. The practice of evidence-based
medicine means integrating individual clinical expertise with the best available
external clinical evidence from systematic research.’’ The centre also defines
Evidence-Based Health Care as an extension of EBM ‘‘to all professions asso-
ciated with health care, including purchasing and management’’. (http://
www.cebm.net) The bottom line is that EBM is the application of the scientific
method to medicine.

Physicians must make the correct diagnosis and choose the most appropriate
treatment to return the patient to health or reduce the burden of their illness. This
must be done under conditions that can only be described as extremely uncertain.
There are an increasing number of sources of information that physicians and for
that matter, patients, can access. The physician should want to find the most
effective way to access current information from the medical literature and be
able to critically evaluate this information. The scope and content of EBM is very
complex and I will begin my discussion with a brief historical overview. Those
readers interested in more detail about the history of EBM are referred to the
excellent website at the James Lind Library (http://www.jameslindlibrary.org/
index.html) and recent book by Jeanne Daly (Daly, 2005).

According to some, the elements of Evidence Based Medicine go back to the
bible. In the Book of Daniel there is a description of a trial of diet in which
the participants (Daniel’s friends) were randomized to eat only vegetables or the
king’s food. Hippocrates often spoke about the need for the physician to observe
his patient and to only perform those actions that could be helpful. His aphorism
‘first do no harm’ implies that the physician must be able to distinguish helpful
from potentially harmful therapies. A brief discussion of the modern history of
EBM will help to put this topic into perspective (Daly, 2005, Trohler, 2000).

The modern origins of EBM go back to the eighteenth century, when George
Forsythe, a British physician first demanded that the medical profession provide
better evidence for their therapies. Captain James Lind, a British naval surgeon
performed the first ‘‘modern’’ randomized clinical trial on a dozen seamen with
scurvy in a non-blinded but randomized manner. Each pair got a different ex-
perimental treatment, but were treated the same in all other respects. Even though
the results very clearly showed that citrus was vastly superior to the other treat-
ments, the fact that citrus cured scurvy didn’t conform to the theory of scurvy
prevalent at the time. It took another fifty years before citrus became standard
issue for the Royal Navy. A French physician and statistician, Pierre Charles
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Alexandre Louis was the first to apply the new science of statistics to show that a
medical therapy was ineffective. In this case, he found that bloodletting was
unlikely to benefit patients with typhoid fever (Trohler, 2000).

The most recent history of EBM can be traced to a 1947 editorial in the Lancet
by Austin Bradford Hill in which he demanded that physicians study statistics
and use statistical methods to evaluate their practice of medicine. (Hill, 1947) At
this same time, John Paul in the USA coined the term, ‘clinical epidemiology’.
(Paul, 1966) However, neither concept was accepted by mainstream physicians at
the time and languished in obscurity for another fifty years. The first modern
randomized clinical trial was done in 1948 by the Medical Research Council of
the National Health Service in the United Kingdom. It showed that streptomycin
was beneficial for curing tuberculosis. (Medical Research Council, 1948) A sub-
sequent review of perinatal interventions done in 1986 by Iain Chalmer’s group at
Oxford was the first modern systematic review placed on a computerized data-
base. This led to the formation of the Cochrane Collaboration, named for Archie
Cochrane, a British General Practitioner and epidemiologist who called attention
to the need to develop large databases of studies so that bias could be eliminated
from medical studies. The Cochrane Collaboration, founded in 1993, is currently
composed of over six thousand people in sixty countries and has created over one
thousand reviews. Cochrane work groups, linked electronically through the
Internet all over the world are responsible for searching and reporting on the
results of clinical trials and combining the results of those trials, wherever
possible, into a single meta-analytic systematic review. There are over thirty
thousand trials entered into the Cochrane Controlled Trials Registry (http://
www.cochrane.org/index0.htm).

From the 1950s to the 1970s there was a rich development and debate into the
nature of EBM in modern medicine. Dr. Alvan Feinstein differentiated the sci-
ence of clinical epidemiology as distinct from the common public health definition
of epidemiology. His work served as the basis for the statistical revolution in
medicine that began in the 1960s. (Feinstein, 1967) Research by John Wennberg
in the 1970s demonstrated a large degree of variation in the health care provided
to populations living in a relatively small geographical area. (Wennberg and
Gittelsohn, 1973) This time period also saw an explosion in the number of med-
ical research articles published. Health outcomes and process research done
at McMaster University led the way for dissemination of these subjects. The
development of a unique curriculum at McMasters incorporated the new sci-
ence of Clinical Epidemiology into the medical school curriculum and research
institutes.

The new science of clinical epidemiology has become the vehicle for practicing
physicians to learn the principles of critical appraisal of studies about their
patients. EBM became the watch word for the explicit application of the results of
research published in the medical literature to improve patient care. Is EBM the
medical profession looking for a short-cut to find out what the best studies are for
their patients? Has EBM become a substitute for the critical thinking skills that
need to be practiced by all physicians? Feinstein believed that this dangerous
direction could easily become the road taken by evidence based practitioners. He
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defined the role of clinical epidemiology as making physicians thought processes
more transparent and explicit and improving the critical thinking required for
modern scientific medical practice.

What began as a way of channeling the scientific method into the daily practice
of medicine became a world wide movement that would redefine medical care.
(Evidence-Based Medicine Working Group, 1992) Yet, health care workers are
still not in agreement as to what proficiencies define EBM. If EBM is seen as a
tool to improve the ability of any health care worker to become a better and more
critical thinker, we can define those elements that must be taught. Through the
1990s, there has been an explosion in courses teaching physicians how to become
more intelligent consumers of the medical literature through the use of EBM and
statistical methods in medical decision making.

EBM has been said to lack the qualities of being the base or foundation
principle for medicine (Upshur, 2002). Those who hold this philosophy look more
at the specific tasks that were made part of this new paradigm of practice. I would
propose that EBM is really a surrogate for critical thinking, which is the base of
medicine as postulated by Feinstein. EBM can teach the application of critical
thinking to all health care workers. It encompasses clinical epidemiology, research
methodology, narrative based medicine, ethics, public health, health policy, social
and community medicine and population medicine. EBM bridges the care for the
individual with that of populations.

2. Sources and levels of evidence

With the rise of EBM, various groups have developed ways to package evidence to
make it more useful to individual practitioners. This is the output of critical eval-
uation of clinical research studies. Physicians can access these pre-digested ‘‘EBM
reviews’’ through various on-line databases around the world. A major center for
the dissemination of these sources of best evidence has been in the United Kingdom
through various contracts with the National Health Service. The Centre for
Evidence BasedMedicine of OxfordUniversity is the home of several of these EBM
sources. Bandolier is a (slightly irregular) biweekly-published summary of recent
interesting evidence evaluated by the centre and found at http://www.jr2.ox.ac.uk/
bandolier/ that is free to all. The centre has various other easily accessible and
also free features related to the practice of EBM located on its main site found at
http://cebm.jr2.ox.ac.uk. Every six months the British Medical Journal publishes
an updated Clinical Evidence, a summary of critically evaluated topics in thera-
peutics. These are regularly updated and available on line.

There are also many commonly used forms of pre-prepared critical appraisals
of various clinical questions. The Journal Club Bank (JCB) is the format for the
Evidence Based Interest Group of the American College of Physicians (ACP) and
the Evidence Based Emergency Medicine website (http://ebem.org/index.php).
Critically Appraised Topics (CATs) are pre-appraised summaries of research
studies that can be found on the Evidence Based Medicine Resource Center of the
New York Academy of Medicine (http://www.ebmny.org/). Other organizations
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are beginning to use this format to disseminate critical reviews on the web. The
CAT format developed by the Centre for Evidence Based Medicine is being made
available on CD-ROM for use outside the centre. The University of Sheffield
(UK) has an excellent resource listing most EBM related websites at
www.shef.ac.uk/scharr/ir/netting/.

Disease Oriented Evidence (DOE) is not always the same as ‘‘Patient Oriented
Evidence that Matters’’ (POEMs), which can be found on the InfoPOEMs web-
site (www.infopoems.com). The DOEs and POEM format was developed by
family physicians for the American Academy of Family Practice. A DOE suggests
that there is a change in the disease status when a particular intervention is
applied. However, this disease specific outcome may not make a difference to the
outcome for an individual patient. For example, it is clear that certain drugs such
as statins lower cholesterol. However, it is not necessarily true that the same drugs
reduce mortality or improve life. Studies for some of these statin drugs have
shown this correlation and therefore are POEMS. Another example is the PSA
test for detecting prostate cancer. There is no question that the test can detect
prostate cancer most of the time at an earlier stage than would be detected by a
physician examination (positive DOE). However, it has yet to be shown that early
detection using the PSA results in longer life span or an improved quality of life
(negative POEM).

Attempting to evaluate the strength of evidence for a particular clinical query
has led to several methods of rank-ordering different types of studies. These are
ranked from most to least important in having the ability to determine causation
for the question at hand. The Centre for Evidence Based Medicine of the
National Health Service in the United Kingdom developed the most commonly
used scheme of categorization. Their specific grading schemes vary depending on
the nature of the clinical query and are listed in Table 1. (http://www.cebm.net)

Table 1

Levels of Evidence for studies of therapy

A1a. Systematic review of homogeneous randomized clinical trials (RCT)

A1b. Individual RCT with narrow confidence limits (usually seen in studies with large number of

subjects)

A1c. All or none case series. In this case, there is a 100% change from previous experience. Either some

patients live with the new treatment where they all died before or all patients now survive with the

new treatment where some died before.

B2a. Systematic review of homogeneous cohort studies.

B2b. Individual well-done cohort study with good follow up or poorly done RCT with o80% follow

up.

B2c. Cross sectional study

B3a. Systematic review of homogeneous case control studies.

B3b. Individual case control study.

C4. Case series or poor quality case control or cohort study

D5. Expert opinion without any critically appraised evidence. This includes opinion based upon bench

research, physiological principles, or ‘first principles’ From: Ball C, Sackett D, Phillips, B, et. al.

Levels of evidence and grades of recommendations. Centre for Evidence Based Medicine, http://

cebm.jr2.ox.ac.uk/docs/levels.html, 1999. Last revised Nov. 18, 1999.
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These have been challenged as being too doctrinaire and should be used in a
flexible manner, without forgetting to be critical of each study evaluated, regard-
less of study design. There is some concern among EBM scholars that the re-
search agenda has been hijacked by proprietary interests (pharmaceutical and
technology companies). The studies sponsored by these groups are frequently
high quality RCTs. However, they are also very likely to have built in biases that
are designed to achieve results favorable to the sponsoring organization.

3. The five stage process of EBM

Because of the phenomenal growth in the amount of medical research informa-
tion available, it is now more important that physicians have the tools to assess
this information in the medical literature. Breakthroughs in information systems
technology including Internet access to MEDLINE via Pub Med and other
medical databases allow physician to obtain the most current information to
answer educational needs more quickly and easily than in the past. EBM has been
defined as a five step process. (Sackett et al., 2000) This is outlined in Table 2.

The first step in the EBM process is to recognize an educational need based on
a real or hypothetical patient. The next step is to develop a clinical question that
maximizes the likelihood of finding good quality evidence through a search of the
literature. This is best done using a four part PICO question, which includes the
following elements; Patient or Population (P), Intervention or Exposure to a risk
factor (I), Comparator (C), and Outcome (O). Some schemes for searching add
the dimension of Time (T) to the question. It is beyond the scope of this chapter
to present the details for searching the medical literature for the sources most
likely to give the answer to the clinical question (Mayer, 2004).

The next step is critical appraisal of the medical literature. This is the heart of
EBM. The evaluation of the medical literature attempts to identify potential
shortcomings of a research study. Is the study valid or are there sources of bias?
The essence of the critical appraisal part of the EBM process is asking if there are
other reasonable explanations for the results of the study. Finally, the reader must
draw inferences and apply the results of the study to the care of their individual
patient. While many physicians consider this to be a difficult challenge, it is the
way that EBM is integrated into actual practice. The complete understanding of

Table 2

Five step EBM process (often with a sixth added step)

First you must recognize an educational need.

1. Ask a question using the PICO(T) format

2. Access studies that may answer that question (through appropriate searching)

3. Acquire the study (studies) that are most likely to answer the question.

4. Appraise the studies critically looking for validity, impact and applicability

5. Apply the results to your patient (if possible)

There is a sixth step, which is often considered part of Quality Assurance: Assess the outcome of that

application
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sophisticated statistical testing is less important than the application of common
sense and skeptical evaluation of what is read (Woolf, 1999).

When using this evidence, the practitioner must keep in mind that the results of
clinical studies are for the average patient and may not apply to all patients. The
individual practitioner must determine how to use the evidence in an individual
patient and whether their patient is similar enough to the patients in a study.
Issues of patient preferences must weigh heavily in their decision making. These
can be quantified and will be discussed later.

The medical literature gives a rational basis for care provided to patients.
Evidence-Based medical decisions maximize the probability that the patient has a
good outcome and that this is done in the most efficient way. While clinicians do
not have to be biostatistics experts in order to critically evaluate scientific papers,
an understanding of research designs and basic statistical methods will allow the
physician to critically evaluate most published clinical research and avoid most
errors of interpretation. Evaluation of the methodology of a research study is the
most important part of the critical evaluation of the literature process.

The first step in critically understanding study results is to determine the
research study design. Understanding this will help identify most of the problems
that can potentially influence the results of a poorly done research study. An
understanding of the nature of causation will help the reader determine the
strength of the evidence. To determine causation for diseases with multifactorial
causes requires showing that the cause and effect are associated with each other
more likely than by chance alone, that the cause precedes the effect, and that
changing the cause changes the effect. These three conditions are known as con-
tributory cause and all three are required to prove causation for a multifactorial
disease.

4. The hierarchy of evidence: study design and minimizing bias

Research is done to answer questions about populations by studying samples
of individuals who are part of a given population. Individuals in a population
have variable characteristics that might affect outcomes of research. The design
of a study will alert the critical reader to potential problems in the conclusions of
a study.

The best research design is one that minimizes the chance of bias. It is the
responsibility of the researcher to minimize bias in a study. Sometimes this cannot
easily be done making it the responsibility of the reader to determine if biases that
exist in a study, whether real or potential are enough to affect the outcome. The
end result may not be compatible with the research hypothesis when there is a
large degree of bias in the conditions of the research. Different research designs
have different propensities for bias.

The researcher has the responsibility to ensure that as many of the population
characteristics as possible are represented in the study sample. In most cases, the
study sample is divided into two groups to test the hypothesis that the two groups
are different in some important characteristic. If the two groups are not
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equivalent with regard to their baseline characteristics, confounding of the results
can occur, leading to an incorrect conclusion. It might be erroneously concluded
that a difference in the desired outcome between the groups occurred because of a
presumed causative factor when in reality it was produced by a difference in the
pre-study characteristics of the two groups. When the groups being studied are
different enough that the results could be affected, bias is present.

The hierarchy of clinical research design is listed in Table 1. The highest type of
study in this hierarchy is the Randomized Clinical Trial (RCT) because it is most
likely to be able to prove causation, and least likely to contain biases that can lead
to incorrect and misleading results.

In RCTs the study subjects are assigned to the treatment (exposed) or com-
parison (placebo or not exposed) group on the basis of chance. The researcher
uses some technique that assures a random placement of each participant in one
group or the other. This maximizes the probability that the two groups are equal
with respect to characteristics that could affect the outcome under consideration
at the outset of the study. If a large number of baseline characteristics could affect
the outcome, more study subjects will be needed to insure that adequate
randomization will result in two similar groups. RCTs generally identify the
characteristics of the two study groups at the beginning of the study. They are the
best design to minimize bias but are usually costly in money and time needed to
do the study. If the outcome being studied is rare, an exceptionally large number
of study subjects may be necessary to find any difference between the two groups,
making this an unrealistic study design.

In a cohort study, as in an RCT, the subjects are identified on the basis
of exposure or risk. However, in a cohort study the subjects are chosen either
because they have been exposed or chose to expose themselves to the risk. For
example, a researcher determining whether cigarette smoking causes brain
tumors could take a sample of smokers and nonsmokers and follow them for a
period of time to determine the numbers in each group who develop brain
tumors. Since the subjects were not assigned to the exposed or not exposed
groups, it is possible on the basis of chance alone that the two groups are not
similar in all other important characteristics. Men who smoke may have a higher
degree of exposure to other toxins than nonsmokers and these could be
contributory causes of brain cancer. This is known as a confounding variable and
is a relatively commonly found occurrence in cohort studies. Cohort studies
usually cost less than RCTs and may allow for the study of issues for which ran-
domization would be unethical or very difficult to perform with truly informed
subjects.

In RCTs and cohort studies, the subjects are identified on the basis of risk or
exposure and the incidence (rate of new outcomes over time) can be calculated.
When incidence can be calculated one can calculate the Relative Risk, the
incidence of the outcome in the exposed divided by that in the unexposed. This
represents the relative benefit to the patient of using a therapy or modifying
a risky behavior. If our researchers found that over a 20-year period, 4% of
cigarette smokers and 1% of nonsmokers developed brain tumors, the Relative
Risk of developing a brain tumor would be 4. Patients could be told that their risk
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of developing a brain tumor is four times greater if they smoke. Multivariate
analysis can be used to minimize the effect of confounding variables, but must be
done cautiously (Concato et al., 1993).

A more useful statistic is the Absolute Risk Increase or Reduction (ARI or
ARR). This is simply the difference between the outcome rates in the exper-
imental (exposed) or control (comparison or non-exposed) groups. This can then
be used to calculate the Number Needed to Treat (NNT) or Number Needed to
Harm (NNH). These represent the number of patients that must be treated (or
exposed) in order for one additional patient to get benefit or be harmed.

Unlike RCTs and cohort studies, in a case-control study the subjects are
identified by the presence or absence of the outcome. Researchers start with a
group of individuals who have the outcome of interest (cases of disease) and
match them to a group without the outcome that is similar to the case group in
every way other than the characteristic under study. A researcher could study a
group of 20 patients with brain tumors and 20 of similar age and gender without
brain tumors to look at the proportion of cigarette smokers in each group. Be-
cause subjects are identified based on their outcome, incidence cannot be calcu-
lated. The Odds Ratio is used as a proxy for Relative Risk.

The Odds Ratio is the odds that a subject with the outcome has been exposed
to the risk factor divided by the odds that a subject without the outcome has been
exposed. This ratio is a good estimate of the Relative Risk when the outcome of
interest is rare (Mayer, 2004). In the case-control study of 20 individuals with
brain tumor, if 15 were smokers (exposed) and 5 were not, the odds of someone
with a brain tumor being a smoker is 15 to 5 or 3. If among the 20 individuals
without brain tumors, 4 were smokers and 16 were not, their odds of being a
smoker are 4 to 16 or 0.25. The odds ratio, the ratio of the two odds is 3 divided
by 0.025 or 12. The odds of a patient having the exposure is 12 times more if they
have a brain tumor and for all practical purposes, this is equivalent to a Relative
Risk of 12. Bias is more difficult to avoid in a case-control study but, the ad-
vantages are that a case-control study can be completed more quickly than a RCT
or cohort study and is generally less costly. It is especially useful to study out-
comes that are rare or uncommon.

In a case series, the author describes the experience of a set of individuals
with a given exposure and generally describes their attainment of a certain out-
come. A surgeon might describe her experience using a new operative technique
for brain tumors and show the frequency with which the patients were cured or
reached some defined outcome. The reader would like to know if the new pro-
cedure was better than existing operative technique. But without a comparison
group of patients receiving the standard or no therapy, questions regarding the
value of this new procedure cannot be answered. Case series are valuable for
generating research hypotheses or suggesting necessary studies to the research
community.

Cross-sectional studies measure the relationship between variables at one point
in time. The frequency of a variable in a sample at a given point in time is its
prevalence. They cannot prove the temporal relationship between cause and effect
and are used to generate new research hypotheses.
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5. Assessing the significance or impact of study results:

Statistical significance and confidence intervals

The impact of a study tells the reader if there is likely to be an association between
the outcomes of the two groups (treatment and comparator or exposed and non-
exposed). Even with the best attention to study design it is possible that the study
can get the wrong answer. It may demonstrate a difference between groups that is
not really present in the larger population or no difference when one really exists
(but was simply not found). Before beginning to test a hypothesis the researcher
decides what level of uncertainty they will accept to indicate that a positive re-
search finding was unlikely to be due to chance. This statistic, called alpha is
generally set to be equal to 0.05. The findings of the study would be rejected as
being indicative of a true difference in the population when the calculated prob-
ability of a chance association is greater than 5%. This is called the probability of
making a Type I error and concluding that a difference found actually existed
when in reality there is no difference.

Readers of the medical literature should be aware of those factors that can
cause a Type I error in a study. Multiple comparisons done between two groups
of patients are known as ‘‘dredging the data’’. It becomes more and more likely
that one or more differences between groups that are found to be statistically
significant actually occurred on the basis of chance, when in fact no such differ-
ence exists in the larger population. Composite outcomes can also cause a Type I
error when several outcomes are put together creating a single composite
outcome. This is more likely to be different between the two groups. The problem
is that most of the time, the different outcomes do not have the same values (e.g.,
death, myocardial infarction and repeat admission for chest pain). Subgroup and
post hoc analysis of the data are other ways in which a Type I error can occur
(Mayer, 2004).

To protect against concluding that if no difference is found between the two
groups there is truly no difference, the researcher sets another statistic known as
beta. This is the probability of concluding that there is no difference between the
findings of the two groups being studied when in fact there is. This is known as
making a Type II error and beta is the probability of making that error. The beta
statistic is usually set at 0.20. The power of the study is one minus b, which is the
probability of finding a difference if one is really there. Power increases if
there are more study subjects or a larger difference is considered to be clinically
important. A smaller number of research subjects are needed to find a larger
difference in outcomes.

Another way to assess how close the study results are to the actual estimate
of a parameter is through calculating confidence intervals. These tell how much
the estimate of any outcome may vary if the study is repeated with different
samples from the same population. Usually a 95% confidence interval is cal-
culated giving the range within which the result of the study would occur 95%
of the time if the study was repeated. This can help the physician and
patient make an informed decision when presenting estimates from sample
populations.
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6. Meta-analysis and systematic reviews

In the past, review articles summarized the literature on a topic in a subjective
manner often including significant author biases. Systematic Reviews critically
combine multiple studies that answer the same research question. The results of
multiple studies can be combined statistically in a meta-analysis that ‘‘transcends’’
simple analysis. These can be done to reconcile studies with different results.
When there are multiple negative studies a meta-analysis may uncover Type II
errors due to an inadequate sample size of one or more of the studies to be
combined. Meta-analysis can also help to identify a study that produced a Type I
error or a study that has outlier results as part of a collection of many other
studies. Meta-analyses can also be used to provide a rational synthesis of the
existing literature on a given topic. By searching for evidence using a meta-
analysis, the clinician can save hours of analysis to answer common problems.

The performance of a meta-analysis requires several steps and the critical
reader of the literature should be able to determine their validity. There should be
an exhaustive search for studies including not only Medline but also unpublished
studies and dissertations. The studies included in the analysis should be critically
reviewed and graded using a standardized grading scheme. The statistical results
should be compared and presence of heterogeneity determined. If the studies are
heterogeneous, they cannot be directly compared. However, this process may
uncover one outlier among the studies and the reasons for this usually lie in the
methodology of the studies. Finally, the summary statistics can be calculated and
conclusions drawn about the bottom line. (Olson, 1994, Sacks et al., 1987) A
technique known as cumulative meta-analysis can be done whenever a new study
is reported on a given topic. The analysis will then determine when in time the
intervention first showed statistically significant results (Lau et al., 1995).

7. The value of clinical information and assessing the usefulness of a diagnostic test

To accomplish the primary duty of the physician to help the patient return to
health and have minimal suffering requires accurate diagnosis. Part of this duty is
also to be a good steward of society’s resources. A physician must always try to
meet this duty using the least costly resource when faced with the possibility of
using different strategies.

The two components of the diagnostic decision-making process at the patient’s
bedside are gathering useful information to create and refine the differential
diagnosis and then sharing this information with the patient in a way that
facilitates informed decision making. The physician must be able to critically
assess the value of the information gathered to help their patient. However, while
some of this information appears to be of value, it may not discriminate among
diagnostic possibilities and be misleading. The patient’s preferences must be
added to the diagnostic process to assess the value of diagnostic information
(Wulff and Gotzsche, 2000).
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Two basic concepts that must be understood to judge the usefulness of a
diagnostic clinical maneuver or test are reliability and validity. Reliability means
that if a test is run more than once on the same specimen, the same result will
occur. Reliable tests are reproducible. If the test result depends on who is per-
forming it, interrater or interobserver reliability may suffer. Poor inter-rater
reliability as measured by the kappa (or equivalent) statistic should lead the
clinician to be cautious about using the result of the test in decision making. The
same problem exists if the result varies when the same person does the test on
the same specimen leading to poor intra-rater or intra-observer reliability. Test
results should be precise or vary little from each other and accurate or vary little
from the ‘‘true’’ value.

For diagnostic tests, validity is the test’s ability to truly discriminate between
patients with and without a given disease. Diagnostic tests are judged against a
‘‘gold standard’’ that conclusively defines the presence or absence of the disease.
The gold standard for bacteremia is a positive blood culture and for a malignant
tumor a tissue specimen containing malignant tumor cells. Figure 1 shows the
distribution of test results in patients with and without a disease. Extreme test
results can determine who has the disease and who does not. But, values near
the middle (around the cutoff point between normal and abnormal) will show
significant overlap for diseased and non-diseased individuals. Sensitivity and
specificity are the mathematical descriptions of this degree of overlap. In the past,
most studies of diagnostic tests reported the correlation between a diagnostic test
result and the presence or absence of disease. This is not helpful to the clinician
who needs to know the likelihood of the illness under consideration after
application of a given test.

Most clinical laboratories present the results of diagnostic tests as dichotomous
‘‘normal’’ or ‘‘abnormal’’ values on the basis of the Gaussian or normal (bell-
shaped) distribution. In this situation, 95% of all results lie within two standard

TN FN
FP

TP

Positive
Test

Test Cutoff

Negative
Test 

No Disease Diseased

Fig. 1. Theoretical distribution of diagnostic test values for two populations.
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deviations (SD) of the mean. This information is not very useful to the clinician
and sensitivity and specificity or likelihood ratios are a much more useful way to
describe diagnostic test results.

The sensitivity of a test is the percentage of patients with the disease who will
test positive. Also called the true positive rate (TPR) it is the ratio of subjects with
the disease and a positive test (true positives, TP) to all subjects with the disease as
shown in Figure 2. The specificity, also called the true negative rate (TNR)
measures the percentage of people without the disease who test negative. It is the
ratio of subjects without disease who test negative (true negatives, TN) to all
those who don’t have the disease.

The sensitivity and specificity are usually considered static characteristics of a
test. For the purposes of decision making these usually won’t change with the
prevalence of disease in the patient. However, most diseases have varying levels of
severity related to different stages of disease. This may lead a diagnostic test to
demonstrate spectrum bias. In these cases, the test is usually more sensitive in
patients with classical or severe disease and less sensitive in patients with mild or
early disease. A test with high sensitivity is preferred for readily treated diseases
with serious morbidity in order to minimize the number of missed cases (FN). The
test will then rule out disease if it is negative. A test with high specificity is
preferred for diseases that have minimal morbidity or in those for which there is
either no effective or risky treatment. The test will rule in disease if it is positive.
The critical reader of the medical literature will appreciate that published sen-
sitivity and specificity values are point estimates and should always be accom-
panied by 95% confidence intervals. If these values come from large studies with
sound methodology, the estimate will be more precise and accurate.

Knowing test sensitivity and specificity is not sufficient for the clinician at the
bedside who needs to know the probability that their patient has the disease if
the test is positive or negative. This probability is called the positive or negative
predictive value or the posttest or posterior probability of disease given a positive
or negative test. The Positive Predictive Value is the ratio of True Positive test
results to all positive tests results or the fraction of patients with positive tests who
really have the disease. The probability that a patient with a negative test result
does not have disease, the Negative Predictive Value, is the ratio of true negative

D+ (Diseased)

Test + T  + and D +
T + and D –

T – and D + T – and D –

Has disease Has no disease N
÷

÷

D– (No disease) 

Test –

Fig. 2. Diagnostic test characteristics.
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test results to all negative tests. One minus the Negative Predictive Value is called
the False Reassurance Rate as we are falsely reassuring patients who have a
negative test that they are disease free, when in fact they actually have the disease.

The predictive value of a test depends on three variables: the sensitivity,
specificity, and the prevalence of disease in the population from which the patient
comes. This pre-test prevalence is also referred to as the prior probability of
disease. The prior probability must be determined from the clinical presentation
of the patient or the baseline prevalence of the disease in the population. This is
where clinical experience enters into the picture. Experienced clinicians are better
able to recognize a pattern of disease in patients with atypical presentations.

Studies of diagnostic test results that only present predictive values are not
helpful unless the prevalence of disease is also presented. For example, the West-
ern blot analysis has a sensitivity and specificity of about 99% for human
immunodeficiency virus (HIV). In some populations of intravenous drug abusers,
the HIV prevalence can be as high as 33%. The positive predictive value is then
98% and the negative predictive value is 99.5%. (Table 3) However, if this test is
used to screen a very low-risk population with a prevalence of 1 in 10,000, the
positive predictive value falls to 1%. This means that there are 99 False Positives
for every True Positive and using this test to screen this population for HIV
would falsely label more than 99% of those with positive tests as having HIV.
This is called the False Alarm Rate.

A more direct way to calculate the posttest probability of disease is using
Bayes’ Theorem and the likelihood ratio (LR). The LR combines sensitivity and
specificity into one number and is a measure of the strength of a diagnostic test.
The LR of a positive test (LR+) is equal to the sensitivity divided by one minus
specificity. The LR of a negative test (LR-) is one minus sensitivity divided by the
specificity. Figure 2 illustrates this. Tests that have a positive LR greater than 10
or a negative LR less than 0.1 are considered strong tests. Those with LR+
between 2 and 10 and LR- between 0.1 and 0.5 are fair tests. Those with an LR+
less than 2 or an LR- of greater than 0.5 are almost worthless. Bayes’ Theorem
uses LRs to revise disease probabilities using the formula; pretest odds x
LR ¼ posttest odds. The explanation of Bayes theorem is beyond the scope of
this chapter. Bayes’ Theorem is daunting to most physicians because it uses odds
rather than probability. To convert the pretest probability to odds simply divide
the probability by one minus the probability. To convert odds to probability
divide the odds by the odds plus one. A nomogram is available to go from pretest
to posttest probability using the LR without going through the odds conversion

Table 3

Use of diagnostic test characteristics for HIV test

Prevalence Pretest odds Posttest odds Positive Predictive Value False Reassurance Rate

0.33 0.5 (0.5� 99) 49.5 (49.5/50.5) 0.98 0.5� 0.01 ¼ 0.005

0.0001 0.0001 0.0099 (or 0.01) 0.01 0.0001� 0.01 ¼ 0.000001

Sensitivity ¼ 0.99 and Specificity ¼ 0.99 LR+ ¼ 99 and LR� ¼ 0.01
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(Fagan, 1975). In the case of continuous test results, for example the peripheral
white blood cell count, the results can be broken into intervals. This preserves test
information that would be lost in reducing the test to one single normal or
abnormal cutoff. This will create multiple likelihood ratios (interval or iLRs) for
each interval of test results.

Receiver operating characteristic (ROC) curves are a way to compare two or
more tests or to select the best single cutoff for one diagnostic test. The ROC
curve plots sensitivity on the y axis against one minus specificity, or the False
Positive Rate on the x axis for all possible test cutoffs. A perfect test is at the 0,1
point in the upper left and represents 100% sensitivity and specificity and there
are no False Positives or False Negatives. The 0,0 point at the lower left cor-
responds to 0% sensitivity and 100% specificity and here there are no False
Positives and no True Positives. When looking for the best cutoff point or com-
paring two tests represented by curves that do not overlap, the best single cutoff
point or test result is the one closest to the 0,1 point.

The area under the ROC curve (AUC) gives a mathematical description of the
likelihood that one can identify a patient with the disease using that test alone.
The diagonal line drawn from the lower left to the upper right corner of the ROC
curve has an AUC of 0.5 meaning that the probability of identifying a diseased
patient from one without the disease is 50% or no better than a coin toss. The
AUC is useful for evaluating two tests whose ROC curves cross or a single test to
determine its usefulness in general. Ideally an AUC should be as near to one as
possible. However, before deciding which test to use the clinician must assess the
trade-off of sensitivity for specificity for each test and cutoff point. The clinician
must balance the harm of missing a patient with the disease and the risk of
treating a patient without the disease.

8. Expected values decision making and the threshold approach to diagnostic testing

The most difficult part of medical decision making is combining the probability
of an event with its value. This has been done ‘by the seat of their pants’ by
physicians for generations. However, there is now a more advanced method of
determining the optimal decision in medicine. This is called Expected Values
Decision Making. It uses the concept of instrumental rationality to determine the
optimal course of action based on the combination of probability of an event and
the utility or value of the outcome. Instrumental rationality begins by using a
schematic decision tree that shows all the possible actions that would be taken for
a particular therapeutic or diagnostic decision. The starting point is a place where
the physician must make a decision. From here, each outcome of the decision is
followed to its logical conclusion. For example, if one choice is surgery, the
outcomes could be death during the operation, complete cure, or some interme-
diate outcome such as relief from symptoms but shortened life. There is a prob-
ability and a value, or utility associated with each of these outcomes. After the tree
has been constructed, the probability is multiplied by the utility for each branch
until you get back to the starting point. A final expected value is obtained for each
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decision and the one with the highest value would be the preferred decision.
Researchers should perform a sensitivity analysis for the tree, incorporating
plausible ranges of values for probability and utility for each of the decisions. If
the final outcomes are pretty much the same for these different values, the tree is
said to be ‘robust’ and the results considered reasonable (Sox et al., 1988).

Pauker and Kassirer (Pauker 1980) introduced the concept of the threshold
approach to diagnostic testing to help clinicians decide on whether to test or not.
This method should maximize the effectiveness of diagnostic testing and limit
unnecessary testing. Two pretest probabilities or thresholds are defined. If the
clinician judges that the prior probability of disease is below the testing threshold
then the patient is unlikely to have the disorder. A diagnostic test would not raise
the probability sufficiently to change the decision not to treat for the disease.
If the prior probability is below this level, the test should not be done. If the
clinician judges the prior probability of disease to be above the treatment thresh-
old then the patient most likely has the disorder. A diagnostic test would not
lower the probability enough to change the decision to treat for the disease. If the
prior probability is above this level the patient should be treated and the test
should not be done. For prior probabilities between these two thresholds, the
patient should be tested and treatment based on the test result. These thresholds
are determined by balancing the benefits and risks of appropriate therapy, the
risks of inappropriate therapy, the risks of the test, and the test sensitivity and
specificity. They can be determined using formal decision analysis the details of
which are beyond the scope of this chapter.

9. Summary

Evidence Based Medicine is a worldwide movement aimed at making medicine
and health care more transparent. It has evolved from an amalgamation of
biostatistics, epidemiology, research methodology and critical thinking to become
a tool that is useful for physicians to understand the content of the medical
literature. Understanding the principles of EBM is required for effective medical
decision making. The methods of critical appraisal taught by EBM can be learned
by all health care workers and be used to improve the way that uncertainty is
handled in the health care system.

10. Basic principles

1. The clinician can reduce the risk of misinterpreting research studies by un-
derstanding basic research design.

2. The randomized controlled trial is the strongest design in clinical research
because it minimizes the chance of bias.

3. In the randomized controlled trial and the cohort study, the subjects are
identified on basis of risk or exposure. Case control studies begin with the
outcome and are useful to study rare diseases.

Evidence based medicine and medical decision making 727



4. Type I errors occur when a statistically significant difference is found when in
fact the two groups are not different. Composite and multiple outcomes and
sub group or post hoc analyses are a source of Type I errors.

5. Type II errors can occur when the study does not have enough subjects and
the difference found is not statistically significance.

6. Clinicians can maximize the benefit of diagnostic testing by explicitly con-
sidering diagnostic test characteristics (reliability and validity).

7. Sensitivity and specificity are fixed properties of a diagnostic test and are,
independent of the prevalence of disease when gold standards are consistent.

8. Predictive values are based on the sensitivity, specificity, and prevalence of the
disease in the population of interest.

9. LRs are a summary of sensitivity and specificity and a nomogram can be used
to determine posttest probability from the pretest probability and the LR.

10. ROC curves are useful in comparing two or more diagnostic tests.
11. Expected Values Decision Making is a useful tool in quantifying the outcomes

for several choices in the medical decision making process.
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Abstract

Researchers frequently use multiple informants to predict a single outcome and

compare the marginal relationships of each informant with response; a common

application is diagnostic testing where the goal is to determine which diagnostic

test best predicts disease. We review generalized estimating equations (GEE)

for marginal regression models using continuous multiple source predictors

with a continuous outcome and introduce a new maximum likelihood (ML)

approach. ML and GEE yield the same regression coefficient estimates when

(1) allowing different regression coefficients for each informant report,

(2) assuming equal variance for the two multiple informant reports and

constraining the marginal regression coefficients to be equal and (3) including

non-multiple informant covariates with cases 1 or 2. With the ML technique,

likelihood ratio tests (LRTs) can be formed to easily compare regression

models and a broader array of models can be fit. Using asymptotic relative

efficiency (ARE), we show that a constrained model assuming equal variance is

more efficient than an unconstrained model. We apply the methods to a study

investigating the effect of vigorous exercise on body mass index (BMI) with

measures of exercise collected on two informants: children and their mothers.

1. Introduction

Multiple informant data refer to information obtained from different individuals
or sources used to measure a single construct. We use the term multiple informant
data to describe data obtained from eithermultiple sources ormultiple measures on
a commensurate scale. Typically, researchers are interested in the relationship of
each multiple informant predictor with response (Horton et al., 1999; Horton and
Fitzmaurice, 2004). For example, Field et al. (2003) conducted a study to estimate
the marginal correlation of different measures of body mass index (BMI) with a
gold standard measurement of percentage body fat; the aim of the study is to find
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the best measure of BMI. Pepe et al. (1999) compared results from different in-
formants to predict adult obesity from childhood obesity. We consider a validation
study by Hernández et al. (1999) used to design a larger study of the relationship
between physical activity/inactivity and obesity in children. Physical activity and
inactivity in the validation study are reported by multiple informants: children and
their mothers, but feasibility issues dictate that only children’s responses will be
used in the main study. Our goal is to compare the relationship of child’s report of
physical activity and BMI with the relationship of mother’s report of physical
activity and BMI in the context of study design. In some settings, if both inform-
ants yield similar results, it may be useful to obtain a more efficient and robust
estimate of the effect by fitting a model with common slopes. For instance, Horton
et al. (2001) predict mortality in a 16-year follow-up period of Stirling County
Study subjects from multiple informants (self and physician report) about psychi-
atric disorders; their final model has a constrained estimate of the association
between diagnosis and overall mortality (controlling for age and gender).

For simplicity, we define the response as Y and the two reports of physical
activity measured by informants as X1 and X2, though extensions to more than
two informants can be accommodated. In general, multiple informants can be
used either as outcomes or as predictors in a standard regression model. Multiple
informant outcomes have been considered by Fitzmaurice et al. (1995, 1996),
Kuo et al. (2000) and Goldwasser and Fitzmaurice (2001). As described above, we
instead consider the case where the multiple informants are predictors.

Over the years, researchers have developed many ‘ad hoc’ techniques to anal-
yze multiple informants as predictors. One analysis method is to pool reports
from the multiple informants (Offord et al., 1996). However, this method does not
take into account the potential differences between the informants. Investigators
also proposed models predicting E(Y|X1,X2) where all multiple informants are in
the model simultaneously (Horton and Fitzmaurice, 2004). In this case, the re-
gression coefficient for a given multiple informant covariate is conditional on all
other multiple informants in the model. However, as in the Field et al. (2003)
study, the objective is not to best predict percentage body fat using all multiple
informants, but rather to find the single measure of BMI that best predicts body
fat. Thus, rather than fitting a model with all the multiple informants where we
obtain a regression coefficient for each covariate that is conditional on the others
in the model, we model the univariate relationship between percentage body fat
and one BMI measure by predicting E(Y|X1) and also model the relationship
between percentage body fat and another BMI measure by predicting E(Y|X2)
(Horton and Fitzmaurice, 2004). Performing separate analyses such as this
(Gould et al., 1996) has been done, but because measures from the different
informants are not independent of one another, separate analyses are not ame-
nable to comparing coefficients from the two models and it is not clear how to
interpret a combined analysis.

Pepe et al. (1999) and Horton et al. (1999) independently developed a non-
standard application of generalized estimating equations (GEE) (Liang and
Zeger, 1986; Zeger and Liang, 1986) in regression analyses with multiple inform-
ants as predictors. The technique provides marginal estimates of the multiple
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informants while appropriately controlling for the outcomes being the same.
Using GEE requires fewer assumptions than maximum likelihood (ML); in par-
ticular, it only assumes that the model for the mean is correctly specified. We
review this approach in Section 2.

This paper describes a ML approach for analysis of multiple informants as
predictors and introduces constrained models that can increase efficiency. For
simplicity, only the complete-data case is considered here, although additional
research has been performed considering missingness (Litman et al., 2007). ML
has been previously used for analysis of multiple informants as covariates when
the responses and multiple informants are discrete (O’Brien et al., 2006). This
research showed no loss of efficiency associated with using GEE compared with
ML when there are no shared parameters. With a common parameter for the
association between outcome and two multiple informant predictors, efficiency
loss is modest with the minimum asymptotic relative efficiency (ARE) over a
range of conditional parameter values being approximately 0.90 (O’Brien et al.,
2006). Our paper instead considers a continuous outcome and continuous pre-
dictors. For simplicity, we consider a model from the Hernández et al. (1999)
dataset with one univariate response and one predictor measured by two
informants. Section 3 describes our new ML technique. Simulations to compare
GEE and ML variance estimates are presented in Section 4 and efficiency of a
constrained model is discussed in Section 5. Application of ML to the Hernández
et al. (1999) study is presented in Section 6.

2. Review of the generalized estimating equations approach

We briefly review the method introduced by Horton et al. (1999) and Pepe et al.
(1999) that was originally presented for a binary response using a logit link func-
tion, but here we assume a linear model. We define an outcome Y and K multiple
source predictors X1,y,Xk. The GEE approach models the marginal associations
betweenY andXk, defined as E(Y|Xk) for k ¼ 1,y, K. In the simplest case with no
covariates and distinct parameters for each informant, the model fit is

EðYjXkÞ ¼ ak þ bkXk for k ¼ 1; . . . ;K, (1)

where ak and bk are parameters in the kth regression. Defining
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the GEE equations assuming an identity link, constant variance and a working
independence correlation matrix simplify to the ordinary least squares (OLS)
equations:Xn

i¼1

XT
i ð
~Yi�XibÞ ¼ 0. (2)

Note that each vector of responses, ~Yi; consists of the same response K times (Pepe
et al., 1999). Also, the data records from each subject are treated as independent
clusters. We assume an independence working correlation matrix as have previous
papers developing GEE (Horton et al., 1999; Pepe et al., 1999); we show later that
the use of this matrix is optimal under the likelihoodmodel. Solving Eq. (2), we find
that b̂¼ Sn

i¼1ðX
T
i XiÞ

�1XT
i
~Yi where âk and b̂k are the intercept and slope estimates

from a univariate regression model with response Y and a single predictor Xk. A
strength of the GEE approach is that it provides a joint variance–covariance matrix
for the 2K univariate parameter estimates (Pepe et al., 1999).

Estimates of varðb̂Þ can be derived using empirical or model-based variance
formulas. The empirical or ‘sandwich’ variance estimator has traditionally been
used because it allows the variance of the response to depend on the design matrix
while taking the correlation of the residuals into account (Huber, 1967). Using the
empirical variance formula and assuming working independence,

cvarðb̂Þ ¼ Xn

i¼1

XT
i Xi

 !�1 Xn

i¼1

XT
i ð
~Yi � Xib̂Þð ~Yi � Xib̂Þ

TXi

 !

�
Xn

i¼1

XT
i Xi

 !�1
. ð3Þ

Since the ‘sandwich’ variance makes no modeling assumptions, it provides a
robust expression appropriate for many applications. Because ML assumes
var(Yi) does not depend on Xi, to facilitate comparison of ML to GEE, we use a
version of the model-based variance for the GEE estimator:

cvarðb̂Þ ¼ Xn

i¼1

XT
i Xi

 !�1 Xn

i¼1

XT
i ŜXi

 ! Xn

i¼1

XT
i Xi

 !�1
, (4)

where

Ŝ ¼
Pn

i¼1ð
~Yi � Xib̂Þð ~Yi � Xib̂Þ

T

n
. (5)

We define the diagonal elements of Ŝ as Ŝ11; . . . ; ŜKK (estimated variances) and
the off-diagonal elements as Ŝ12; . . . ; ŜðK�1ÞK (estimated covariances). The var-
iance in Eq. (4) is model-based since it assumes the same Ŝ for each individual and
Ŝ does not depend on the design matrix. Using Eq. (4) and because Sn

i¼1X
T
i Xi is

block diagonal, the estimated variance–covariance matrix for the slopes can be
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expressed as

cvar
b̂1
b̂2

..

.

b̂K

0BBBBB@

1CCCCCA ¼
Ŝ11

SS
X2
1

� � �
SSX1 ;XK

Ŝ1K

SS
X2
1
SS

X2
K

..

.

SSX1 ;XK
Ŝ1K

SS
X2
1

SS
X2

K

� � � ŜKK

SS
X2

K

0BBBBBB@

1CCCCCCA, (6)

where

SSX 2
k
¼
Xn

i¼1

ðX ik � X̄ kÞ
2,

and

SSX kX l
¼
Xn

i¼1

ðX ik � X̄ kÞðX il � X̄ lÞ.

We also consider a constrained model with b1 ¼ b2 ¼y ¼ bK ¼ bC defined as

EðYjXkÞ ¼ ak þ bCXk for k ¼ 1; . . . ;K , (7)

where ~Yi remain the same as in the unconstrained model,

Xi ¼

1 0 . . . 0 X i1

0 1 . . . 0 X i2

..

.

0 0 . . . 1 X iK

0BBBB@
1CCCCA and b ¼ ða1; a2; . . . ; aK ;bCÞ

T .

The same general expression for b̂ holds and it is again straightforward to show
that

b̂ ¼ Ȳ � b̂CX̄ 1; . . . ; Ȳ � b̂CX̄ K

�
,Pn

i¼1ðX i1 � X̄ 1ÞðY i � Ȳ Þ þ � � � þ
Pn

i¼1ðX iK � X̄ K ÞðY i � Ȳ ÞPn
i¼1ðX i1 � X̄ 1Þ

2
þ � � � þ

Pn
i¼1ðX iK � X̄ K Þ

2

!T

,

and from Eq. (4),

cvarðb̂CÞ ¼ SSX 2
1
Ŝ11 þ � � � þ SSX 2

K
ŜKK þ

P
i4jSSX i ;X j

Ŝij

ðSSX 2
1
þ � � � þ SSX 2

K
Þ
2

. (8)

We also extend the model to incorporate a vector of continuous or discrete
covariates Z not measured by multiple informants. We predict E(Y|Xk,Z) using
the following model:

EðYjXk;ZÞ ¼ ak þ bkXk þ gkZ for k ¼ 1; . . . ;K . (9)
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This model is a simplification of a more general one that includes an interaction
between each Xk and Z. Our simplified model makes the standard regression
assumption that the variance–covariance matrix of (Y, X1, X2,y , XK) is con-
ditioned on Z, but does not depend explicitly on Z, e.g., is not a function of Z. To
implement the GEE approach we modify Xi and b as

Xi ¼

1 X i1 Zi 0 0 0 � � � 0 0 0

0 0 0 1 X i2 Zi � � � 0 0 0

..

.

0 0 0 0 0 0 � � � 1 X iK Zi

0BBBBBB@

1CCCCCCA
b ¼ ða1; b1; g1; a2;b2; g2; . . . ; aK ; bK ; gK Þ

T .

Similar to the case without covariates, âk; b̂k and ĝk are estimates from a
univariate regression model with response Y, multiple informant Xk and
covariates Z. Using Eq. (4), we can obtain variances as in the case without
covariates.

3. Maximum likelihood estimation

To use ML we assume a joint multivariate distribution for the outcome and
multiple informants. For simplicity, we consider only two predictors here but the
model extends straightforwardly. For each of n observations, let Qi ¼ (Yi, X1i,
X2i)

T and thus

Qi 	MVN

mY

mX 1

mX 2

0B@
1CA; s2Y sX 1;Y sX 2;Y

sX 1;Y s2X 1
sX 1;X 2

sX 2;Y sX 1;X 2
s2X 2

0BB@
1CCA

0BB@
1CCA.

From this distribution, we find estimates for y ¼ ðmY ;mX 1
; mX 2

;s2Y ;sX 1Y ;
sX 2;Y ;sX 1;X 2

; s2X 1
;s2X 2
Þ
T : However, we are interested in the regression parameter

estimates from Eq. (1) with K ¼ 2. Thus, we make a transformation from the
original parameters, y, to the parameters of interest t ¼ ða1; b1; a2;b2;
V 11;V22;V12Þ

T : To make the transformation full rank, we include two
parameters, mY and s2Y ; from y into t. Using conditional mean formulas for the
multivariate normal distribution, we find EðYjXiÞ ¼ mY þ sX i ;Y ðXi � mX i

Þ=s2X i
;

where i ¼ 1, 2. We define ai ¼ mY � bimX i
and bi ¼ sX i ;Y=s

2
X i
; where i ¼ 1, 2 and

thus Eq. (1) follows. We also define V11, V22 and V12 in terms of y by utilizing
conditional variance formulas for the multivariate normal distribution, e.g.,
V 11 ¼ varðYjX1Þ; V 22 ¼ varðYjX2Þ and V 12 ¼ covðYjX1;YjX2Þ:

From standard ML theory, ŷ are sample means, variances and covariances
with n in the denominators of the variances and covariances; we then make the
full rank transformation to obtain t̂ and find that the ML estimates of b are
identical to the estimates found by GEE. Furthermore, using the multivariate
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normal model, we find varðb̂Þ ¼ JvarðŷÞJT ; where J is the 9� 9 Jacobian matrix
for the transformation from h to t. Thus, asymptotically

var

ffiffiffi
n
p

b̂1ffiffiffi
n
p

b̂2

 !
!

s2Y ð1� r2X 1;Y
Þ

s2X 1

s2Y ð1� AÞsX 1;X 2

s2X 1
s2X 2

s2Y ð1� AÞsX 1;X 2

s2X 1
s2X 2

s2Y ð1� r2X 2;Y
Þ

s2X 2

0BBBB@
1CCCCA, (10)

where

A ¼ 2ðr2X 1;Y
þ r2X 2;Y

� rX 1;YrX 2;YrX 1;X 2
Þ �

rX 1;YrX 2;Y

rX 1;X 2

.

If we estimate the asymptotic ML variance using the ML estimates of sX 1;Y ;
sX 2;Y ; sX 1;X 2

; the estimated variances of GEE and ML are the same; the estimated
covariances given by GEE and ML are not identical but are quite similar in
practice (results not presented).

We also consider the constrained model where b1 ¼ b2 ¼ bC; one approach is
to define

sX 1;Y ¼ bCs
2
X 1
;sX 2;Y ¼ bCs

2
X 2

(11)

and all other variance–covariance terms remain as in the unconstrained model.
ML estimation assuming Eq. (11), where bC is the common slope and no
assumption is made regarding equality of the multiple informant variances, does
not lead to closed form solutions. We find no obvious way to set up GEE to
reproduce the model assuming Eq. (11). However, if we constrain the slopes to be
equal and also assume equal multiple informant variances, we can derive the same
estimates as obtained by fitting Eq. (7) using GEE when assuming

sX 1;Y ¼ sX 2;Y ¼ sX ;Y ;s2X 1
¼ s2X 2

¼ s2X . (12)

The model assuming Eq. (12) implies that b1 ¼ b2 ¼ bC when assuming the
variances for the two covariates are equal and also implies equal correlation of
each informant with the response. Similar to the unconstrained case, we define
y ¼ ðmY ; mX 1

;mX 2
;s2Y ; sX ;Y ; sX 1;X 2

;s2X Þ
T and t ¼ ða1; a2;bC;V 11C;V12CÞ

T : Equa-
tion (7) follows directly with ak ¼ mY � bCmX k

for k ¼ 1, 2 and bC ¼ sX ;Y=s2X :
The ML estimates of y under the constrained model are the same as in the
unconstrained case except with ŝX ;Y ¼ ðSn

i¼1ðX i1 � X̄ 1ÞðY i � Ȳ Þ þ Sn
i¼1ðX i2 �

X̄ 2ÞðY i � Ȳ ÞÞ=2n and ŝ2X ¼ ðS
n
i¼1ðX i1 � X̄ 1Þ

2
þ Sn

i¼1ðX i2 � X̄ 2Þ
2
Þ=2n; further-

more, we find that b̂C is the same for GEE and ML. An expression for varðb̂CÞ
is derived; asymptotically

varð
ffiffiffi
n
p

b̂CÞ !
s2Y ð1þ rX 1;X 2

Þð1� rðCÞ
2

Y jX 1;X 2
Þ

2s2X

 !
, (13)
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where

rðCÞ
2

Y jX 1;X 2
¼

2r2X ;Y
1þ rX 1;X 2

.

Next we incorporate a vector of covariates Z not measured by multiple
informants using the model in Eq. (9) and find the same estimates as derived by
the GEE approach. We assume that

Qi 	MVN

m0 þ m1Z

d0 þ d1Z

n0 þ v1Z

0B@
1CA;

s2Y jZ sX 1;Y jZ sX 2;Y jZ

sX 1;Y jZ s2X 1jZ
sX 1;X 2jZ

sX 2;Y jZ sX 1;X 2jZ s2X 2jZ

0BB@
1CCA

0BB@
1CCA,

and make no distributional assumptions on Z. As done previously, we obtain
mean expressions for Y given (X1, Z) and Y given (X2, Z) and relate these to
Eq. (9). Using the results of standard multivariate normal regression theory,
estimates for y are obtained from three separate regressions. In summary, (m0, m1)
are regression coefficients from fitting E(Y|Z), (d0, d1) are from E(X1|Z) and (n0, n1)
are from E(X2|Z). After obtaining these estimates, we make a transformation to t;
the vector consists of the regression coefficients from Eq. (9) (b), variance–
covariance terms that condition on Z and values from y that ensure a full rank
transformation. We find that estimates of b obtained from ML are the same
as those from GEE. We calculate varðb̂Þ using the same technique as without
covariates.

In this section, we have found that ML and GEE give the same estimates under
an unconstrained model, assuming a constrained model with equal variances and
with inclusion of covariates not measured by multiple informants. To obtain ML
estimates, we have assumed multivariate normality. However, in the situations
where the ML and GEE estimates are identical, ML is clearly robust to the
distributional assumptions on the multiple informants.

4. Simulations

We performed 10,000 simulations to compare the empirical GEE, model-based
GEE and ML variances. We generate our first dataset from the trivariate normal
distribution with response Y and multiple informants X1 and X2 for i ¼ 1, y,
500. For the subsequent 9999 draws, we generate each of the 500 Y values from a
normal distribution with mean E(Y|X1,X2) and variance varðYjX1;X2Þ; thus X1

and X2 are fixed since each iteration has the same set of 500 X1, X2 values. We
consider four scenarios assuming different unconstrained parameters; the first
case we present, sX 1;Y ¼ �0:142; sX 2;Y ¼ �0:156 and sX 1;X 2

¼ 0:333; are values
from the illustration described in Section 6. Table 1 gives the slope variances from
the simulations using Eqs (3) and (6) for the empirical GEE and model-based
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Table 1

Variance simulation results – unconstrained model

varðb̂1Þ

sX 1 ;Y sX2 ;Y sX 1 ;X 2

a Empirical Model-Based ML Simulation

�0.142 �0.156 0.333 0.00229 0.00229 0.00229 0.00231

0.300 0.600 0.600 0.00327 0.00324 0.00324 0.00270

0.800 0.500 0.000 0.00459 0.00459 0.00459 0.00415

0.000 0.000 0.333 0.00171 0.00172 0.00172 0.00173

covðb̂1; b̂2Þ

sX 1 ;Y sX2 ;Y sX 1 ;X 2

a Empirical Model-Based ML Simulation

�0.142 �0.156 0.333 0.00062 0.00061 0.00061 0.00061

0.300 0.600 0.600 0.00156 0.00161 0.00158 0.00162

0.800 0.500 0.000 0.00111 0.00032 0.00032 0.00028

0.000 0.000 0.333 0.00074 0.00074 0.00074 0.00078

a s2Y ¼ s2X 1
¼ s2X 2

¼ 1:
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GEE variances, respectively. We calculate the ML variance using

cvar ffiffiffi
n
p

b̂1ffiffiffi
n
p

b̂2

 !
¼

ŝ2Y ð1� r̂2X 1;Y
Þ

ŝ2X 1

ŝ2Y ð1� r̂2Y jX 1;X 2
ÞŝX 1;X 2

ŝ2X 1
ŝ2X 2

ŝ2Y ð1� r̂2Y jX 1;X 2
ÞŝX 1;X 2

ŝ2X 1
ŝ2X 2

ŝ2Y ð1� r̂2X 2;Y
Þ

ŝ2X 2

0BBBBB@

1CCCCCA,

(14)

where

r̂2Y jX 1;X 2
¼

ŝ2X 2
ŝ2X 1;Y

� 2ŝX 1;Y ŝX 1;X 2
þ ŝ2X 1

ŝ2X 2;Y

ðŝ2X 1
ŝ2X 2
� ŝ2X 1;X 2

Þŝ2Y
.

We omit varðb̂2Þ since its results are similar to varðb̂1Þ; we also present the
covariance between the slopes, covðb̂1; b̂2Þ:

We compare the variance using each of the three methods (empirical GEE and
model-based GEE and ML) to the variance of the simulations (reported in the
column of Table 1 entitled Simulation) calculated as

varðb̂1Þ ¼
Pm

i¼1ðb̂1i � b̂1Þ
2

m
, (15)

where m is the number of simulations and b̂1 is the average of the b̂
ð1Þ

1i values over
all simulations. We compare the covariance using a similar technique.
Nonparametric 95% confidence intervals (not reported) for the empirical,
model-based and ML variances illustrate that the estimated variances are similar
and closely approximate the simulated variances in most cases. In general, we find
that the empirical estimates are more variable than their model-based and ML
counterparts. The largest difference occurred when sX 1;Y ¼ 0:8; sX 2;Y ¼ 0:5 and
sX 1;X 2

¼ 0; for example, the empirical covariance appears inconsistent with the
simulated covariance, but its confidence interval (0.00054, 0.00174) nearly
includes the simulated value. All other empirical values fell within the
nonparametric confidence intervals, and hence were trivial differences. Table 2
presents results when assuming a constrained model with equal variances

Table 2

Variance simulation results – constrained model

varðb̂CÞ

sX 1 ;Y sX 2 ;Y sX1 ;X2

a Empirical Model-Based ML Simulation

�0.149 �0.149 0.333 0.00125 0.00125 0.00124 0.00123

0.400 0.400 0.600 0.00206 0.00204 0.00201 0.00198

0.500 0.500 0.000 0.00217 0.00194 0.00169 0.00173

a s2Y ¼ s2X 1
¼ s2X 2

¼ 1:
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(Eq. (12)) under three scenarios assuming different constrained parameters. As in
the unconstrained case, the estimated variances from the GEE and ML
techniques are similar and both are consistent with the true variance estimates
for the constrained case.

5. Efficiency calculations

We now discuss when using a constrained model leads to efficiency gains by
comparing the variances of the slope estimates under the unconstrained model and
the constrained model assumed in Eq. (12) using ARE, defined as the ratio of two
asymptotic variances. Specifically, ARE is the ratio of varðb̂1Þ to varðb̂CÞ assuming
b1 ¼ b2 ¼ bC since varðb̂1Þ ¼ varðb̂2Þ under the constrained model. If the ARE is
greater than 1, then the estimated slope variance of the constrained model is more
efficient than the estimated slope of the unconstrained model; this leads to increased
power for detecting associations between multiple informants and response.

Using the asymptotic ML variances derived in Section 3 and assuming sX 1;Y ¼

sX 2;Y ¼ sX ;Y and s2X 1
¼ s2X 2

¼ s2X ; we calculate

ARE ¼
2ð1� r2X ;Y Þ

ð1þ rX 1;X 2
Þð1� r2Y jX 1;X 2

Þ
.

Because r2Y jX 1;X 2

 r2X ;Y 
 0 and �1 � rX 1;X 2

� 1 it follows that AREZ1 for
all values of rX 1;X 2

; r2X ;Y and r2Y jX 1;X 2
: Therefore, the slope estimate under the
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Fig. 1. Asymptotic relative efficiency ðrX 1 ;X 2
¼ 0Þ:
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constrained model is always as efficient or more efficient than the unconstrained
estimate when the constrained model holds. We consider ARE at particular
values of rX 1;X 2

; for instance, with rX 1;X 2
¼ 0; ARE increases as the difference

between r2Y jX 1;X 2
and r2X ;Y increases (Fig. 1). As rX 1;X 2

increases, the general
shape of the ARE function remains the same but both the minimum and
maximum ARE values decrease. In summary, if the slopes are similar, fitting a
constrained model offers efficiency in the slope estimate over fitting an
unconstrained model.

6. Illustration

In 1996, a study investigating the association between physical activity/inactivity
and obesity was performed in two towns of Mexico City (Hernández et al., 1999,
2000, Hernández, 1998). Our goal is to compare the marginal relationship
between BMI (Y) and vigorous exercise as reported by the child (X1) and the
relationship between BMI and vigorous exercise reported by the child’s mother
(X2). We also fit a constrained model for increased efficiency. Although we could
control for many covariates concerning the child (age, grade, gender, school,
socioeconomic status, whether or not the child was sick on the evaluation day,
nutritional status and whether or not the child was obese), for illustration we
include only child’s grade level in school. Grade is dichotomized with elementary
school children of grades 5 and 6 in one category compared with secondary
school children of grades 1 and 2. Complete information is available for 82
observations.

The raw summary measures for BMI and vigorous exercise are given in Table 3.
Because the vigorous exercise measurements are highly skewed and the multiple
informant variances are not equal, we convert the measurements to normal scores
and then mean center and standardize these in order to compare the covariance of
BMI and each covariate on the same scale. Grade is also mean centered and
standardized for simplicity. Table 4 provides a summary of the estimates derived

Table 3

Estimated means and variance–covariance matrix for vigorous exercise

Variable Estimated Mean

BMI (Y) 21.382

Vigorous exercise reported by child (X1) 0.986

Vigorous exercise reported by mother (X2) 0.786

S

Y X1 X2

Y 12.108 �0.374 �0.413

X1 �0.374 0.897 0.150

X2 �0.413 0.150 0.455
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Table 4

Parameter estimates and standard errors for models using vigorous exercise to predict BMI

b̂1 Emp/MLa bseðb̂1Þ b̂2 Emp/MLa bseðb̂2Þ ĝ1 Emp/MLa bseðĝ1Þ ĝ2 Emp/MLa bseðĝ2Þ
�0.511 0.341/0.380 �0.561 0.345/0.379

�0.536b 0.249/0.308b

�0.377 0.360/0.381 �0.514 0.353/0.372 �0.673 0.401/0.381 �0.714 0.369/0.372

�0.447b 0.264/0.305b �0.659 0.384/0.378 �0.718 0.373/0.371

a Empirical GEE standard error/ML standard error.
b Constrained slope estimate.
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from GEE or ML and their standard errors (empirical GEE, model-based
GEE/ML) for models of BMI and vigorous exercise fit using R (2004).

The marginal relationship between BMI and child’s report of vigorous
exercise, b̂1; and the marginal relationship between BMI and mother’s report, b̂2;
are not statistically significantly different; furthermore, both measures have a
negative relationship with BMI and neither are statistically significant predictors
of BMI. Thus, we fit a constrained model to gain efficiency (although physical
activity is still not statistically significantly related to BMI); the constrained slope
coefficient is �0.536, indicating that for every one unit increase in vigorous
exercise a child receives, BMI decreases by over one half of a unit. In addition,
fitting a constrained slope is more efficient than fitting two separate slopes
ðdARE ¼ 1:51Þ; the estimated variance of the constrained slope is approximately
50% smaller than when fitting an unconstrained model and provides more power
to assess the association between vigorous exercise and BMI. We report
�2 log(likelihood) values to compare models by constructing likelihood ratio
tests (LRTs) in Table 5; according to a one degree of freedom LRT, fitting
a constrained model as compared with the unconstrained model is appropriate.
We also include grade in the models; according to a two degree of freedom LRT,
adding grade is reasonable (p-value ¼ 0.04). We also find that fitting a model
where we constrain the slope to be equal in the presence of grade is appropriate
according to a one degree of freedom LRT. Therefore, the relationship between
vigorous exercise and BMI is similar regardless of respondent. Fitting a
constrained model is simpler and more efficient; adding the covariate increases
the predictive power. With regard to design issues, using either mother or child
responses should yield similar results. Including both would increase power,
although may not be feasible.

7. Conclusion

In this paper, we review a nonstandard application of GEE (Horton et al., 1999,
Pepe et al., 1999) and introduce a novel ML method for modeling marginal
regression models with multiple source predictors. ML and GEE yield the
same estimates of the regression coefficients in the following situations:
(1) unconstrained model, (2) constrained model with the multiple informants
having equal variances (assuming Eq. (12)) and (3) including covariates not

Table 5

�2 log likelihood values

Model �2 log(Likelihood)

Unconstrained model 437.856

Constrained model 437.869

Unconstrained model with covariate 431.437

Constrained model with covariate 431.572

Estimation of marginal regression models with multiple source predictors 743



measured by multiple informants (assuming covariates have possibly different
slopes). The model-based GEE and ML variances are similar; in practice, the
covariances are as well. Our work also demonstrates that, at least in simple cases,
the working correlation matrix recommended by Pepe et al. (1999) is optimal. The
GEE empirical variance yields similar variance and covariance estimates as the
model-based GEE and ML estimates, but the GEE empirical variance quantities
are more variable than the former.

Throughout this paper, our goal has been to estimate the marginal relationship
of each multiple informant covariate with response; we have presented two ap-
proaches to do so. Alternative techniques include use of latent variable or meas-
urement error models; in both cases, the problem could be construed as each of
the multiple informants being an imprecise surrogate for the true value (Horton
and Fitzmaurice, 2004). However, when comparing diagnostic tests in practice
researchers are interested in the actual reports and how they compare.

The ML technique can be extended to include more than two sets of multiple
informants. For example, the Hernández et al. (1999) study had additional mul-
tiple informant measures including video viewing, moderate exercise and video-
game playing. To implement ML in this setting, two equations with sets of
regression slope coefficients for each additional multiple informant measure are
necessary. This provides estimates of each multiple informant measure condi-
tional on the other multiple informant measures in the model. If we take the case
of two sets of multiple informants with Xij, where i ¼ set, j ¼ multiple informant,
instead of using E(Y|X1) and E(Y|X2) to find the transformation from y to t,
E(Y|X11,X21) and E(Y|X12,X22) is used. Aside from the proliferation of param-
eters, solutions should extend from the existing methods.

Another extension is dealing with one construct measured with more than two
multiple informants (K42). In this situation, K separate regression equations are
fit rather than 2. This may lead to estimation of a large number of parameters and
a Jacobian matrix for the transformation from y to t of high dimension; e.g., with
K ¼ 3, y consists of 14 parameters. The models can also be extended to include a
vector of covariates not measured by multiple informants. Rather than predicting
Y, X1, X2 from Z using an intercept and a slope, the model would be a multiple
linear regression with an intercept and K slopes. Using a potentially cumbersome
transformation from y to t, the 2(K+1) regression parameters are found as pre-
viously described. While extending the ML technique leads to additional param-
eters, ML can accommodate constrained models where the slope parameters are
equal. In addition to providing efficiency gains, constraining coefficients also
helps maintain parsimonious models.

Considering the advantages and disadvantages of using GEE and ML for
analysis of multiple informants as predictors, GEE is more flexible than ML since
it does not require a model for the multiple informants nor does it need normality
of the multiple informants or the dependent variable. However, because ML and
GEE yield the same solutions in most situations, ML does not require the mul-
tivariate normality assumption to be valid. In fact, the vigorous activity multiple
informant measurements in the Hernández et al. (1999) dataset were skewed to
the left; although we standardized this data, an analysis without standardization
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reveals that ML is still equivalent to GEE, thus confirming the robustness of ML
to deviations from normality. A drawback of the GEE approach is that the
independence working correlation structure must be assumed for the model to be
valid (Pepe and Anderson, 1994). However, we have shown that the use of the
independence working correlation matrix is optimal for certain models when
assuming normality where the GEE and ML approaches yield identical estimates
and standard errors.

An advantage of ML is the ability to fit a broader range of models than what
can be fit using GEE; for example, ML can fit a model when a constrained effect
is desired but the variance differs across levels of X1 and X2 (e.g. with large
amounts of missing data on the multiple informants). Another positive aspect of
the ML approach is that likelihood-based tests can be constructed to easily
compare models; this is particularly helpful when considering many models.
Perhaps the biggest advantage ML can offer is an efficiency gain compared with
GEE when considering data with missingness (Litman et al., 2007).
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Difference Equations with Public Health Applications

Asha Seth Kapadia and Lemuel A. Moyé

Abstract

The difference equation is a powerful tool for providing analytical solutions

to probabilistic models of dynamic systems in health-related research. These

applications include, but are not limited to, issues commonly encountered in

stochastic processes, clinical research, and epidemiology. In practice, many

important applications, such as the occurrence of a clinical event and patterns

of missed clinic visits in randomized clinical trials as well as drought predic-

tions, can be described in terms of recursive elements. In this chapter difference

equations are motivated and are solved using the generating function approach.

1. Introduction

In its most general form a linear difference equation can be written as

p0ðkÞykþn þ p1ðkÞykþn�1 þ p2ðkÞykþn�2 þ � � � þ pnðkÞyk ¼ RðkÞ. (1)

It consists of terms involving members of the {yk} sequence, and, in addition, co-
efficients such as pj(k), of elements of the {yk} sequence in the equation. These
coefficients may or may not be a function of k. When the coefficients are not
functions of k, the difference equation has constant coefficients. Difference equations
with coefficients that are functions of k are described as difference equations with
variable coefficients. In general, difference equations with constant coefficients are
easier to solve than those difference equations that have nonconstant coefficients.

If the term R(k) on the right side of the equation is equal to zero, then the
difference equation is homogeneous. If the right side of the equation is not zero,
then Eq. (1) becomes a nonhomogeneous difference equation. For example, the
family of difference equations

ykþ2 ¼ 6ykþ1 � 3yk (2)

for k, an integer (from zero to infinity), is homogeneous since each term in the
equation is a function of a member of the sequence {yk}. The equation

ykþ3 ¼ 6ykþ1 � 3yk þ 12; k ¼ 1; 2; . . . , (3)
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is a nonhomogeneous one because of the inclusion of the term 12. The equation

3ykþ4 þ ðk þ 3Þykþ3 þ 2kþ2ykþ2 þ ðk þ 1Þykþ1 þ 4kyk ¼ ðk þ 2Þðk þ 1Þ

would be designated as a fourth-order, nonhomogeneous difference equation with
variable coefficients.

Finally, the order of a family of difference equations is the difference between the
largest index and the smallest index of the {y1, y2, y3, y, yk, y} sequence in (1).
Equation (2) is a second-order difference equationwhile Eq. (3) is a third-order one.

There are several approaches to the solutions of difference equations. How-
ever, two rather intuitive approaches are mentioned in passing. The first is the
iterative approach and the second is the use of mathematical induction. Both are
briefly discussed below.

Consider the simple first-order difference equation

ykþ1 ¼ ayk.

The solution to the above equation using iterative reasoning assuming y0 is
known would result in the following solution:

yk ¼ aky0.

Unfortunately, this intuitive approach to the solution, which is very useful for
first-order difference equations, becomes somewhat complicated if the order is
increased as, for example, in the second-order, nonhomogeneous family of
difference equations

ykþ2 ¼ a1ykþ1 þ byk þ c.

Another way to solve simple equations is to guess the solution and then prove
that the guessed solution is correct through the use of induction. Briefly, the
induction argument outlines a simple sequence of the following three steps:

(1) Demonstrate the assertion is true for k ¼ 1.
(2) Assume the assertion is true for k.
(3) Use (1) and (2) to prove that the assertion is true for k+1.

This method again has its limitations particularly when a good initial guess is not
easily available. In this chapter we will be solving most of the difference equations
using generating functions (Wilf, 1994) and wherever possible inverting them to
obtain the exact solutions.

2. Generating functions

A generating function G(s) is a function that contains the (Chiang, 1980) infor-
mation necessary to produce or generate the sequence of yk’s. G(s) is defined as

GðsÞ ¼
X1
k¼0

yksk.
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G(s) provides the content of the sequence {yk} which will be the solution to the
family of difference equations. Consider a simple first-order, homogeneous family
of difference equations

ykþ1 ¼ 3yk (4)

for k ¼ 0, 1, 2, y, N, and y0 is a known constant. Multiplying both sides of (4)
by sk we have

skykþ1 ¼ 3skyk.

The next step is to add these equations from k ¼ 0 toN, recognizing that the sum
of left side of these equations is equal to the sum of the right side of all of these
equations, giving us

s�1
X1
k¼0

skþ1ykþ1 ¼ s�1
X1
k¼0

skþ1ykþ1 þ s0y0 � s0y0

" #

¼ s�1
X1
k¼0

skyk � y0

" #
¼ s�1½GðsÞ � y0�

revealing

GðsÞ � y0 ¼ 3sGðsÞ,

GðsÞ ¼
y0

1� 3s
.

From the above simple generating function yk can be easily obtained by inverting
G(s) as

yk ¼ y0ð3Þ
k,

assuming|3s|o1.
The additive principle of generating functions states that for two sequences

{y1k} and {y2k} and the corresponding generating functions G1(s) and G2(s), the
generating function of the sequence {y1k7y2k} is G1(s)7G2(s). Similarly the scal-
ing principle of generating functions states that if G1(s) is the generating function
associated with the sequence {yk}, then the generating function associated with
the sequence {cyk} is cG1(s).

Unfortunately, the product of generating functions is not the product of the
kth terms of each of the infinite series. Instead, for two generating functions, G1(s)
and G2(s) associated with sequences {ak} and {bk}

G1ðsÞG2ðsÞ ¼ ða0 þ a1sþ a2s
2 þ a3s

3 þ � � �Þðb0 þ b1sþ b2s
2 þ b3s3 þ � � �Þ.

The coefficient of sk is then
Pk

j¼0ajbk�j :
Here, we only need evaluate this product term by term and gather together those

coefficients which are associated with like powers of s. The skillful use of
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generating functions is invaluable in solving families of difference equations.
However, generating functions have been developed in certain specific circum-
stances. Consider the circumstance where the sequence {pk} are probabilities.
Then, using our definition of G(s) we see that GðsÞ ¼

P1
k¼0pksk;where

P1
k¼0pk ¼ 1:

In probability it is often useful to describe the relative frequency of an event in
terms of an outcome of an experiment. Among the most useful of these exper-
iments are those for which outcomes are discrete (the integers or some subset of the
integers). These discrete models have many applications, and it is often helpful to
recognize the generating function associated with the models. The generating
function associated with such a model is described as the probability generating
function. We will continue to refer to these probability generating functions using
the nomenclature G(s). Note that in this context of probability, the probability
generating function can be considered an expectation, i.e., G(s) ¼ E[sx].

3. Second-order nonhomogeneous equations and generating functions

A family of second-order, nonhomogeneous difference equation can be written as

aykþ2 þ bykþ1 þ cyk ¼ d ; k ¼ 0; 1; 2; . . . ;1,

where a, b, c, or d, are known, fixed, and not equal to zero. Assume that y0, y1,
and y2 are also known constants.

During this development the impact of the nonhomogeneous part of this
family of difference equations will be noted. Multiply each term in the above
equation by sk, and sum over the range 0pkoN.

as�2
X1
k¼0

skþ2ykþ2 þ bs�1
X1
k¼0

skþ1ykþ1 þ c
X1
k¼0

skyk ¼ d
X1
k¼0

sk. (5)

The first three terms are easy to convert to expressions involving G(s). The last
term represents the nonhomogeneous component d/(1�s). Converting each sum-
mation in the equation to a term involving G(s), Eq. (5) becomes

as�2½GðsÞ � y0 � y1s� y2s
2� þ bs�1½GðsÞ � y0 � y1s� þ cGðsÞ ¼ d

X1
k¼0

sk,

or

GðsÞ½cs2 þ bsþ a� ¼ ay0 þ sðay1 þ by0Þ þ s2ðay2 þ by1Þ þ
ds2

1� s
.

G(s) is then obtained as

GðsÞ ¼
ay0

cs2 þ bsþ a
þ

sðay1 þ by0Þ

cs2 þ bsþ a
þ

s2ðay2 þ by1Þ

cs2 þ bsþ a
þ

ds2

ðcs2 þ bsþ aÞð1� sÞ
.

(6)
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The nonhomogeneous component of this family of difference equations has intro-
duced the right most term on the right side of the above equation. In order to
invert (6) note that each term in G(s) involves inversion of 1=ðaþ bsþ cs2Þ: We
now proceed with the inversion by writing

1

aþ bsþ cs2
¼

1=a

1� ð�1Þððb=aÞ þ ðc=aÞsÞs
, (7)

recognizing that the expression on the right side of the above equation is the sum
of the series whose kth term is (1/a)(�1)k((b/a)+(c/a)s)ksk. Using the binomial
theorem to reevaluate this expression we have

ð�1Þk

a

b

a
þ

c

a
s

� �k

sk ¼
ð�1Þk

akþ1
ðbþ csÞksk ¼

ð�1Þk

akþ1

Xk

j¼0

k

j

 !
cjbk�jskþj.

Next we pull together the coefficients of sk. Introducing the new index variables j

and m such that 0pjpmpk, observe that we must accumulate the coefficient

m

j

 !
cjbm�j

whenever m+j ¼ k. Coefficient of sk is

ð�1Þk

akþ1

Xk

m¼0

Xm

j¼0

m

j

 !
cjbm�jImþj¼k

( )
.

The indicator function Im+j ¼ k in the above expression is defined as Im+j¼k ¼ 1 if
m+j ¼ k and is 0 otherwise.

We are now in a position to completely invert G(s), with repeated use of
the scaling, addition, translation, and multiplication principles of generating
functions.

Coefficient of sk in G(s) is

ay0

ð�1Þk

akþ1

Xk

m¼0

Xm

j¼0

m

j

 !
cjbm�jImþj¼k

þ ðay1 þ by0Þ
ð�1Þk�1

ak

Xk�1
m¼0

Xm

j¼0

m

j

 !
cjbm�jImþj¼k�1

þ ðay2 þ by1Þ
ð�1Þk�2

ak�1

Xk�2
m¼0

Xm

j¼0

m

j

 !
cjbm�jImþj¼k�2

þ d
Xk

h¼0

ð�1Þh

ahþ1

Xh

m¼0

Xm

j¼0

m

j

 !
cjbm�jImþj¼h.
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4. Example in rhythm disturbances

We present here our ability to work with difference equations to an unusual
problem in cardiology involving heart rhythms. Typically, the heart follows a
regular rhythm, but occasionally, in normal hearts, that regular rhythm is inter-
rupted.

Most everyone remembers when their ‘‘heart skips a beat.’’ Children (and
adults) do this to each other fairly easily by jumping out from a closet or a
darkened hallway. The effect on the frightened person is immediate. The fright
causes a series of nervous system and neuro-hormonal responses and aberrations.
One of the most common is that the ventricles contract prematurely, before they
are completely full. It is a fascinating observation that the off rhythm beat is so
noticeable, especially when hundreds of thousands of regular beats go relatively
unnoticed. Nevertheless, we can all recall the thud in our chest when so startled.
For the majority of us, this one premature ventricular contraction (PVC) is at
most a short-lived, unpleasant sensation. The sinoatrial node (SA node) quickly
reasserts its predominance as the source of electrical activity of the heart, and the
heart quickly returns to its normal sinus rhythm.

Occasionally, PVCs do not occur in isolation. They may however occur more
frequently. This is seen in patients who have heart disease. For example, patients
who have heart attacks, when a portion of heart muscle dies, may have the
electrical conductivity system of the heart affected. As the SA node functions less
and less efficiently, other parts of the electrical conducting system try to break
through, attempting to exert their own control over the flow of electricity through
the heart. PVCs begin to occur more and more frequently, finally occurring as
couplets or two consecutive ones. The occurrence of such a couple is termed
bigeminy. Trigeminy is the occurrence of three consecutive PVCs and quadge-
miny defines the consecutive occurrence of four such PVCs.

These short bursts of ectopic ventricular activity can occur in the normal heart
as well, as one of the authors can attest. On his first day as an intern, he was
learning about his new responsibilities as a physician, while smoking a pipe and
drinking coffee. The combination of stress from the new job, the nicotine from the
pipe (a heart stimulant), and the caffeine (another heart stimulant) from the
coffee produced a very memorable burst of trigeminy.

As the consecutive occurrence of PVCs becomes more frequent, even the runs
of bigeminy, trigeminy, and quadgeminy begin to come together into a burst of
ventricular tachycardia (VT, rapid heart rate). These episodes of VT (sometimes
termed bouts of VT) are extremely dangerous. As we pointed out, when a PVC
occurs in isolation, normal sinus rhythm is quickly restored, and the heart returns
to its efficient filling mechanism. However, when many of these abnormal
ventricular beats occur in a row, the movement of blood through the heart is
profoundly disturbed. The ventricles contract rapidly, but they contract far too
rapidly, well before the atria have the opportunity to fill the ventricles with blood.
Thus, in VT, the ventricles contract to no good end, since they are not pumping
blood at all. This condition, if not treated, can deteriorate to ventricular fibril-
lation (VF) where the complicated interrelated muscle system in the ventricles no
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longer contracts as a cohesive unit, and the ability to move blood out to the
systemic circulation is effectively destroyed.

This destruction results in the sudden death of the individual. One moment the
person appears fine – the next moment they are on the floor within seconds of
death. In the case of drowning, even though there has been no breathing, the
heart has continued to pump throughout the accident. Thus, even though
the victim’s brain is receiving only deoxygenated blood, they are still receiving
blood, and survival is prolonged. However, in sudden death, the heart stops
beating at once. The brain receives no blood, and brain cells die by the tens
of millions in a matter of seconds. Certainly, sudden death syndrome must be
avoided at all costs.

Cardiologists have long recognized the sudden death syndrome and have
worked hard to identify both risk factors for the syndrome and a way to treat it.
Over the past 30 years, many esteemed workers in cardiology have constructed a
theory that has come to be known as the arrhythmia suppression hypothesis. This
hypothesis states that the harbinger of sudden death was not the occurrence of
‘‘runs of VT’’ but the occurrence of bigeminy, trigeminy, and even PVCs.
Since these relatively mild rhythm abnormalities sometimes deteriorate to runs of
VT, and from VT to VF and death, preventing the mild ventricular rhythm
disturbances would prevent sudden death. This hypothesis was put to test in a
complicated experiment called Cardiac Arrhythmia Suppression Trial (CAST,
Pratt and Moyé, 1995) by testing drugs known to reduce mild ventricular
arrhythmias. However, the drugs that were tested produced even worse rhythms
than the ones they were designed to reduce and the experiment had to be stopped.
Many cardiologists still believe in the arrhythmia suppression hypothesis, and are
waiting for the correct drug to be developed. For all computations in the cardiac
rhythm domain, it will be assumed that each beat represents a Bernoulli trial.
There are only two possibilities for the beat; it is either a normal sinus beat, which
occurs with probability p, or a PVC (abnormal beat) which occurs with prob-
ability q. Thus, a failure is the occurrence of a premature, ventricular contraction.
We may therefore think of a burst of bigeminy as a failure run of length 2, since
bigeminy is two consecutive aberrant ventricular beats. Analogously, the occur-
rence of three successive irregular ventricular beats (trigeminy) will be considered
as a failure run of length 3 and so on. We will explore several applications of the
T[K,L](n) probabilities below to model these occurrences.

Define:

T[K,L](n) ¼ P [the minimum and maximum failure run lengths is in the inter-
val (K, L) when KpL in n trials].

For example, T[2,6](12) is the probability that in 12 Bernoulli trials all fail-
ure runs have lengths 2, 3, 4, 5, or 6, with all other failure run lengths excluded.
Then:

T[K,K](n) ¼ P [all failure run lengths are exactly of length K];
T[0,L](n) ¼ P [all failure runs are pL in length];
1�T[0,L](n) ¼ P [at least one failure run length is greater than L].
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If MF(n) is the maximum failure run length in n trials, then

E½MFðnÞ� ¼
Xn

L¼0

L½T ½0;L�ðnÞ � T ½0;L�1�ðnÞ�,

Var½MFðnÞ� ¼
Xn

L¼0

L2½T ½0;L�ðnÞ � T ½0;L�1�ðnÞ� � E2½MFðnÞ�.

Define:

T0,[K,L](n) ¼ P [that either the maximum failure run length is zero or the
minimum failure run length and the maximum failure run length are each
in [K, L]].

In this case T0,[K,L](n) is simply T[K,L](n)+pn. The boundary conditions for
T0,[K,L](n) are:

T0,[K,L](n) ¼ 0 for all no0;
T0,[K,L](n) ¼ 1 for n ¼ 0;
T0,[K,L](n) ¼ pn for 0onoK.

Using the indicator function, we may write the recursive relationship for
T0,[K,L](n) for 0oKpmin(L, n) as

T0;½K ;L�ðnÞ ¼ pT0;½K ;L�ðn� 1Þ þ qK pT0½K ;L�ðn� K � 1Þ

þqKþ1pT0;½K ;L�ðn� K � 2Þ þ qKþ2pT0;½K ;L�ðn� K � 3Þ

þ � � � þ qLpT0;½K ;L�ðn� L� 1Þ þ qnIK�n�L.

IxAA ¼ 1 if x is in the set A and 0 otherwise. This difference equation may be
rewritten as T0;½K ;L�ðnÞ ¼ pT0;½K ;L�ðn� 1Þ þ

PL
j¼K qjpT0;½K ;L�ðn� j � 1Þ þ qnIK�n�L:

Assume that the run length interval bounds K and L and probability of failure
q are known.

The plan will be to tailor the above equation to a model to predict runs of
irregular ventricular beats. Let n be the total number of heartbeats that are
observed. Begin by computing the probability that in a consecutive sequence of
heartbeats, the only ectopy (i.e., abnormal heart rhythm) that occurs is an iso-
lated PVC. An isolated PVC is a failure run of length 1. Converting this to model
terminology, K ¼ L ¼ 1 we compute for n40

T0;½1;1�ðnÞ ¼ pT0;½1;1�ðn� 1Þ þ qpT0;½1;1�ðn� 2Þ þ qIn¼1. (8)

The above equation provides for failure runs of length 0 or 1, and does not permit
failure runs of length41 for nX1. From the boundary conditions we have defined
T0,[1,1](0) ¼ 1. We compute from this equation T0,[1,1](1) ¼ p+q and T[1,1](1) ¼ q.
Likewise we can compute

T0;½1;1�ð2Þ ¼ pðpþ qÞ þ qp ¼ p2 þ 2pq

and

T ½1;1�ð2Þ ¼ T0;½1;1�ð2Þ � p2 ¼ 2pq.
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The goal is to solve Eq. (8) in its entirety, by finding a general solution for
T0,[1,1](n) using the generating function approach. Define

GðsÞ ¼
X1
n¼0

snT0;½1;1�ðnÞ.

Proceed by multiplying each side of Eq. (8) by sn and begin the conversion process

snT0;½1;1�ðnÞ ¼ snpT0;½1;1�ðn� 1Þ þ snqpT0;½1;1�ðn� 2Þ þ snqIn¼1,X1
n¼1

snT0;½1;1�ðnÞ ¼
X1
n¼1

snpT0;½1;1�ðn� 1Þ þ
X1
n¼1

snqpT0;½1;1�ðn� 2Þ þ
X1
n¼1

snqIn¼1. ð9Þ

The term on the left side of the equality in the above equation is G(s)�1. The last
term on the right side of the equality is qs. Consider the first two terms on the
RHS of (9)

X1
n¼1

snpT0;½1;1�ðn� 1Þ ¼ ps
X1
n¼1

sn�1T0;½1;1�ðn� 1Þ ¼ ps
X1
n¼0

snT0;½1;1�ðnÞ ¼ psGðsÞ

and

X1
n¼1

snqpT0;½1;1�ðn� 2Þ ¼ qps2
X1
n¼1

sn�2T0;½1;1�ðn� 2Þ

¼ qps2
X1
n¼0

snT0;½1;1�ðnÞ ¼ qps2GðsÞ.

We may rewrite Eq. (9) in terms of G(s) and simplify

GðsÞ � 1 ¼ psGðsÞ þ qps2GðsÞ þ qs

GðsÞ½1� ps� qps2� ¼ qsþ 1

GðsÞ ¼
qsþ 1

1� ps� qps2

. (10)

The above equation is a polynomial generating function with no helpful roots for
the denominator, so we proceed with the inversion by first collecting coefficient of
sn in the denominator. The nth term of the series [1�(1+qs)ps)]�1 is

pn
Xn

j¼0

n

j

 !
qjsnþj.

Now collecting coefficients we see that the coefficient of sn in (10), i.e., T0,[1,1](n) is

q
Xn�1
m¼0

pm
Xm

j¼0

m

j

 !
qjImþj¼n�1 þ

Xn

m¼0

pm
Xm

j¼0

m

j

 !
qjImþj¼n
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and

T ½1;1�ðnÞ ¼ q
Xn�1
m¼0

pm
Xm

j¼0

m

j

 !
qjImþj¼n�1 þ

Xn

m¼0

pm
Xm

j¼0

m

j

 !
qjImþj¼n � pn.

With the experience from the isolated PVC model, we can expand our application
of the difference equation approach to arrhythmia occurrence. In this section, we
will focus solely on failure runs of length 2, i.e., the T0,[2,2](n) model. The family of
difference equations for n40 can be written as

T0;½2;2�ðnÞ ¼ pT0;½2;2�ðn� 1Þ þ q2pT0;½2;2�ðn� 3Þ þ q2In¼2. (11)

We will proceed as we did in the previous section. Define

T0;½2;2�ð0Þ ¼ 1; T0;½2;2�ð1Þ ¼ p; T0;½2;2�ð2Þ ¼ pðpÞ þ q2 ¼ p2 þ q2.

To find the general solution for the probability of bigeminy alone, define

GðsÞ ¼
X1
n¼0

snT0;½2;2�ðnÞ,

and multiply each term in Eq. (11) by sn; we find

snT0;½2;2�ðnÞ ¼ snpT0;½2;2�ðn� 1Þ þ snq2pT0;½2;2�ðn� 3Þ þ snq2In¼2.

The next step requires taking the sum from n equal to 1 to N in each term of the
above equation obtainingX1

n¼1

snT0;½2;2�ðnÞ ¼
X1
n¼1

snpT0;½2;2�ðn� 1Þ

þ
X1
n¼1

snq2pT0;½2;2�ðn� 3Þ þ
X1
n¼1

snq2In¼2. ð12Þ

The first term on the right side of the above equation may be written asX1
n¼1

snpT0;½2;2�ðn� 1Þ ¼ psGðsÞ.

Rewriting Eq. (12) in terms of G(s)

GðsÞ � 1 ¼ psGðsÞ þ q2ps3GðsÞ þ q2s2.

A little simplification leads to

GðsÞ ¼
1

1� ps� q2ps3
þ

q2s2

1� ps� q2ps3
. (13)
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The coefficient of sk in the above equation is

Xn

m¼0

pm
Xm

j¼0

m

j

 !
q2jImþ2j¼n þ q2

Xn�2
m¼0

pm
Xm

j¼0

m

j

 !
q2jImþ2j¼n�2

( )
.

Hence

T ½2;2�ðnÞ ¼
Xn

m¼0

pm
Xm

j¼0

m

j

 !
q2jImþ2j¼n þ q2

Xn�2
m¼0

pm
Xm

j¼0

m

j

 !
q2jImþ2j¼n�2 � pn.

With the experience of the isolated PVC and bigeminy problem, we are now in a
position to provide a general solution for the probability of the occurrence of VT
of runs of length k by solving the T0,[K,K](n) model that will be the purpose of the
next demonstration. The solution can be provided for bigeminy, trigeminy,
quadgeminy, or any run of VT of length k. The solution derived is the probability
for k-geminy only. As before begin with the T0,[K,K](n) model (n40)

T0;½K ;K�ðnÞ ¼ pT0;½K ;K �ðn� 1Þ þ qK pT0;½K ;K �ðn� K � 1Þ þ qK In¼K . (14)

Define G(s) as

GðsÞ ¼
X1
n¼0

snT0;½K ;K �ðnÞ,

and proceed with conversion and consolidation. Begin by multiplying each term
in Eq. (14) by sn and after a little simplification obtain

GðsÞ � 1 ¼ ps
X1
n¼1

sn�1T0;½K ;K �ðn� 1Þ

þ qK psKþ1
X1
n¼1

sn�K�1T0;½K ;K �ðn� K � 1Þ þ sK qK .

We need to examine two of these terms in some detail. Begin with the first term on
the right side of the above equation

ps
X1
n¼1

sn�1T0;½K ;K �ðn� 1Þ ¼ ps
X1
n¼0

snT0;½K ;K �ðnÞ ¼ psGðsÞ.

Observe that

qK psKþ1
X1
n¼1

sn�K�1T0;½K ;K�ðn� K � 1Þ ¼ qK psKþ1GðsÞ,

GðsÞ ¼
1

1� ps� qK psKþ1
þ

sK qK

1� ps� qK psKþ1
.
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The coefficient of sk obtained on inversion of G(s) is

Xn

m¼0

pm
Xm

j¼0

m

j

 !
qKjImþKj¼n þ qK

Xn�K

m¼0

pm
Xm

j¼0

m

j

 !
qKjImþKj¼n�K

( )
.

5. Follow-up losses in clinical trials

Clinical experiments have evolved over hundreds of years. The current state-of-
the-art clinical experiment is the randomized controlled clinical trial. These
advanced experiments have been used to demonstrate important relationships in
public health. Two examples are (1) the association between reductions in
elevated levels of blood pressure and the reduced incidence of strokes, and (2) the
reduction of blood cholesterol levels and the reduced occurrence of heart attacks.
However, many patients who agree to participate in these trials often choose not
to return to the clinical trial physician for regularly scheduled follow-up visits.
Although this behavior is understandable, and is in no way unethical, the absence
of these patients from all future participation in the trial can complicate the
interpretation of the trial.

The use of randomized controlled clinical trials reflects the accumulated ex-
perience and methodological advances in the evolution of scientific, experimental
design in medicine. These experiments are very complicated, involving the com-
plexities of choosing patients from the population at large, choosing the type and
concentration of the intervention, and deciding how long patients must stay in
contact with the scientists who are controlling the trial (some trials take 1–2 days
to complete, while others can take 5 years or more).

One of the crucial features of clinical trials is the occurrence of endpoints, the
clinical events that will be used to determine the effectiveness of the intervention.
For example, consider a trial designed to reduce the occurrence of death. By this
we mean that the investigators believe at the trial’s end, there will be more deaths
that occurred in the placebo group than in the group receiving the active inter-
vention (the active group). In this trial, death is the endpoint. A clinical trial that
is designed to measure the effect of medication to reduce the total number of
deaths from a disease during the next 5 years must follow every patient until the
end of the trial to ensure that they know who died. Without following each
individual patient, the scientists will be uncertain as to who died and who sur-
vived, and without a careful count of this number, these scientists will have
difficulty in deciding the true reduction in the number of deaths to which the
medication can be attributed.

This problem is sometimes complicated by the low frequency of the occurrence
of endpoints in the study. In recent clinical trials (SHEP, 1991; Pfeffer et al., 1992;
Sacks et al., 1991), the rates at which endpoints are predicted to occur are rel-
atively small. In these trials, the measure of therapy effectiveness, i.e., measuring
the difference in death rates between the intervention and the control group,
depends on the occurrence of relatively infrequently occurring endpoints. The
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incomplete ascertainment of these endpoints would weaken the trial by making
the final endpoint death rate unclear.

An important reason for incomplete endpoint ascertainment is the patient who
is ‘‘lost to follow-up.’’ This means that patients choose not to return to their
clinical trial doctors for scheduled (i.e., required) visits. They are seen for the first
visit (in fact, in many circumstances, the first visit is the visit at which the patient
often enters the clinical trial, or is ‘‘randomized’’). Such ‘‘follow-up losses’’ do not
stay in contact with their doctors. These patients often will stop taking the
medication they received in the study, and may refuse any attempt by the study
to recontact them. They completely ‘‘drop out’’ of the study. There are many
reasons for dropping out of a study. Divorce, changing city and state (or country)
of residence, a life of crime, and joining reclusive cults are all reasons that are
given for patients dropping out of a study. However, the occurrence of a drop out
means that the study cannot determine if the patient is alive or dead at the trial’s
conclusion (i.e., it cannot determine the patient’s vital status). Tremendous effort
is required on the part of clinical trial workers to insure that the vital status of
all trial participants is obtained. In fact, a major constraint to the execution of
long-term follow-up studies is often the time, money, ingenuity, and perseverance
required to successfully trace subjects.

Follow-up losses make the effect of the therapy difficult to determine by pre-
cluding an accurate computation of the total number of deaths experienced by
patients treated with placebo and those treated with the intervention. Clinical trial
workers labor intently to find patients who are lost to follow-up, often resorting
to private investigating agencies after the patient has stopped attending the re-
quired clinic visits. The strengths and weaknesses of mailings to participants to
remind them of missed visits have been described (Cutter et al., 1980; Austin
et al., 1979) and the advantages and disadvantages of city directories, telephone
contacts, and the use of postal services have been delineated (Boice, 1978). A
National Death Index was established to promote statistical research in health
care (Patterson, 1980), and search procedures using this index have been utilized
to identify patients who have dropped out from clinical trials (Edlavitch et al.,
1985; Williams et al., 1992; Stampfer et al., 1984; Davis et al., 1985; Curb et al.,
1985); in addition, information from the Social Security Administration is also
useful in ascertaining vital status (Wentworth et al., 1983). The hallmark of
patients who are eventually lost to follow-up is that they miss scheduled visits.
Many different patient visit patterns are often observed in clinical trials. A pati-
ent’s attendance for scheduled visits may first be perfect. Over time, the visit
pattern becomes sporadic as the patient gradually misses scheduled visits at a
greater frequency until they no longer attend visits and are lost from the study.
Other patients may have perfect attendance and then suddenly, inexplicably, and
completely drop out of the study. However, missed visits is the common theme
among these disparate visit patterns. Thus, one way to identify patients who are
at risk of loss to follow-up is to examine their visit pattern.

The pattern of missed visits for patients who will eventually be lost to follow-
up is the occurrence of consecutive missed visits. In fact, this is a necessary
condition for the patient to be lost to follow-up. Our purpose here is to develop
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and explore a monitoring rule applicable to clinical trials to identify potential
follow-up losses, based on the number of consecutive visits that have been missed.
Once a candidate rule for identifying patients who are potentially lost to follow-
up is identified, it is useful to know how likely a patient is to violate this rule by
chance alone.

Over the course of the clinical trial, each patient is scheduled for a sequence of
n consecutive visits. The total number of these visits is known in advance. We
begin by denoting the probability that a patient will keep a scheduled visit by p

and let this probability be a known constant, fixed over the entire sequence of n

visits. Denote q ¼ 1�p as the probability that the patient misses a particular visit.
Consider the following monitoring rule V(L) for loss to follow-up patients:

V(L) ¼ 1 if the patient has missed at least L consecutively scheduled visits
(rule violator).

V(L) ¼ 0 otherwise (nonviolator).

We need to compute P(V(L) ¼ 1), the probability that a patient has missed
at least L consecutive visits as a function of q and n. Once this probability is
estimated, its relationship with L can be used to identify the optimum value of L

for the trial. Patients who then meet the criteria can be targeted for special
attention in an attempt to get them back into the mainstream of the clinical trial
and a more standard visit pattern.

The monitoring rule V(L) is based on a string or run of consecutive failures.
Thus, the monitoring rule is triggered when there is at least one run of failures of
length L or greater. With this development, difference equations may be used to
identify the crucial recursive relationships in the occurrence of failure runs of the
required lengths.

Recall that T[0,L�1](n) is the probability that in a collection of n consecutive
Bernoulli trials, there are no failure runs of length L or greater. Thus, all failure
runs must be of length L�1 or less. In this development, 1�T[0,L�1](n) is the
probability that in n trials, there is at least one occurrence of a failure run of
length greater than or equal to L, i.e., the monitoring rule is violated. Thus,
P(V(L) ¼ 1) ¼ 1�T[0,L�1](n).

To find T[0,L](n), a recursive relationship for nX0 is:

T ½0;L�ðnÞ ¼ pT ½0;L�ðn� 1Þ þ qpT ½0;L�ðn� 2Þ þ q2pT ½0;L�ðn� 3Þ

þq3pT ½0;L�ðn� 4Þ þ � � � þ qLpT ½0;L�ðn� L� 1Þ

þqnI0�n�L ¼
XL

j¼0

qjpT ½0;L�ðn� j � 1Þ þ qnI0�n�L.

The boundary conditions for the family of difference equations represented by the
above equation are

T ½0;L�ðnÞ ¼ 0; for no0; and T ½0;L�ðnÞ ¼ 1; for 0 � n � L.

1�T[0,L�1](n) is the probability of at least one failure run of length L or greater
in n trials. This is also the probability that the maximum failure run length is XL.
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Similarly, 1�T[0,L](n) is the probability that there is at least one failure run of
length L+1 or greater in n trials, or the probability that the maximum failure run
length is XL+1. Thus

P½maximum failure run length ¼ L in n trials�

¼ ½1� T ½0;L�1�ðnÞ� � ½1� T ½0;L�ðnÞ� ¼ T ½0;L�ðnÞ � T ½0;L��ðnÞ.

Using this probability, we can compute in n trials the expected maximum failure
run length E(n, q) and its standard deviation SD(n, q) in n trials as

Eðn; qÞ ¼
Xn

L¼0

L½T ½0;L�ðnÞ � T ½0;L�1�ðnÞ�

SDðn; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

L¼0

L2½T ½0;L�ðnÞ � T ½0;L�1�ðnÞ� � E2ðn; qÞ

s
.

In the context of missed visits for a patient in a follow-up study, E(n, q) is the
expected maximum number of consecutive visits missed by chance alone, i.e.,
the expected worst visit pattern, and SD(n, q) its standard deviation.

5.1. T ½0;L�ðnÞ and missed visits

Define GðsÞ ¼
P1

n¼0s
nT ½0;L�ðnÞ:

Then

X1
n¼0

snT ½0;L�ðnÞ ¼
X1
n¼0

sn
XL

j¼0

qjpT ½0;L�ðn� j � 1Þ þ
X1
n¼0

snqnI0�n�L

GðsÞ ¼
X1
n¼0

sn
XL

j¼0

qjpT ½0;L�ðn� j � 1Þ þ
XL

n¼0

snqn,

and completing the consolidation process

GðsÞ ¼

PL
n¼0s

nqn

1�
PL

j¼0qjpsjþ1
.

The coefficient of sn in 1=ð1�
PL

j¼0q
jpsjþ1Þ is

Xn

m¼0

pm
Xm

j1¼0

Xm�j1

j2¼0

Xm�j1�j2

j3¼0

� � �
Xm�
PL�1

i¼1
ji

jL¼0

m

j1j2 � � � jL

 !
q

PL

i¼1

iji

I
mþ
PL

i¼1

iji¼n

8><>:
9>=>;.

The coefficient of sn in G(s) will be

Xminðn;LÞ

h¼0

qh
Xn�h

m¼0

pm
Xm

j1¼0

Xm�j1

j2¼0

Xm�j1�j2

j3¼0

� � �
Xm�
PL�1

i¼1
ji

jL¼0

m

j1j2 � � � jL

 !
q

PL

i¼1

iji

I
mþ
PL

i¼1

iji¼n�h

8><>:
9>=>;.
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Thus, T[0,L](n) is an explicit function of n, the total number of visits, q the prob-
ability of a missed visit, and L the monitoring rule.

Since the difference equations and their solutions are in terms of q, the prob-
ability of a missed clinic visit, n, the number of visits, and VL, the vigilance rule,
T0,L�1(n) can be examined as a function of these parameters. As a first example,
the value of 1�T0,L�1(n), the probability of L or more consecutive missed visits,
was explored as a function of both q, the probability of a missed visit, and L for
n ¼ 10 visits. Table 1 displays the anticipated relationship between 1�T[0,L](n),
and q for fixed L.

As the probability of a missed visit (q) increases, the probability of missing L or
more consecutive visits also increases. For example, the probability of missing at
least two consecutive visits increases from 0.021 for q ¼ 0.05 to 0.504 for
q ¼ 0.30. The probability of missing at least k consecutive visits as a function of L

can also be observed from Table 1. For each value of q examined, the probability
of L or more consecutive missed visits decreases rapidly. For example, when the
probability of a missed visit is 0.10, the probability that, out of 10 scheduled
visits, a patient will miss at least 1 or more consecutive visits is 0.651. However,
the probability that a patient will miss two or more consecutive visits decreases to
0.080 for the same value of q.

This phenomenon of rapid fall off in the probability of consecutive missed
visits as L increases was observed for each value of q examined. This property of
rapidly decreasing probability of greater run lengths suggests that a value of L

may be readily identified that would trigger additional attention to the patient
who misses this many consecutive visits.

The development of T[0,L](n) also provides a direct computation of the
expected maximum number of consecutive missed visits E(n, q) a typical patient
will experience, and its standard deviation SD(n, q). Table 2 demonstrates the
relationship between the expected worst visit performance and the probability of
a missed visit q and n. Note that E(n, q) increases as the total number of scheduled
visits increases.

Table 1

Probability of at least L consecutive missed visits out of 10 scheduled visits as a function of the

probability of a missed visit a(q)

Probability of a Missed Visit

0.05 0.10 0.15 020 0.25 0.30

1 0.401 0.651 0.803 0.893 0.944 0.972

2 0.021 0.080 0.168 0.273 0.388 0.504

3 0.001 0.007 0.023 0.052 0.096 0.155

4 0.000 0.001 0.003 0.009 0.021 0.042

5 0.000 0.000 0.000 0.002 0.005 0.011

6 0.000 0.000 0.000 0.000 0.001 0.003

7 0.000 0.000 0.000 0.000 0.000 0.001

8 0.000 0.000 0.000 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000
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This satisfies intuition, since the more visits available, the greater the number
of opportunities for missed consecutive visits. However, the increase in expected
worst visit performance increases only gradually as the total number of scheduled
visits is quadrupled from 10 to 40. In addition, Table 2 and Fig. 1 reveal the
relationship between expected worst visit performances as a function of the
probability of a missed visit, worst visit performance worsening as q increases.

The standard deviation of the maximum number of consecutive missed visits is
more sensitive to changes in both the probability of a missed visit and the number
of scheduled visits. This standard deviation increases from 0.9 to 3.7 as the
probability of a missed visit increases from 0.10 to 0.30. In addition, this increased
SD(n, q) is a function of n, the total number of scheduled visits.

Figure 2 displays the relationship between the upper 5% tail of the worst visit
performance (mean+1.96SD) and the probability of a missed visit. Even though
the increase in expected maximum as a function of n is modest, the upper 5% of
the distribution of the maximum is more sensitive to increases in the probability
of a missed visit. Thus, although in a clinical trial with 20 scheduled visits, if it is

Table 2

Expected worst visit performance E(n, q) as a function of n and q

n q

0.10 0.20 0.30

10.00 0.7 (0.9) 1.2 (2.1) 1.7 (3.7)

20.00 1.1 (1.5) 1.6 (3.2) 2.2 (5.9)

30.00 1.2 (1.8) 1.8 (4.1) 3.0 (7.5)

40.00 1.3 (2.1) 2.0 (4.8) 2.8 (8.8)
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Fig. 1. Expected worst visit performance by n and q.
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anticipated that a typical patient will miss 1 in 5 scheduled visits, the expected
maximum number of missed consecutive visits is 1.6. However, through the
random mechanism of chance the distribution of the worst visit performance
could be as large as 4 or 20% of scheduled visits.

Figure 3 depicts the relationship between the number of typical patients at risk
for follow-up loss (false positives) in a 5000 patient trial as a function of both the
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Fig. 2. Ninety-fifth percentile of expected worst visit performance by n and q.
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Fig. 3. False positive missed visit frequency by q and violator rule L.
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probability of a missed visit and the vigilance rule VL (i.e., they have missed at
least L consecutive visits). The number of false positive patients at risk for a
follow-up loss is the expected number of patients who violate the vigilance rule.
We see that as the probability of a missed visit increases, the expected number of
patients who violate this rule VL (false positives) also increases. It is also clear that
the expected number of false positives who violate VL decreases as L increases.
For each combination of q and VL, the number of patients who require increased
vigilance for follow-up loss can be determined.

6. Applications in epidemiology

Difference equation perspective may be used by epidemiologists as they work to
understand the spread of a disease in a population. After a brief discussion of the
purposes of epidemiology, we will develop both the nomenclature and the differ-
ence equations used to predict the number of patients with a disease under a mix
of interesting and useful assumptions. These equations will be well recognized by
the advanced worker as immigration models, emigration models, birth models,
and death models, and will be so labeled in this chapter. In each of these devel-
opments, the focus here will be to elaborate the role of difference equations in
providing solutions to these dynamic systems.

During this development, we will confront for the first time not just difference
equations, but differential and partial differential equations as well. The reader
with no background in differential equations need not be alarmed, however. Only
the concepts of differential equations relevant to our immediate needs for this
section discussions and absorption will be presented.

6.1. The immigration model

For this first model, the goal is to compute the number of patients who have a
disease. The assumptions that the disease is not contagious and that no one in the
population has the illness at the beginning of the process will be made. Since the
disease does not spread from individual to individual, the only people who will
have the illness are those that arrive with the disease.

Define Pn(t) as the probability that there are n individuals in the system at
time t. Assume that patients with the disease arrive at the rate of l arrivals per
unit of time. The rate of these arrivals is independent of the number of patients in
the diseased population. If 10 diseased patients arrive per week, then, on average
in 2 weeks we would expect 20 diseased patients, in 3 weeks, 30 diseased patients
would be expected, etc. In general, in the short time interval Dt, we would expect
lDt arrivals. With neither deaths, cures, nor exits, cases can only accumulate in
the system.

To develop the difference equation, consider how there may be n cases (dis-
eased individuals) at time t+Dt. One possibility is that there are n�1 diseased
individuals at time t, and there is exactly one arrival that occurs with probability
lDt. The other possibility is that there are n patients with the disease at time t,
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and there is no arrival in the time interval Dt, an event that occurs with prob-
ability 1�lDt. The Chapman–Kolmogorov forward equation for this model is

Pnðtþ DtÞ ¼ l DtPnþ1ðtÞ þ PnðtÞð1� l DtÞ; n 
 0.

For n ¼ 0 the equation is

P0ðtþ DtÞ ¼ P0ðtÞð1� l DtÞ,

which can be solved as (Feller, 1965)

PnðtÞ ¼
ðltÞn

n!
e�lt.

If there are a0 cases in the system at time 0, then by the assumptions made for the
immigration process (i.e., there are neither deaths nor exits of diseased patients),
these patients are still available at time t and

PnðtÞ ¼
ðltÞn�a0

ðn� a0Þ!
e�ltIn4a0 ,

where In4a0 represents the indicator function which takes value 1 when n4a0
and 0 otherwise.

6.2. Emigration model

We will produce the Chapman–Kolmogorov forward equation for the emigration
process paralleling the model used for the immigration process. As before,
consider the dynamics of patients with the disease as time moves from t to t+Dt

when Dt is very small, allowing only a change in the number of diseased patients
by 1. In this framework, the number of cases at time t can only be (1) reduced by 1
or (2) remain the same. The number of patients with disease is reduced by 1 with
probability mDt, or the number can stay the same with probability 1�mDt.
Therefore, using the Chapman–Kolmogorov forward equation approach (Feller,
1965). Assuming a0 patients at time t ¼ 0

PnðtÞ ¼
ðmtÞa0�n

ða0 � nÞ!
e�mt

� �
.

Thus, the probability that there are n subjects with the disease at time t is the
probability that a0�n diseased subjects have departed by time t.

6.3. Birth model

The immigration and emigration models served as useful tools for the introduc-
tion to the use of difference-differential equations in modeling the movement of
patients with disease through a population. However, helpful as they have been,
these models have not included an important naturally observed phenomenon of
disease dynamics – that is the spread of the disease from one infected individual to
another susceptible person. This section will examine this important concept.
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Unfortunately, the inclusion of this component adds a new complication to the
difference-differential equation required, namely the equation becomes a partial
difference-differential equation (Moyé and Kapadia, 2000).

In this model new cases (i.e., patients with disease) are produced from estab-
lished cases and their ability to spread depends on the number of patients with the
disease. The larger the number of cases, the greater the spread of the disease will
be. A small number of cases will diminish the rate at which the disease will spread
throughout the population. The parameter associated with the spread of the
disease is n. And if there are a0 cases in the system at time t ¼ 0

PnðtÞ ¼
n� 1

a0 � 1

 !
e�a0ntð1� e�ntÞ

n�a0 .

This distribution can be used to obtain the expected number of cases of disease at
time t as a0 e

nt:

6.4. The death process

Just as the birth model led to the propagation of new patients with disease in a
way where the force of growth of the disease cases was related to the number of
cases available, it stands to reason that there are circumstances where the number
of cases will decline, the force of decline being related to the number of cases. This
is called the death process. The plan here is to identify the probability distribution
of the number of cases at time t when the number of cases cannot increase, but
only decrease due to death. Just as in the birth model, we will need to develop and
solve a family of partial differential equations.

As with the birth process, the force of death is related to the number of patients
with disease. The larger the number of cases, the greater the likelihood of death.
This relationship between the number of patients with the disease and the death
rate is what distinguishes the death process from the emigration process. In the
latter case the departure rate is independent of the number of patients with the
disease.

Let the probability that a patient with disease who is alive at time t will die in
time t+Dt be oDt. To construct appropriate equations, we will need to determine
in what way the number of cases can change from time t to time t+Dt if there are
to be n cases at time t+Dt. Also, assume Dt is so small that the number of cases
can only change by 1. In this short span of time only one of the two events can
occur. There can be a death with probability (n+1)oDt or there is no change,
that occurs with probability 1�noDt. For Pa0ð0Þ ¼ 1

PnðtÞ ¼
a0

n

� �
e�notð1� e�otÞ

a0�n,

for 0onpa0. Note that the expected number of patients with disease in the
system at time t is

E½X t� ¼ a0 e
�not,
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and the variance of Xt is

Var½X t� ¼ a0 e
�notð1� e�otÞ.

6.5. Immigration–birth–death–emigration model

The last model to be considered is a combination of the models developed in the
previous sections. This model will be the most complicated representation of the
spread of a contagious disease that will be considered. Patients are allowed to
arrive into the population, and, once in the population, can spread the disease to
other patients. In addition, patients are removed from the population either
through death or through cure with subsequent immunity. In the derivation
of Gt(s) we will identify a partial differential equation in both t and s. Its solution
will be straightforward, but there may be some complications in the final sim-
plification of Gt(s).

Begin the development of the family of difference equations which govern this
process by using the parameters defined in the previous subsections. If time is
slowed down sufficiently, how can we compute n cases in the population at time
t+Dt allowing only one event and one event only to occur in the time interval
(t, t+Dt)? This can happen in one of the five ways: (1) if there are n�1 patients in
the population at time t, and an arrival occurs with probability lDt; (2) if the
population has n�1 patients in the system at time t and a ‘‘birth’’ occurs, with
probability (n�1)nDt; (3) if there are n+1 patients in the population at time t,
there could be a death, an event which occurs with probability (n+1)oDt; (4) if
there are n+1 patients at time t, a patient leaves the system with probability mDt;
and (5) if there are n patients in the system with neither an arrival nor a birth, a
death, or emigration occurs in time Dt. As in previous cases, we will assume that
P0(t) ¼ 0 and Pa0 ð0Þ ¼ 1:

It is important to distinguish the immigration and emigration processes from
the birth and death processes. Certainly both the immigration and birth processes
lead to an increase in the number of diseased patients in the population. However,
the increase from immigration is constant over time, independent of the popu-
lation size. The birth process force is proportional to the population size. How-
ever, people emigrate independent of the population size.

Chapman–Kolmogorov equation for the immigration–birth–death–emigration
process is

Pnðtþ DtÞ ¼ l DtPn�1ðtÞ þ ðn� 1Þn DtPn�1ðtÞ þ ðnþ 1Þo DtPnþ1ðtÞ

þm DtPnþ1ðtÞ þ PnðtÞð1� l Dt� nn Dt� no Dt� m DtÞ.

We proceed with the development of the partial differential equation which rep-
resents this process by consolidating the terms involving Dt

Pnðtþ DtÞ � PnðtÞ

Dt
¼ lPn�1ðtÞ þ ðn� 1ÞnPn�1ðtÞ þ ðnþ 1ÞoPnþ1ðtÞ

þmPnþ1ðtÞ � lPnðtÞ � nnPnðtÞ � noPnðtÞ � mPnðtÞ.
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Then taking limits as Dt-0

dPnðtÞ

dt
¼ lPn�1ðtÞ þ nPn�1ðtÞðn� 1Þ þ oðnþ 1ÞPnþ1ðtÞ � mPnþ1ðtÞ

�lPnðtÞ � nnPnðtÞ � noPnðtÞ � mPnðtÞ. ð15Þ

Define

GtðsÞ ¼
X1
n¼0

snPnðtÞ,

and move forward with the conversion and consolidation of Eq. (15). Multiplying
each side of this equation by sn we find

sn dPnðtÞ

dt
¼ lsnPn�1ðtÞ þ nsnPn�1ðtÞðn� 1Þ þ osnPnþ1ðtÞðnþ 1Þ

þmsnPnþ1ðtÞ � lsnPnðtÞ � nnsnPnðtÞ � onsnPnðtÞ � msnPnðtÞ.

Summing for n from 1 to N

X1
n¼0

sn dPnðtÞ

dt
¼ l

X1
n¼0

snPn�1ðtÞ þ n
X1
n¼0

ðn� 1ÞsnPn�1ðtÞ

þo
X1
n¼0

ðnþ 1ÞsnPnþ1ðtÞ þ m
X1
n¼0

snPnþ1ðtÞ

�l
X1
n¼0

snPnðtÞ � n
X1
n¼0

nsnPnðtÞ

�o
X1
n¼0

nsnPnðtÞ � m
X1
n¼0

snPnðtÞ.

Interchanging the summation and differentiation procedures reveals

d
P1
n¼0

snPnðtÞ

dt
¼ ls

X1
n¼0

sn�1Pn�1ðtÞ þ ns2
X1
n¼0

ðn� 1Þsn�2Pn�1ðtÞ

þo
X1
n¼0

ðnþ 1ÞsnPnþ1ðtÞ þ m
X1
n¼0

snPnþ1ðtÞ

�l
X1
n¼0

snPnðtÞ � ns
X1
n¼0

nsn�1PnðtÞ

�os
X1
n¼0

nsn�1PnðtÞ � m
X1
n¼0

snPnðtÞ.

We can now recognize these summands as functions of Gt(s) and write

@GtðsÞ

@t
¼ lsGtðsÞ þ ns2

@GtðsÞ

@s
þ o

@GtðsÞ

@s
þ ms�1GtðsÞ � lGtðsÞ

�ns
@GtðsÞ

@s
� os

@GtðsÞ

@s
� mGtðsÞ,
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which can be simplified as follows:

@GtðsÞ

@t
� ðns� oÞðs� 1Þ

@GtðsÞ

@s
� ½lðs� 1Þ þ mðs�1 � 1Þ�GtðsÞ ¼ 0.

Recognize that the above equation is a partial differential equation in t and s of
the form which will allow us to find a general solution using a subsidiary set of
equations. Write these equations as

dt

1
¼

ds

�ðns� oÞðs� 1Þ
¼

dGtðsÞ

�½lðs� 1Þ þ mðs�1 � 1Þ�GtðsÞ
. (16)

Continuing with the first two terms of the above equation, we evaluate these
equalities in two combinations to provide information on the form of the gen-
erating function Gt(s). From the second and third terms we have

ds

�ðns� oÞðs� 1Þ
¼

dGtðsÞ

�½lðs� 1Þ þ mðs�1 � 1Þ�GtðsÞ

½lðs� 1Þ þ mðs�1 � 1Þ�ds

ðns� oÞðs� 1Þ
¼

dGtðsÞ

GtðsÞ

l ds

ns� o
þ

mðs�1 � 1Þds

ðns� oÞðs� 1Þ
¼

dGtðsÞ

GtðsÞ

l ds

ns� o
þ

mð1� sÞds

sðns� oÞðs� 1Þ
¼

dGtðsÞ

GtðsÞ

l ds

ns� o
�

mds

sðns� oÞ
¼

dGtðsÞ

GtðsÞ

Using partial fractions

m
sðns� oÞ

¼
mn
o

1

ns� o

� �
�

m
o

1

s

� �
,

dGtðsÞ

GtðsÞ
¼

l
ns� o

þ
mn
o

1

ns� o

� �
�

m
o

1

s

� �� �
ds ¼

lþ ðmn=oÞ
ns� o

�
m
o

1

s

� �� �
ds,

Z
dGtðsÞ

GtðsÞ
¼

Z
lþ ðmn=oÞ
ns� o

�
m
o

1

s

� �� �
ds,

lnGtðsÞ ¼
l
n
þ

m
o

� �
lnðns� oÞ �

m
o
lnðsÞ þ C

¼
l
n
lnðns� oÞ þ

m
o
ln

ns� o
s

h i
þ C

¼ lnðns� oÞl=n þ ln
ns� o

s

h im=o
þ C,

GtðsÞ ¼ ðns� oÞl=n
ns� o

s

h im=o
C.
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This development provides GtðsÞ ¼ ðns� oÞðl=nÞþðm=oÞs�m=oC which can be written
in the form

GtðsÞ ¼ ðns� oÞðl=nÞþðm=oÞs�ðm=oÞFðC2Þ.

The remaining task is to identify the function F(C2). Using the first and second
terms from Eq. (16) write

dt

1
¼

ds

�ðns� oÞðs� 1Þ
. (17)

Using partial fractions

1

ðns� oÞðs� 1Þ
¼

1=ðn� oÞ
s� 1

þ
�n=ðn� oÞ

ns� o
.

Equation (17) may be written as

�dt ¼
1=ðn� oÞ

s� 1
�

n=ðn� oÞ
ns� o

,

dt ¼
n=ðn� oÞ
ns� o

�
1=ðn� oÞ

s� 1
,

R
dt ¼

R n=ðn� oÞ
ns� o

�
1=ðn� oÞ

s� 1

� �
ds;

tþ C ¼
1

n� o
lnðns� oÞ �

1

n� o
lnðs� 1Þ ¼

1

n� o
ln

ns� o
s� 1

� �
;

ðn� oÞtþ C2 ¼ ln
ns� o
s� 1

� �
;

C2 ¼ �ðn� oÞtþ ln
ns� o
s� 1

� �
;

C2 ¼ e�ðn�oÞt
ns� o
s� 1

� �
;

from which

C1 ¼ FðC2Þ ¼ F e�ðn�oÞt
ns� o
s� 1

� �h i
.

Combining the above expressions

GtðsÞ ¼ ðns� oÞðl=nÞþðm=oÞs�ðm=oÞF e�ðn�oÞt
ns� o
s� 1

� �� �
.

Having identified GtðsÞ ¼ ðns� oÞðl=nÞþðm=oÞs�ðm=oÞF½e�ðn�oÞtððns� oÞ=ðs� 1ÞÞ� we
can now pursue a specific solution, beginning with the boundary conditions. At
t ¼ 0, there are a0 patients in the population; therefore

G0ðsÞ ¼ sa0 ¼ ðns� oÞðl=nÞþðm=oÞs�ðm=oÞF
ns� o
s� 1

� �
. (18)
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Now, let z ¼ ðns� oÞ=ðs� 1Þ; then s ¼ ðz� oÞ=ðz� nÞ and substituting this result
into Eq. (18), we obtain

z� o
z� n

� �a0
¼ n

z� o
z� n

� o
� �ðl=nÞþðm=oÞ z� o

z� n

h i�ðm=oÞ
FðzÞ

or

FðzÞ ¼
z� o
z� n

� �a0
n

z� o
z� n

� o
� ��½ðl=nÞþðm=oÞ� z� o

z� n

h im=o
,

allowing us to write

GtðsÞ ¼ ðns�oÞðl=nÞþðm=oÞs�ðm=oÞF e�ðn�oÞt
ns�o
s� 1

� �� �
¼ ðns�oÞðl=nÞþðm=oÞs�ðm=oÞ

ðn e�ðn�oÞt�oÞsþoð1� e�ðn�oÞtÞ

nðe�ðn�oÞt� 1Þsþðn�o e�ðn�oÞtÞ

� �a0þðm=oÞ

� n
e�ðn�oÞt½ðns�oÞ=ðs� 1Þ��o
e�ðn�oÞt½ðns�oÞ=ðs� 1Þ�� n

�o
� ��½ðl=nÞþðm=oÞ�

. ð19Þ

The inversion of Gt(s) is straightforward, requiring only some algebra to com-
plete. Begin by rewriting the last term on the right hand side of Eq. (19) as

n
e�ðn�oÞt½ðns�oÞ=ðs� 1Þ��o
e�ðn�oÞt½ðns�oÞ=ðs� 1Þ�� n

�o
� ��½ðl=nÞþðm=oÞ�
¼

e�ðn�oÞtðn�oÞðns�oÞ
nðe�ðn�oÞt� 1Þsþðn�o e�ðn�oÞtÞ

� ��½ðl=nÞþðm=oÞ�
. ð20Þ

Substituting the above equation into Eq. (19) and simplifying we obtain

GtðsÞ ¼ s�ðm=oÞ½e�ðn�oÞtðn�oÞ��½ðl=nÞþðm=oÞ�
½ðn e�ðn�oÞt�oÞsþoð1� e�ðn�oÞtÞ�a0þðm=oÞ

½nðe�ðn�oÞt� 1Þsþðn�o e�ðn�oÞtÞ�a0�ðl=nÞ
.

The expression ½e�ðn�oÞtðn�oÞ��½ðl=nÞþðm=oÞ� is a constant with respect to s, and the

final term ½ðn e�ðn�oÞt�oÞsþoð1� e�ðn�oÞtÞ�a0þðm=oÞ=½nðe�ðn�oÞt�1Þsþðn�
o e�ðn�oÞtÞ�a0�ðl=nÞ is of the form ½asþ b�n1=½cþds�n2 : It can be shown that the

coefficient of sn in ½asþb�n1=½cþ ds�n2 is

1

c

� �n2 Xminðk;n1Þ

j¼0

n2þ j�1

j

 !
d

c

� �j n1

k� j

 !
bk�jan1�kþj.

Applying this result to the last expression in the above equation reveals that the

coefficient of sk in

½ðn e�ðn�oÞt�oÞsþoð1� e�ðn�oÞtÞ�a0þðm=oÞ

½ðn�o e�ðn�oÞtÞþ nðe�ðn�oÞt� 1Þsþ�a0�ðl=nÞ
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is

1

n�o e�ðn�oÞt

� �a0�ðl=nÞ Xminðk;a0þðm=oÞÞ

j¼0

a0�
l
n
þ j�1

j

0@ 1A� ðn�o e�ðn�oÞtÞ

nðe�ðn�oÞt� 1Þ

� ��j

�
a0þ

m
o

k� j

0@ 1A ½oð1� e�ðn�oÞtÞ�k�j

½ðn e�ðn�oÞt�oÞ��½a0þðm=oÞ�kþj�

,

and the final solution then is:

PkðtÞ ¼ ½e
�ðn�oÞtðn�oÞ��½ðl=nÞþðm=oÞ�

1

n�o e�ðn�oÞt

� �a0�ðl=nÞ

�
Xminðkþðm=oÞ;a0þðm=oÞÞ

j¼0

a0�
l
n
þ j� 1

j

0B@
1CA n�o e�ðn�oÞt

nðe�ðn�oÞt�1Þ

� ��j a0þ
m
o

kþ
m
o
� j

0BB@
1CCA

�
½oð1� e�ðn�oÞtÞ�kþðm=oÞ�j

½ðn e�ðn�oÞt�oÞ��½a0�kþj�
.

References

Austin, M.A., Berreysea, E., Elliott, J.L., Wallace, R.B., Barrett-Connor, E., Criqui, M.H. (1979).

Methods for determining long-term survival in a population based study. American Journal of

Epidemiology 110, 747–752.

Boice, J.D. (1978). Follow-up methods to trace women treated for pulmonary tuberculosis, 1930–1954.

American Journal of Epidemiology 107, 127–138.

Chiang, C.L. (1980). An Introduction to Stochastic Processes and their Applications. Robert E. Krieger

Publishing Company, Huntington, New York.

Curb, J.D., Ford, C.E., Pressel, S., Palmer, M., Babcock, C., Hawkins, C.M. (1985). Ascertainment of

the vital status through the National Death Index and the social security administration. American

Journal of Epidemiology 121, 754–766.

Cutter, G., Siegfried, H., Kastler, J., Draus, J.F., Less, E.S., Shipley, T., Stromer, M. (1980). Mortality

surveillance in collaborative trials. American Journal of Public Health 70, 394–400.

Davis, K.B., Fisher, L., Gillespie, M.J., Pettinger, M. (1985). A test of the National Death Index using

the coronary artery surgery study (CASS). Contemporary Clinical Trials 6, 179–191.

Edlavitch, S.A., Feinleib, M., Anello, C. (1985). A potential use of the National Death Index for post

marketing drug surveillance. JAMA 253, 1292–1295.

Feller, W. (1965). An Introduction to Probability Theory and its Applications. Wiley, New York.
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The Bayesian Approach to Experimental
Data Analysis

Bruno Lecoutre

Abstract

This chapter introduces the conceptual basis of the objective Bayesian approach

to experimental data analysis and reviews some of its methodological improve-

ments. The presentation is essentially non-technical and, within this perspective,

restricted to relatively simple situations of inference about proportions.

Bayesian computations and softwares are also briefly reviewed and some

further topics are introduced.

It is their straightforward, natural approach to inference that makes them

[Bayesian methods] so attractive.

(Schmitt, 1969, preface)

Preamble: and if you were a Bayesian without knowing it?

In a popular statistical textbook that claims the goal of ‘‘understanding statis-
tics,’’ Pagano (1990, p. 288) describes a 95% confidence interval as

an interval such that the probability is 0.95 that the interval contains the pop-

ulation value.

If you agree with this statement, or if you feel that it is not the correct inter-
pretation but that it is desirable, you should ask yourselves: ‘‘and if I was a
Bayesian without knowing it?’’

The correct frequentist interpretation of a 95% confidence interval involves a
long-run repetition of the same experiment: in the long run 95% of computed
confidence intervals will contain the ‘‘true value’’ of the parameter; each interval
in isolation has either a 0 or 100% probability of containing it. Unfortunately,
treating the data as random even after observation is so strange that this ‘‘correct’’
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interpretation does not make sense for most users. Actually, virtually all users
interpret frequentist confidence intervals in terms of ‘‘a fixed interval having a
95% chance of including the true value of interest.’’

In the same way, many statistical users misinterpret the p-values of null
hypothesis significance tests as ‘‘inverse’’ probabilities: 1� p is ‘‘the probability
that the alternative hypothesis is true.’’ Even experienced users and experts in
statistics (Neyman himself) are not immune from conceptual confusions.

In these conditions [a p-value of 1/15], the odds of 14 to 1 that this loss was

caused by seeding [of clouds] do not appear negligible to us. (Battan et al.,

1969)

After many attempts to rectify these (Bayesian) interpretations of frequentist
procedures, I completely agree with Freeman (1993, p. 1446) that in these
attempts ‘‘we are fighting a losing battle.’’

It would not be scientifically sound to justify a procedure by frequentist

arguments and to interpret it in Bayesian terms. (Rouanet, 2000b, p. 54)

We then naturally have to ask ourselves whether the ‘‘Bayesian choice’’ will
not, sooner or later, be unavoidable (Lecoutre et al., 2001).

1. Introduction

Efron (1998, p. 106) wrote

A widely accepted objective Bayes theory, which fiducial inference was intended

to be, would be of immense theoretical and practical importance. A successful

objective Bayes theory would have to provide good frequentist properties in

familiar situations, for instance, reasonable coverage probabilities for whatever

replaces confidence intervals.

I suggest that such a theory is by no means a speculative viewpoint but, on the
contrary, is perfectly feasible (see especially, Berger, 2004). It is better suited to
the needs of users than frequentist approach and provides scientists with relevant
answers to essential questions raised by experimental data analysis.

1.1. What is Bayesian inference for experimental data analysis?

One of the most important objective of controlled clinical trials is to impact on
public health, so that their results need to be accepted by a large community of
scientists and physicians. For this purpose, null hypothesis significance testing
(NHST) has been long conventionally required in most scientific publications for
analyzing experimental data. This publication practice dichotomizes each exper-
imental result (significant vs. non-significant) according to the NHST outcome.
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But scientists cannot in this way find all the answers to the precise questions posed
in experimental investigations, especially in terms of effect size evaluation.

But the primary aim of a scientific experiment is not to precipitate decisions,

but to make an appropriate adjustment in the degree to which one accepts, or

believes, the hypothesis or hypotheses being tested. (Rozeboom, 1960)

By their insistence on the decision-theoretic elements of the Bayesian approach,
many authors have obscured the contribution of Bayesian inference to experi-
mental data analysis and scientific reporting. Within this context, many Bayesians
place emphasis on a subjective perspective. This can be the reasons why until now
scientists have been reluctant to use Bayesian inferential procedures in practice
for analyzing their data. It is not surprising that the most common (and easy)
criticism of the Bayesian approach by frequentists is the need for prior proba-
bilities. Without dismissing the merits of the decision-theoretic viewpoint, it must
be recognized that there is another approach that is just as Bayesian, which
was developed by Jeffreys in 1930s (Jeffreys, 1961/1939). Following the lead of
Laplace (1986/1825), this approach aimed at assigning the prior probability when
nothing was known about the value of the parameter. In practice, these non-

informative prior probabilities are vague distributions that, a priori, do not favor
any particular value. Consequently, they let the data ‘‘speak for themselves’’
(Box and Tiao, 1973, p. 2). In this form, the Bayesian paradigm provides, if not
objective methods, at least reference methods appropriate for situations involving
scientific reporting. This approach of Bayesian inference is now recognized as a
standard.

A common misconception is that Bayesian analysis is a subjective theory; this is

neither true historically nor in practice. The first Bayesians, Bayes (see Bayes

(1763)) and Laplace (see Laplace (1812)) performed Bayesian analysis using a

constant prior distribution for unknown parameters y (Berger, 2004, p. 3)

1.2. Routine Bayesian methods for experimental data analysis

For more than 30 years now, with other colleagues in France we have worked
in order to develop routine Bayesian methods for the most familiar situations
encountered in experimental data analysis. These methods can be learned and
used as easily, if not more, as the t, F or w2 tests. We argued that they offer
promising new ways in statistical methodology (Rouanet et al., 2000).

We have especially developed methods based on non-informative priors. In
order to promote them, it seemed important to us to give them a more explicit
name than ‘‘standard,’’ ‘‘non-informative’’ or ‘‘reference.’’ Recently, Berger
(2004) proposed the name objective Bayesian analysis.

The statistics profession, in general, hurts itself by not using attractive names

for its methodologies, and we should start systematically accepting the ‘objec-

tive Bayes’ name before it is co-opted by others. (Berger, 2004, p. 3)
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With the same incentive, we argued for the name fiducial Bayesian (Lecoutre,
2000; Lecoutre et al., 2001). This deliberately provocative name pays tribute to
Fisher’s work on scientific inference for research workers (Fisher, 1990/1925).
It indicates their specificity and their aim to let the statistical analysis express what

the data have to say independently of any outside information.
An objective (or fiducial) Bayesian analysis has a privileged status in order to

gain public use statements. However, this does not preclude using other Bayesian
techniques when appropriate.

1.3. The aim of this chapter

The aim of this chapter is to introduce the conceptual basis of objective Bayesian
analysis and to illustrate some of its methodological improvements. The pres-
entation will be essentially non-technical and, within this perspective, restricted
to simple situations of inference about proportions. A similar presentation for
inferences about means in the analysis of variance framework is available else-
where (Lecoutre, 2006a).

The chapter is divided into four sections. (1) I briefly discuss the frequentist
and Bayesian approaches to statistical inference and show the difficulties of the
frequentist conception. I conclude that the Bayesian approach is highly desirable,
if not unavoidable. (2) Its feasibility is illustrated in detail from a simple illus-
trative example of inference about a proportion in a clinical trial; basic Bayesian
procedures are contrasted with usual frequentist techniques and their advantages
are outlined. (3) Other examples of inferences about proportions serve me to
show that these basic Bayesian procedures can be straightforward extended to
deal with more complex situations. (4) The concluding remarks summarize the
main advantages of the Bayesian methodology for experimental data analysis.
Bayesian computations and softwares are also briefly reviewed. At last, some
further topics are introduced.

The reader interested in more advanced aspects of Bayesian inference, with an
emphasis on modeling and computation, is especially referred to the Volume 25 of
this series (Dey and Rao, 2005).

2. Frequentist and Bayesian inference

2.1. Two conceptions of probabilities

Nowadays, probability has at least two main definitions (Jaynes, 2003). (1) Prob-
ability is the long-run frequency of occurrence of an event, either in a sequence of
repeated trials or in an ensemble of ‘‘identically’’ prepared systems. This is the
‘‘frequentist’’ conception of probability, which seems to make probability an
observable (‘‘objective’’) property, existing in the nature independently of us, that
should be based on empirical frequencies. (2) Probability is a measure of the
degree of belief (or confidence) in the occurrence of an event or in a proposition.
This is the ‘‘Bayesian’’ conception of probability.
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This dualistic conception was already present in Bernoulli (1713), who clearly
recognized the distinction between probability (‘‘degree of certainty’’) and fre-
quency, deriving the relationship between probability of occurrence in a single
trial and frequency of occurrence in a large number of independent trials.

Assigning a frequentist probability to a single-case event is often not obvious,
since it requires imagining a reference set of events or a series of repeated exper-
iments in order to get empirical frequencies. Unfortunately, such sets are sel-
dom available for assignment of probabilities in real problems. By contrast, the
Bayesian definition is more general: it is not conceptually problematic to assign a
probability to a unique event (Savage, 1954; de Finetti, 1974).

It is beyond any reasonable doubt that for most people, probabilities about

single events do make sense even though this sense may be naive and fall short

from numerical accuracy. (Rouanet, 2000a, p. 26)

The Bayesian definition fits the meaning of the term probability in everyday
language, and so the Bayesian probability theory appears to be much more
closely related to how people intuitively reason in the presence of uncertainty.

2.2. Two approaches to statistical inference

The frequentist approach to statistical inference is self-proclaimed objective con-
trary to the Bayesian conception that should be necessary subjective. However,
the Bayesian definition can clearly serve to describe ‘‘objective knowledge,’’ in
particular based on symmetry arguments or on frequency data. So Bayesian
statistical inference is no less objective than frequentist inference. It is even the
contrary in many contexts.

Statistical inference is typically concerned with both known quantities – the
observed data – and unknown quantities – the parameters and the data that have
not been observed. In the frequentist inference, all probabilities are conditional on
parameters that are assumed known. This leads in particular to

� significance tests, where the parameter value of at least one parameter is fixed
by hypothesis;
� confidence intervals.

In the Bayesian inference, parameters can also be probabilized. This results in
distributions of probabilities that express our uncertainty:

� before observations (they do not depend on data): prior probabilities;
� after observations (conditional on data): posterior (or revised) probabilities;
� about future data: predictive probabilities.

As a simple illustration let us consider a finite population of size 20 with a
dichotomous variable success/failure and a proportion j (the unknown parameter)
of success. A sample of size 5 has been observed, hence these known data:

0 0 0 1 0 f ¼ 1=5
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The inductive reasoning is fundamentally a generalization from a known
quantity (here the data f ¼ 1/5) to an unknown quantity (here the parameter j).

2.3. The frequentist approach: from unknown to known

In the frequentist framework, we have no probabilities and consequently no
possible inference. The situation must be reversed, but we have no more prob-
abilities y unless we fix a parameter value. Let us assume, for instance, j ¼ 0.75.

Then we get sampling probabilities Pr(f |j ¼ 0.75) – that is frequencies –
involving imaginary repetitions of the observations. They can be obtained by sim-
ulating repeated drawing of samples of 5marbles (without replacement) from a box
that contains 15 black and 5 white marbles. Alternatively, they can be (exactly)
computed from a hypergeometric distribution. These sampling probabilities serve
to define a null hypothesis significance test. If the null hypothesis is true (j ¼ 0.75),
one find in 99.5% of the repetitions a value f41/5 (the proportion of black marbles
in the sample), greater than the observation in hand: the null hypothesis j ¼ 0.75
is rejected (‘‘significant test’’: p ¼ 0.005). Note that I do not enter here in the
one-sided/two-sided test discussion, which is irrelevant for my purpose.

However, this conclusion is based on the probability of the samples that have

not been observed, what Jeffreys (1961, Section 7.2) ironically expressed in the
following terms:

If P is small, that means that there have been unexpectedly large departures

from prediction. But why should these be stated in terms of P? The latter gives

the probability of departures, measured in a particular way, equal to or greater

than the observed set, and the contribution from the actual value is nearly

always negligible. What the use of P implies, therefore, is that a hypothesis that

may be true may be rejected because it has not predicted observable results that

have not occurred. This seems a remarkable procedure.

As another example of null hypothesis, let us assume j ¼ 0.50. In this case, if
the null hypothesis is true (j ¼ 0.50), one find in 84.8% of the repetitions a value
f41/5, greater than the observation: the null hypothesis j ¼ 0.50 is not rejected
by the data in hand. Obviously, this does not prove that j ¼ 0.50!

Now a frequentist confidence interval can be constructed as the set of possible
parameter values that are not rejected by the data. Given the data in hand we get
the following 95% confidence interval: [0.05, 0.60]. How to interpret the confi-
dence 95%? The frequentist interpretation is based on the universal statement:

whatever the fixed value of the parameter is, in 95% (at least) of the repetitions

the interval that should be computed includes this value.

But this interpretation is very strange since it does not involve the data in hand! It is
at least unrealistic, as outlined by Fisher (1990/1973, p. 71):

Objection has sometimes been made that the method of calculating Confidence

Limits by setting an assigned value such as 1% on the frequency of observing 3
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or less (or at the other end of observing 3 or more) is unrealistic in treating the

values less than 3, which have not been observed, in exactly the same manner as

the value 3, which is the one that has been observed. This feature is indeed not

very defensible save as an approximation.

2.4. The Bayesian approach: from known to unknown

As long as we are uncertain about values of parameters, we will fall into the

Bayesian camp. (Iversen, 2000)

Let us return to the inductive reasoning, starting from the known data, and
adopting a Bayesian viewpoint. We can now use, in addition to sampling prob-
abilities, probabilities that express our uncertainty about all possible values of
the parameter. In the Bayesian inference, we consider, not the frequentist prob-
abilities of imaginary samples but the frequentist probabilities of the observed

data Pr(f ¼ 1/5|j) for all possible values of the parameter. This is the likelihood

function that is denoted by

‘ðjjdataÞ.

We assume prior probabilities Pr(j) before observations. Then, by a simple
product, we get the joint probabilities of the parameter values and the data:

Pr j and f ¼
1

5

� �
¼ Pr f ¼

1

5

����j� �
� PrðjÞ ¼ ‘ðjjdataÞ � PrðjÞ.

The sum of the joint probabilities gives the marginal predictive probability of the
data, before observation:

Pr f ¼
1

5

� �
¼
X
j

Pr j and f ¼
1

5

� �
.

The result is very intuitive since the predictive probability is a weighted average of
the likelihood function, the weights being the prior probabilities.

Finally, we compute the posterior probabilities after observation, by applica-
tion of the definition of conditional probabilities. The posterior distribution
(given by Bayes’ theorem) is simply the normalized product of the prior and the
likelihood:

Pr j f ¼
1

5

����� �
/ ‘ðjjdataÞ � PrðjÞ ¼

Prðj and f ¼ 1=5Þ

Prðf ¼ 1=5Þ
.

2.5. The desirability of the Bayesian alternative

We can conclude with Berry (1997):

Bayesian statistics is difficult in the sense that thinking is difficult.
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In fact, it is the frequentist approach that involves considerable difficulties due
to the mysterious and unrealistic use of the sampling distribution for justifying
null hypothesis significance tests and confidence intervals. As a consequence, even
experts in statistics are not immune from conceptual confusions about frequentist
confidence intervals.

For instance, in a methodological paper, Rosnow and Rosenthal (1996, p. 336)
take the example of an observed difference between two means d ¼+0.266. They
consider the interval [0, +0.532] whose bounds are the ‘‘null hypothesis’’ (0) and
what they call the ‘‘counternull value’’ (2d ¼+0.532), computed as the symmet-
rical value of 0 with regard to d. They interpret this specific interval [0, +0.532]
as ‘‘a 77% confidence interval’’ (0.77 ¼ 1�2� 0.115, where 0.115 is the one-sided
p-value for the usual t-test). If we repeat the experience, the counternull value and
the p-value will be different, and, in a long-run repetition, the proportion of null–
counternull intervals that contain the true value of the difference dwill not be 77%.
Clearly, 0.77 is here a data-dependent probability, which needs a Bayesian approach
to be correctly interpreted. Such difficulties are not encountered with the Bayesian
inference: the posterior distribution, being conditional on data, only involves the
sampling probability of the data in hand, via the likelihood function ‘ðjjdataÞ that
writes the sampling distribution in the natural order: ‘‘from unknown to known.’’

Moreover, since most people use ‘‘inverse probability’’ statements to interpret
NHST and confidence intervals, the Bayesian definition of probability, condi-
tional probabilities and Bayes’ formula are already – at least implicitly – involved
in the use of frequentist methods. Which is simply required by the Bayesian
approach is a very natural shift of emphasis about these concepts, showing that
they can be used consistently and appropriately in statistical analysis. This makes
this approach highly desirable, if not unavoidable.

With the Bayesian inference, intuitive justifications and interpretations of
procedures can be given. Moreover, an empirical understanding of probability
concepts is gained by applying Bayesian procedures, especially with the help of
computer programs.

2.6. Training strategy

The reality of the current use of statistical inference in experimental research
cannot be ignored. On the one hand, experimental publications are full of
significance tests and students and researchers are (and will be again in the future)
constantly confronted to their use. My opinion is that NHST is an inadequate
method for experimental data analysis (which has been denounced by the most
eminent and most experienced scientists), not because it is an incorrect normative
model, just because it does not address the questions that scientific research
requires (Lecoutre et al., 2003; Lecoutre, 2006a, 2006b). However, NHST is such
an integral part of experimental teaching and scientists’ behavior that its misuses
and abuses should not be discontinued by flinging it out of the window.

On the one hand, confidence intervals could quickly become a compulsory
norm in experimental publications. On the other hand, for many reasons due to
their frequentist conception, confidence intervals can hardly be viewed as the
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ultimate method. In practice, two probabilities can be routinely associated with a
specific interval estimate computed from a particular sample.

� The first probability is ‘‘the proportion of repeated intervals that contain the
parameter.’’ It is usually termed the coverage probability.
� The second probability is the Bayesian ‘‘posterior probability that this interval
contains the parameter,’’ assuming a non-informative prior distribution.

In the frequentist approach, it is forbidden to use the second probability. On
the contrary, in the Bayesian approach, the two probabilities are valid. Moreover,
an objective Bayes interval is often ‘‘a great frequentist procedure’’ (Berger, 2004).

As a consequence, it is a challenge for statistical instructors to introduce Bay-
esian inference without discarding either NHST or the ‘‘official guidelines’’ that
tend to supplant it by confidence intervals. I argue that the sole effective strategy
is a smooth transition towards the Bayesian paradigm (Lecoutre et al., 2001).

The suggested training strategy is to introduce Bayesian methods as follows:
(1) to present natural Bayesian interpretations of NHST outcomes to call atten-
tion about their shortcomings. (2) To create as a result of this the need for a

change of emphasis in the presentation and interpretation of results. (3) Finally, to
equip users with a real possibility of thinking sensibly about statistical inference

problems and behaving in a more reasonable manner.

3. An illustrative example

My first example of application will concern the inference about a proportion
in a clinical trial (Lecoutre et al., 1995). The patients under study were post-
myocardial infarction patients, treated with a low-molecular-weight heparin as a
prophylaxis of an intra-cardial left ventricular thrombosis. Because of the limited
knowledge available on drug potential efficacy, the trial aimed at abandoning
further development as early as possible if the drug was likely to be not effective,
and at estimating its efficacy if it turned out to be promising. It was considered that
0.85 was the success rate (no thrombosis) above which the drug would be attractive,
and that 0.70 was the success rate below which the drug would be of no interest.

The trial was initially designed within the traditional Neyman–Pearson frame-
work. Considering the null hypothesis H0: j ¼ 0.70, the investigators planned a
one-sided fixed sample Binomial test with specified respective Type I and Type II
error probabilities a ¼ 0.05 and b ¼ 0.20, hence a power 1�b ¼ 0.80 at the
alternative Ha: j ¼ 0.85 (the hypothesis that they wish to accept!). The associated
sample size was n ¼ 59, for which the Binomial test rejects H0 at level 0.05 if the
observed number of success a is greater than 47. Indeed, for a sample of size n, the
probability of observing a successes is given by the Binomial distribution

ajj 	 Binðj; nÞ,

PrðajjÞ ¼
n

a

� �
jað1� jÞn�a,
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hence the likelihood function

‘ðjjdataÞ 	 jað1� jÞn�a.

For n ¼ 59 (which can be found by successive iterations), we get:

Prða447jH0 : j ¼ 0:70Þ ¼ 0:035o0:05 ðaÞ

Prða447jHa : j ¼ 0:85Þ ¼ 0:83440:80 ð1� bÞ:

Note that, due to the discreteness of the distribution, the actual Type I error rate
and the actual power differ from a and 1� b.

Since it would be preferable to stop the experiment as early as possible if the
drug was likely to be ineffective, the investigators planned an interim analysis
after 20 patients have been included. Since the traditional Neyman–Pearson
framework requires specification of all possibilities in advance, they designed a
stochastically curtailed test. Stochastic curtailment suggests that an experiment
be stopped at an interim stage when the available information determines the
outcome of the experiment with high probability under either H0 or Ha. The
notations are summarized in Table 1.

3.1. Stochastically curtailed testing and conditional power

Stochastically curtailed testing uses the ‘‘conditional power’’ at interim analysis,
which is defined as the probability, given j and the available data, that the test
rejects H0 at the planned termination. At interim analysis, termination occurs to
reject H0 if the conditional power at the null hypothesis value is high, say greater
than 0.80. In our example, even if after 20 observations 20 successes have been
observed, we do not stop the trial.

Similarly, early termination may be allowed to accept H0 if the conditional
power at the alternative hypothesis value is weak, say smaller than 0.20. For
instance, if 12 successes have been observed after 20 observations this rule sug-
gests stopping and accepting the null hypothesis. A criticism addressed to this
procedure is that there seems little point in considering a prediction that is based
on hypotheses that may be no longer fairly plausible given the available data. In
fact, the procedure ignores the knowledge about the parameter accumulated by
the time of the interim analysis.

Table 1

Summary of the notations for the inference about a proportion

Number of Successes Number of Errors Sample Size

Current data at interim stage a1 n1�a1 n1 ¼ 20

Future data a2 n2�a2 n1 ¼ 39

Complete data a ¼ a1+a2 n�a n ¼ 59
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3.2. An hybrid solution: the predictive power

Many authors have advocated calculating the ‘‘predictive power,’’ averaging
conditional power over values of the parameter in a Bayesian calculation. We are
led to a Bayesian approach, but still with a frequentist test in mind. Formally, the
prediction uses the posterior distribution of j given a prior and the data available
at the interim analysis. For the inference about a proportion, the calculations are
particularly simple if we choose a conjugate Beta prior distribution

j 	 Betaða0; b0Þ,

with density

pðjÞ ¼
1

Bða0; b0Þ
ja0�1ð1� jÞb0�1.

The advantage is that the posterior is also a Beta distribution (hence the name
conjugate), with density

pðjjdataÞ / ‘ðjjdataÞ � pðjÞ / ja0þa�1ð1� jÞb0þb�1.

The prior weights a0 and b0 are added to the observed counts a1 and b1, so that at
the interim analysis

jjdata 	 jja1 	 Betaða1 þ a0; b1 þ b0Þ.

The predictive distribution, which is a mixture of Binomial distributions, is
naturally called a Beta–Binomial distribution

a2ja1 	 Beta2Binða1 þ a0; b1 þ b0; n2Þ.

A vague or non-informative prior is generally considered. It is typically defined by
small weights a0 and b0, included between 0 and 1. Here, I have retained a Beta
prior with parameters 0 and 1

j 	 Betað0; 1Þ.

This choice is consistent with the test procedure. I shall address this issue in
greater detail later on.

In the example above with n1 ¼ 20 and a1 ¼ 20, the predictive probability of
rejecting H0 at the planned termination (n ¼ 59) explicitly takes into account the
available data (no failure has been observed). It is with no surprise largely greater
than the probability conditional on the null hypothesis value

Prða447ja1 ¼ 20Þ ¼ Prða2427ja1 ¼ 20Þ ¼ 0:99740:80,

hence the decision to stop and reject H0.
This predictive probability is a weighted average of the probabilities condi-

tional to j, the weights being given by the posterior distribution

Prða447ja1 ¼ 20 and jÞ ¼ Prða2427ja1 ¼ 20 and jÞ,
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some examples of which being

j 7! Pr(a447|a1 ¼ 20 and j)
1 1
0.95 0.9999997
0.85 0.990
0.70 0.482

Since the predictive power approach is a hybrid one, it is most unsatisfactory.
In particular, it does not give us direct Bayesian information about j. The trouble
is that a decision (to accept H0 or to accept Ha) is taken at the final analysis
(or eventually at an interim analysis), even if the observed proportion falls in the
no-decision region [0.70, 0.85], in which case nothing has been proved.

What the investigators need is to evaluate at any stage of the experiment the
probability of some specified regions of interest and the ability of a future sample
to support and corroborate findings already obtained. The Bayesian analysis
addresses these issues.

3.3. The Bayesian solution

Bayesian methodology enables the probabilities of the pre-specified regions of
interest to be obtained. Such statements give straight answers to the question of
effect sizes and have no frequentist counterpart. Consider the following example
of Bayesian interim analysis, with 10 observed successes (n1 ¼ 20 and a1 ¼ 10).

3.3.1. Evaluating the probability of specified regions

Let us assume the Jeffreys prior Beta(1/2, 1/2) – hence the posterior Beta(10.5,
10.5) shown in Fig. 1 – that will give the privileged non-informative solution
(I shall also address this issue later on).

In this case it is very likely that the drug is ineffective (jo0.70), as indicated by
the following statements

Prðjo0:70ja1 ¼ 10Þ ¼ 0:971

Prð0:70ojo0:85ja1 ¼ 10Þ ¼ 0:029 Prðj40:85ja1 ¼ 10Þ ¼ 0:0001:

Fig. 1. Example of interim analysis (n1 ¼ 20 and a1 ¼ 10). Density of the posterior distribution

Beta(10.5, 10.5) associated with the prior Beta(1/2, 1/2).
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Note that in this case, the Bayesian inference about j at the interim analysis does
not explicitly integrate the stopping rule (which is nevertheless taken into account
in the predictive probability). In the frequentist framework, the interim inferences
are usually modified according to the stopping rule. This issue – that could appear
as an area of disagreement between the frequentist and Bayesian approaches –
will be considered later on. Resorting to computers solves the technical problems
involved in the use of Bayesian distributions. This gives the users an attractive
and intuitive way of understanding the impact of sample sizes, data and prior
distributions. The posterior distribution can be investigated by means of visual
display.

3.3.2. Evaluating the ability of a future sample to corroborate the available results

As a summary to help in the decision whether to continue or to terminate the
trial, it is useful to assess the predictive probability of confirming the conclusion
of ineffectiveness. If a guarantee of at least 0.95 for the final conclusion is wanted,
that is Pr(jo0.70|a)40.95, the total number of successes a must be less than 36
out of 59. Since a1 ¼ 10 successes have been obtained, we must compute the
predictive probability of observing 0ra2r25 successes in the future data. Here,
given the current data, there is about 87% chance that the conclusion of ineffec-
tiveness will be confirmed. Table 2 gives a summary of the analyses for the
previous example and for another example more favorable to the new drug.

3.3.3. Determining the sample size

Predictive procedures are also useful tools to help in the choice of the sample size.
Suppose that in order to plan a trial to demonstrate the effectiveness of the
drug, we have realized a pilot study: for instance, with n0 ¼ 10 patients, we
have observed zero failure. In this case, the posterior probability from the pilot

Table 2

Summary of the Bayesian interim analyses

Prior Distribution Beta(1/2, 1/2)

Example 1: n1 ¼ 20 and a1 ¼ 10

Inference about j Predictive probability (n ¼ 59)

Posterior probability Conclusion with guaranteeZ0.95

Pr(jo0.70|a1 ¼ 10) jo0.70

0.971 0.873 (ao36)

Pr(jo0.85|a1 ¼ 10) jo0.85

0.9999 0.9998 (ao46)

Example 2: n1 ¼ 20 and a1 ¼ 18

Inference about j Predictive probability (n ¼ 59)

Posterior probability Conclusion with guaranteeZ0.95

Pr(jo0.70|a1 ¼ 10) j 40.70

0.982 0.939 (a446)

Pr(jo0.85|a1 ¼ 10) j40.85

0.717 0.301 (a454)
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experiment (starting with the Jeffreys prior) is used as prior distribution. Here, for
this prior, Pr(j40.85) ¼ 0.932. If the preliminary data of the pilot study are
integrated in the analysis (‘‘full Bayesian’’ approach), the procedure is exactly
the same as that of the interim analysis. However, in most experimental devices,
the preliminary data are not included, and the analysis is conducted using a non-
informative prior, here Beta(1/2, 1/2).

The procedure remains analogous: we compute the predictive probability that
in the future sample of size n (not in the whole data), the conclusion of effec-
tiveness (j40.85) will be reached with a given guarantee g. Hence, for instance,
the following predictive probabilities for g ¼ 0.95

n ¼ 20 7!0:582 ða419Þ n ¼ 30 7!0:696 ða428Þ

n ¼ 40 7!0:744 ða437Þ n ¼ 50 7!0:770 ða446Þ

n ¼ 60 7!0:787 ða455Þ n ¼ 70 7!0:696 ða464Þ

n ¼ 71 7!0:795 ða465Þ n ¼ 72 7!0:829 ða465Þ:

Values within parentheses indicate those values of a that satisfy the condition

Prðj40:85jaÞ 
 0:95.

Based on the preliminary data, there are 80% chances to demonstrate effective-
ness with a sample size about 70. Note that it is not surprising that the
probabilities can be non-increasing: this results in the discreteness of the variable
(it is the same for power).

3.4. A comment about the choice of the prior distribution: Bayesian procedures are

no more arbitrary than frequentist ones

Many potential users of Bayesian methods continue to think that they are too
subjective to be scientifically acceptable. However, frequentist methods are full of
more or less ad hoc conventions. Thus, the p-value is traditionally based on the
samples that are ‘‘more extreme’’ than the observed data (under the null hypoth-
esis). But, for discrete data, it depends on whether the observed data are included or
not in the critical region. So, for the usual Binomial one-tailed test for the null
hypothesis, j ¼ j0 against the alternative j4j0, this test is conservative, but if the
observed data are excluded, it becomes liberal. A typical solution to overcome this
problem consists in considering a mid-p-value, but it has only ad hoc justifications.

In our example, suppose that 47 successes are observed at the final analysis
(n ¼ 59 and a ¼ 47), that is the value above which the Binomial test rejects
H0:j ¼ 0.70. The p-value can then be computed according to the three following
possibilities:

(1) pinc ¼ Pr(aZ47|H0: j ¼ 0.70) ¼ 0.066 [‘‘including’’ solution]
)H0 is not rejected at level a ¼ 0.05 (conservative test)

(2) pexc ¼ Pr(a447|H0: j ¼ 0.70) ¼ 0.035 [‘‘excluding’’ solution]
)H0 is rejected at level a ¼ 0.05 (liberal test)

(3) pmid ¼ 1/2(pinc+pexc) ¼ 0.051 [mid-p-value]
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Obviously, in this case the choice of a non-informative prior distribution can-
not avoid conventions. But the particular choice of such a prior is an exact
counterpart of the arbitrariness involved within the frequentist approach. For
Binomial sampling, different non-informative priors have been proposed (for a
discussion, see, e.g., Lee, 2004, pp. 79–81). In fact, there exist two extreme non-
informative priors that are, respectively, the most unfavorable and the most fa-
vorable priors with respect to the null hypothesis. They are respectively the Beta
distribution of parameters 1 and 0 and the Beta distribution of parameters 0
and 1. These priors lead to the Bayesian interpretation of the Binomial test: the
observed significance levels of the inclusive and exclusive conventions are exactly
the posterior Bayesian probabilities that j is greater than j0, respectively, as-
sociated with these two extreme priors. Note that these two priors constitute an a
priori ‘‘ignorance zone’’ (Bernard, 1996), which is related to the notion of im-
precise probability (see Walley, 1996).

(1) Pr(jo0.70|a ¼ 47) ¼ 0.066 ¼ pinc
for the prior j 	Beta(0, 1) (the most favorable to H0)
hence the posterior j|a	Beta(47, 13)

(2) Pr(jo0.70|a ¼ 47) ¼ 0.035 ¼ pexc
for the prior j	Beta(1, 0) (the most unfavorable to H0)
hence the posterior j|a	Beta(48, 12)

(3) Pr(jo0.70|a ¼ 47) ¼ 0.049Epmid

for the prior j 	Beta(1/2, 1/2)
hence the posterior j|a	Beta(47.5, 12.5)

Then the usual criticism of frequentists towards the divergence of Bayesians
with respect to the choice of a non-informative prior can be easily reversed.
Furthermore, the Jeffreys prior, which is very naturally the intermediate Beta
distribution of parameters 1/2 and 1/2, gives a posterior probability, fully jus-
tified, close to the observed mid-p-value. The Bayesian response should not be to
underestimate the impact of the choice of a particular non-informative prior, as it
is often done,

In fact, the [different non informative priors] do not differ enough to make

much difference with even a fairly small amount of data. (Lee, 2004, p. 81)

but on the contrary to assume it.

3.5. Bayesian credible intervals and frequentist coverage probabilities

In other situations, where there is no particular value of interest for the propor-
tion, we may consider an interval (or more generally a region) estimate for j. In
the Bayesian framework, such an interval is usually termed a credible interval (or
credibility interval), which explicitly accounts for the difference in interpretation
with the frequentist confidence interval.
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3.5.1. Equal-tails intervals

Table 3 gives 95% equal-tails credible intervals for the following two examples,
assuming different non-informative priors.

The prior Beta(1, 0), which gives the largest limits, has the following fre-
quentist properties: the proportion of samples for which the upper limit is less
than j is smaller than a/2 and the proportion of samples for which the lower limit
is more than j is larger than a/2. The prior Beta(0, 1), which gives the smallest
limits, has the reverse properties. Consequently, simultaneously considering the
limits of these two intervals protects the user both from erroneous acceptation
and rejection of hypotheses about j. This is undoubtedly an objective Bayesian
analysis. If a single limit is wanted for summarizing and reporting results, these
properties lead to retain the intermediate symmetrical prior Beta(1/2, 1/2) (which
is the Jeffreys prior). Actually, the Jeffreys credible interval has remarkable
frequentist properties. Its coverage probability is very close to the nominal level,
even for small-size samples, and it can be favorably compared to most frequentist
intervals (Brown et al., 2001; Agresti and Min, 2005).

We revisit the problem of interval estimation of a Binomial proportion y We

begin by showing that the chaotic coverage properties of the Wald interval are

far more persistent than is appreciated y We recommend the Wilson interval

or the equal-tailed Jeffreys prior interval for small n. (Brown et al., 2001, p. 101)

Note that similar results are obtained for negative-Binomial (or Pascal)
sampling, in which we observe the number of patients n until a fixed number of

successes a is obtained. In this case, the observed significance levels of the in-
clusive and exclusive conventions are exactly the posterior Bayesian probabilities
associated with the two respective priors Beta(0, 0) and Beta(0, 1). This suggests
privileging the intermediate Beta distribution of parameters 0 and 1/2, which is
precisely the Jeffreys prior. This result concerns an important issue related to the
‘‘likelihood principle.’’ I shall address it in greater detail further on.

3.5.2. Highest posterior density intervals

A frequently recommended alternative approach is to consider the highest pos-

terior density (HPD) credible interval. For such an interval, which can be in fact
an union of disjoint intervals (if the distribution is not unimodal), every point
included has higher probability density than every point excluded. The aim is to

Table 3

Example of 95% credible intervals assuming different non-informative priors

Beta(0, 1) Beta(1, 1) Beta(1/2, 1/2) Beta(0, 0) Beta(1, 0)

n1 ¼ 20, a1 ¼ 19

[0.7513, 0.9877] [0.7618, 0.9883] [0.7892, 0.9946] [0.8235, 0.9987] [0.8316, 0.9987]

n1 ¼ 59, a1 ¼ 32

[0.4075, 0.6570] [0.4161, 0.6633] [0.4158, 0.6649] [0.4240, 0.6728] [0.4240, 0.6728]
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get the shortest possible interval. However, except for a symmetric distribution,
each of the two one-sided probabilities is different from a/2. This property is
generally undesirable in experimental data analysis, since more questions are
‘‘one-sided’’ as in the present example.

Moreover, such an interval is not invariant under transformation (except for a
linear transformation), which can be considered with Agresti and Min (2005, p. 3)
as ‘‘a fatal disadvantage.’’ So, for the data n ¼ 59, a ¼ 32 and the prior Beta(1/2,
1/2), we get the HPD intervals

½0:4167; 0:6658� for j and ½0:7481; 2:1594� for
j

1� j
,

with the one-sided probabilities

Prðjo0:4167Þ ¼ 0:026 and Pr
j

1� j
o0:7481

� �
¼ 0:039,

Prðjo0:6658Þ ¼ 0:024 and Pr
j

1� j
o2:1594

� �
¼ 0:011.

It must be emphasized, from this example, that the posterior distribution of
j/(1�j) is easily obtained: it is a Fisher–Snedecor F distribution. We find the
95% equal-tails interval [0.712, 1.984].

3.6. The contribution of informative priors

When an objective Bayesian analysis suggests a given conclusion, various prior
distributions expressing results from other experiments or subjective opinions
from specific, well-informed individuals (‘‘experts’’), whether skeptical or con-

vinced (enthusiastic), can be investigated to assess the robustness of conclusions
(see, in particular, Spiegelhalter et al., 1994).

The elicitation of a prior distribution from the opinions of ‘‘experts’’ in the
field can be useful in some studies, but it must be emphasized that this needs
appropriate techniques (see for an example in clinical trials Tan et al., 2003) and
should be used with caution. The following examples are provided to understand
how the Bayesian inference combines information, and are not intended to cor-
respond to a realistic situation (in the current situation, no good prior informa-
tion was available). I leave the reader the task to appreciate the potential
contribution of these methods.

3.6.1. Skeptical and convinced priors

Consider again the example of data n ¼ 59, a ¼ 32, for which the objective Bay-
esian procedure concludes to inefficiency (jo0.70). For the purpose of illustra-
tion, let us assume the two priors, a priori, respectively, very skeptical and very
convinced about the drug:

j 	 Betað20; 80Þ with mean 0:200 for which Prðjo0:70Þ � 1,

j 	 Betað98; 2Þ with mean 0:980 for which Prðj40:85Þ ¼ 0:999998.
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The respective posteriors are

j 	 Betað52; 107Þ with mean 0:327 for which Prðjo0:70Þ � 1,

j 	 Betað130; 29Þ with mean 0:818 for which Prðj40:85Þ ¼ 0:143.

Of course the first prior reinforces the conclusion of inefficiency. Figure 2 shows
this prior density (thick line) and the posterior (medium line), which can be
compared to the objective posterior for the prior Beta(1/2, 1/2) (thin line). How-
ever, for the planned sample size, this prior opinion does not have any chance of
being infirmed by the data. Even if 59 successes and 0 error had been observed,
one would have Pr(jo0.70)|a ¼ 59) ¼ 0.99999995.

The second prior allows a clearly less unfavorable conclusion. However, the
efficiency of the drug cannot be asserted:

Prðj40:70ja ¼ 32Þ ¼ 0:997 but Prðj40:85ja ¼ 32Þ ¼ 0:143.

It is enlightening to examine the impact of the prior Beta(a0, b0) on the posterior
mean. Letting n0 ¼ a0+b0, the ratios n0/(n0+n) and n/(n0+n) represent the rel-
ative weights of the prior and of the data. The posterior mean can be written

a0 þ a

n0 þ n
¼

n0

n0 þ n

a0

n0
þ

n

n0 þ n

a

n
,

and is consequently equal to

prior relative weight� prior meanþ data relative weight� observed mean.

The posterior means are as follows:

100=159� 0:200þ 59=159� 0:542 ¼ 0:327 for the prior j 	 Betað20; 80Þ;

100=159� 0:980þ 59=159� 0:542 ¼ 0:818 for the prior j 	 Betað98; 2Þ:

3.6.2. Mixtures of Beta densities

A technique that remains simple to manage is to use a prior with a density defined
as a mixture of prior densities of Beta distributions. The posterior is again such a

Fig. 2. Example of skeptical prior for the data n ¼ 59 and a ¼ 32. Densities of the prior Beta(20, 80)

(thick line) and of the posterior distributions associated with this prior (medium line) and with the

prior Beta(1/2, 1/2) (thin line).
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mixture. This prior has two main interests, on the one hand to approximate
any arbitrary complex prior that otherwise would need numerical integration
methods, and on the other hand to combine several pieces of information (or
different opinions). As an illustration, let us consider for the same data a mixture
of the two previous distributions with equal weights, that is

j 	
1

2
Betað20; 80Þ �

1

2
Betað98; 2Þ,

where � refers to a mixture of densities, that is symbolically written

pðjÞ ¼
1

2
pðBetað20; 80ÞÞ þ

1

2
pðBetað98; 2ÞÞ.

Note that this distribution must not be confounded with the distribution of the
linear combination of two variables with independent Beta distributions (that
would have a much more complex density).

Figure 3 shows the prior density (thick line), which is bimodal, the corre-
sponding posterior (medium line) and the Jeffreys posterior (thin line). In fact, in
this case, the data n ¼ 59, a ¼ 32 allow us, in some sense, to discriminate between
the two distributions of the mixture, as the posterior distribution is

0:999999903Betað52; 107Þ � 0:000000097Betað130; 29Þ;

so that it is virtually confounded with the distribution Beta(52, 107) associated
with the prior Beta(20, 80).

It is enlightening to note that the weight associated with each Beta distribution
of the posterior mixture is proportional to the product of the prior weight times
the predictive probability of the data associated with the corresponding Beta
prior.

If the number of patients is multiplied by 10, with the same proportion of
successes (n ¼ 590, a ¼ 320), the posterior density, shown in Fig. 4, is virtually
confounded with the posterior Beta(340, 350) associated with the prior Beta(20,
80). Of course, it is closer to the Jeffreys solution.

Fig. 3. Example of mixture prior for the data n ¼ 59 and a ¼ 32. Densities of the bimodal prior

(1/2)Beta(20, 80)�(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this

prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).
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3.7. The Bayes factor

In order to complete the presentation of the Bayesian tools, I shall present the
Bayes factor. Consider again the example of data n ¼ 59, a ¼ 32, with the con-
vinced prior j	Beta(98, 2) and the corresponding a priori probabilities
Pr(j>0.85) ¼ 0.99999810 (that will be denoted pa), and consequently
Pr(jo0.85) ¼ 0.00000190 (p0). The notations p0 and pa are usual, since the
Bayes factor is generally presented as a Bayesian approach to classical hypothesis
testing; in this framework, p0 and pa are the respective prior probabilities of the
null H0 and alternative Ha hypotheses.

It is then quite natural to consider:

� the ratio of these two prior probabilities, hence

p0
pa
¼

Prðjo0:85Þ

Prðj40:85Þ
¼ 0:0000019,

which here is of course very small,
� and their posterior ratio, hence

p0

pa

¼
Prðjo0:85ja ¼ 32Þ

Prðj40:85ja ¼ 32Þ
¼

0:8570

0:1430
¼ 5:99,

which is now distinctly larger than 1.
The Bayes factor (associated with the observation a) is then defined as the ratio

of these two ratios

BðaÞ ¼
p0=pa

p0=pa
¼

p0pa
pap0
¼ 3154986,

which evaluates the modification of the relative likelihood of the null hypothesis
due to the observation. However, the Bayes factor is only an incomplete sum-
mary, which cannot replace the information given by the posterior probabilities.

The Bayes factor applies in the same way to non-complementary hypotheses
H0 and Ha, for instance, here j o0.70 and j >0.85. However, in this case the
interpretation is again more problematic, since the ‘‘no-decision’’ region
0.70ojo0.85 is ignored.

Fig. 4. Example of mixture prior for the data n ¼ 590 and a ¼ 320. Densities of the bimodal prior

(1/2)Beta(20, 80)�(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this

prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).
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In the particular case of two simple hypotheses H0: j ¼ jo and Ha: j ¼ ja, the
Bayes factor is simply the classical likelihood ratio

BðaÞ ¼
pðj0jaÞpðjaÞ

pðjajaÞpðj0Þ
¼

pðajj0Þ

pðajjaÞ
,

since pðj0jaÞ / pðajj0Þpðj0Þ and pðjajaÞ / pðajjaÞpðjaÞ:
Note again that when H0 and Ha are complementary hypotheses (hence

pa ¼ 1–p0), as in the example above, their posterior probabilities can be computed
from the prior probabilities (pa ¼ 1�p0) and the Bayes ratio. Indeed, it can be
easily verified that

1

p0

¼ 1þ
1� p0
p0

1

BðaÞ
.

4. Other examples of inferences about proportions

4.1. Comparison of two independent proportions

Conceptually, all the Bayesian procedures for a proportion can be easily extended
to two Binomial independent samples, assuming two independent priors (see
Lecoutre et al., 1995). In order to illustrate the conceptual simplicity and the
flexibility of Bayesian inference, I give in the subsequent subsection an application
of these procedures for a different sampling model.

4.2. Comparison of two proportions for the play-the-winner rule

From ethical point of view, adaptative designs can be desirable. In such designs
subjects are assumed to arrive sequentially and they are assigned to a treatment
with a probability that is updated as a function of the previous events. The intent
is to favor the ‘‘most effective treatment’’ given available information. The play-

the-winner allocation rule is designed for two treatments t1 and t2 with a dichot-
omous (e.g., success/failure) outcome (Zelen, 1969). It involves an ‘‘all-or-none’’
process: if subject k�1 is assigned to treatment t (t1 or t2) and if the outcome is a
success (with probability jt), subject k is assigned to the same treatment; if, on the
contrary, the outcome is a failure (with probability 1�jt), subject k is assigned to
the other treatment.

For simplicity, it is assumed here that the outcome of subject k�1 is known
when subject k is included.

For a fixed number n of subjects, the sequel of treatment allocations (t1, t2,y,
tk, tk+1, y, tn+1) contains all the information in the data. Indeed, tk ¼ tk+1

implies that a success to tk has been observed and tk 6¼ tk+1 implies that a failure
to tk has been observed. Moreover, the likelihood function is simply

‘ðj1;j2Þjðt1; . . . ; tnþ1Þ ¼
1

2
jn11
1 ð1� j1Þ

n10jn21
2 ð1� j2Þ

n20 ,
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where nij is the number of pairs (tk, tk+1) equal to (ti, tj), so that n11 and n21 are the
respective numbers of success to treatments t1 and t2, and n10 and n20 are the
numbers of failure (1/2 is the probability of t1).

Since Bayesian methods only involve the likelihood function, they are im-
mediately available. Moreover, since the likelihood function is identical (up to a
multiplicative constant) with the likelihood function associated with the com-
parison of two independent binomial proportions, the same Bayesian proce-
dures apply here, even if the sampling probabilities are very different. On the
contrary, with the frequentist approach, specific procedures must be developed.
Due to the complexity of the sampling distribution, only asymptotic solutions
are easily available. Of course, except for large samples, they are not satis-
factory.

4.2.1. Numerical example

Let us consider for illustration the results of a trial with n ¼ 150 subjects. The
observed rates of success are, respectively, 74 out of 94 attributions for treatment
t1 and 35 out of 56 attributions for treatment t2. Note that, from the definition of
the rule, the numbers of failures (here 20 and 21) can differ at most by 1. A joint
probability statement is, in a way, the best summary of the posterior distribution.
For instance, if we assume the Jeffreys prior, that is two independent Beta(1/2,
1/2) distributions for j1 and j2, the marginal posteriors Beta(74.5, 20.5) and
Beta(35.5, 21.5) are again independent, so that a joint probability statement can
be immediately obtained. We get, for instance,

Prðj140:697 and j2o0:743jdataÞ ¼ 0:95

which is deduced from Pr(j140.697) ¼ Pr(j240.743) ¼
ffiffiffiffiffiffiffiffiffi
0:95
p

¼ 0:9747;
obtained as in the case of the inference about a single proportion.

It is, in a way, the best summary of the posterior distribution. However, a
statement that deals with the comparison of the two treatments directly would be
preferable. So we have a probability 0.984 that j24j1. Furthermore, the dis-
tribution of any derived parameter of interest can be easily obtained from the
joint posterior distribution using numerical methods. We find the 95% equal-tails
credible intervals:

½þ0:013;þ0:312� for j1 � j2½1:02; 1:62� for
j1

j2

½1:07; 4:64� for
j1=ð1� j1Þ

j2=ð1� j2Þ
.

For the Jeffreys prior, Bayesian methods have fairly good frequentist coverage
properties for interval estimates (Lecoutre and ElQasyr, 2005).

4.2.2. The reference prior approach

For multidimensional parameter problems, the reference prior approach intro-
duced by Bernardo (1979) (see also Berger and Bernardo, 1992) can constitute a
successful refinement of the Jeffreys prior. This approach presupposes that we are
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interested in a particular derived parameter y. It aims at finding the optimal
objective prior, given that y is the parameter of interest and the resulting prior is
consequently dependent on this parameter. An objection can be raised against
this approach in the context of experimental data analysis. Even when a par-
ticular parameter is privileged to summarize the findings, we are also interested in
other parameters, so that joint prior and posterior distributions are generally
wanted.

4.3. A generalization with three proportions: medical diagnosis

Berger (2004, p. 5) considered the following situation (Mossman and Berger,
2001; see also in a different context Zaykin et al., 2004).

Within a population for which j0 ¼ Pr(Disease D), a diagnostic test results in

either a Positive (+) or Negative (�) reading. Let j1 ¼ Pr(+|patient has D)

and (j2 ¼ Pr(+|patient does not have D). [the authors notations pi have been

changed to ji]

By Bayes’ theorem, one get the probability y that the patient has the disease given
a positive diagnostic test

y ¼ PrðDjþÞ ¼
PrðþjDÞPrðDÞ

PrðþjDÞPrðDÞ þ Prðþj �DÞPrð�DÞ
¼

j1j0

j1j0 þ j2ð1� j0Þ
.

It is assumed that for i ¼ 0, 1, 2 there are available (independent) data ai, having
Binomial distributions

aijji 	 Binðji; niÞ,

hence a straightforward generalization of the inference about two independent
proportions. Note that, conditionally to j0, the situation is that of inference
about the ratio of two independent Binomial proportions, since for instance

Prðyoujj0Þ ¼ Pr
j2

j1

4
1� j0

j0

1� u

u

� �
.

The marginal probability is a mixture of these conditional probabilities.
It results ‘‘a simple and easy to use procedure, routinely usable on a host of

applications,’’ which, from a frequentist perspective ‘‘has better performance [y]
than any of the classically derived confidence intervals’’ (Berger, 2004, pp. 6–7).

Another situation that involves a different sampling model but leads to the
same structure is presented in greater detail hereafter.

4.4. Logical models in a contingency table

Let us consider a group of n patients, with two sets of binary attributes, respec-
tively, V ¼ {v1, v0} and W ¼ {w1, w0}. To fix ideas, let us suppose that W is
cardiac mortality (yes/no) and that V is myocardial infarction (yes/no). Let us
consider the following example of logical model (Lecoutre and Charron, 2000).
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An absolute (or logical) implication n1) w1 (for instance) exists if all the

patient having the modality v1 also have the modality w1, whereas the converse

is not necessarily true.

However, the hypothesis of an absolute implication (here ‘‘myocardial infarct-

ion implies cardiac mortality’’) is of little practical interest, since a single ob-

servation of the event (v1, w0) is sufficient to falsify it.

Consequently, we have to consider the weaker hypothesis ‘‘v1 implies in most

cases w0’’ (v1+w1).

The issue is to evaluate the departure from the logical model ‘‘the cell (v1, w0)
should be empty.’’ A departure index Zv1+w1 can be defined from the cell pro-
portions

W1 w0
v1 j11 j10 j1.

v0 j01 j00 j0.

j.1 j.0 1

as

Zv1+w1 ¼ 1�
j10

j1:j:0
ð�1oZv1+w1oþ 1Þ.

This index has been actually considered in various frameworks, with different
approaches. It can be viewed as a measure of predictive efficiency of the model
when predicting the outcome of W given v1.

� The prediction is perfect (there is an absolute implication) when Zv1+w1 ¼+1.
� The closer to 1 Zv1+w1 is, the more efficient the prediction.
� In case of independence, Zv1+w1 ¼ 0.
� A null or negative value means that the model is a prediction failure.

Consequently, in order to investigate the predictive efficiency of the model, we
have to demonstrate that Zv1+w1 has a value close to +1. Of course, one can
define in the same way the indexes Zv1+w0; Zw1+v1; and Zw0+v0 One can, again,
characterize the equivalence between two modalities. An absolute equivalence
between v1 and w1 (for instance) exists if Zv1+w1 ¼+1 and Zv0+w0 ¼+1 (the
two cells [v1, w0] and [v0, w1] are empty). Consequently, the minimum of these
two indexes is an index of departure from equivalence.

Let us assume a multinomial sampling model, hence for a sample of size n, the
probability of observing the cell counts nij

Prðn11; n10; n01; n00jj11;j10;j01;j00Þ ¼
n!

n11!n10!n01!n00!
jn11
11 j

n10
10 j

n01
01 j

n00
00 .
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4.5. Frequentist solutions

Asymptotic procedures (see, e.g., Fleiss, 1981) are clearly inappropriate for small
samples. Alternative procedures based on Fisher’s conditional test (Copas and
Loeber, 1990; Lecoutre and Charron, 2000) have been proposed. This test in-
volves the sampling distribution of n11 (for instance). A classical result is that this
distribution, given fixed observed margins, only depends on the cross product
r ¼ j11j00=j10j01 (Cox, 1970, p. 4). The null hypothesis r ¼ r0 can be tested
against the alternative ror0 (or against r4r0), by using the probability that n11
exceeds the observed value in the appropriate direction.

Consequently, the procedure is analogous to the Binomial test considered for
the inference about a proportion. We can define in the same way an ‘‘including’’
solution and an ‘‘excluding’’ solution.

In the particular case r0 ¼ 0, this test is the Fisher’s randomization test of the
null hypothesis r ¼ 1 (i.e., Zv1+w1 ¼ 0) against ro1 (Zv1+w1o0).

By inverting this conditional test, confidence intervals can be computed for the
cross product r. An interval for Zv1+w1 is then deduced by replacing r by its
confidence limits in the following expression that gives Zv1+w1 as a function of r

Zv1+w1 ¼
1þ ðr� 1Þðj1: þ j:1 � j1:j:1 � ½ð1þ ðj1: þ j:1Þðr� 1Þ2 � 4j1:j:1rðr� 1Þ�1=2

2ðr� 1Þj:1ð1� j1:Þ
.

Unfortunately, these limits depend on the true margin values j.1 and j1.. The
most common procedure consists in simply replacing these nuisance parameters

by their estimates f.1 and f1.. It is much more performing than asymptotic so-
lutions, but is unsatisfactory for extreme parameter values. More efficient prin-
ciples for dealing with nuisance parameters exist (for instance, Toecher, 1950;
Rice, 1988). However, one comes up against a problem that is eternal within the
frequentist inference, and that is of course entirely avoided in the Bayesian
approach. In any case, Bayesian inference copes with the problem of nuisance
parameters. Moreover, it explicitly handles the problems of discreteness and un-
observed events (null counts) by way of the prior distribution.

4.6. The Bayesian solution

The Bayesian solution is a direct generalization of the Binomial case. Let us
assume a joint (conjugate) Dirichlet prior distribution, which is a multidimen-
sional extension of the Beta distribution

ðj11;j10;j01;j00Þ 	 Dirichletðn11; n10; n01; n00Þ.

The posterior distribution is also a Dirichlet in which the prior weights are simply
added to the observed cell counts.

ðj11;j10;j01;j00Þjdata 	 Dirichletðn11 þ n11; n10 þ n10; n01 þ n01; n00 þ n00Þ.

From the basic properties of the Dirichlet distribution (see, e.g., Bernardo and
Smith, 1994, p. 135), the marginal posterior distribution for the derived parameter
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Z11 can be characterized as a function of three independent Beta distributions

X ¼ j10jdata 	 Betaðn10 þ n10; n11 þ n11 þ Z01 þ v01 þ Z00 þ v00Þ,

Y ¼
j00

1� j10

¼
j00

1� X
jdata 	 Betaðn00 þ v00; n11 þ n11; n01 þ v01Þ,

Z ¼
j11

1� j10 � j00

¼
j11

ð1� Y Þð1� X Þ
jdata 	 Betaðn11 þ v11; n01 þ v01Þ,

since

Zv1+w1 ¼ 1�
X

ðX þ Zð1� Y Þð1� X ÞÞðX þ Y ð1� X ÞÞ

This leads to straightforward numerical methods.

4.7. Numerical example: mortality study

4.7.1. Non-treated patients

The data in Table 4 were obtained for 340 high-risk patients who received no
medical treatment. Let us consider the implication ‘‘Myocardial infarction +
Cardiac mortality within 2 years.’’

The observed values of the index are

� for the implication ‘‘Infarction + Decease’’ (cell [yes,no] empty):
Hv1+w1 ¼ 0.12,
� for the implication ‘‘Decease + Infarction’’ (cell [no,yes] empty):

Hv1+w1 ¼ 0.37.

The marginal proportions of decease are (fortunately!) rather small – respec-
tively, 0.22 after infarction and 0.07 without infarction – so that the count 72 in
the cell [yes,no] is proportionally large. Consequently, relatively small values of
the index are here ‘‘clinically significant.’’ Assuming the Jeffreys prior Dirich-
let(1/2, 1/2, 1/2, 1/2), we get the posterior

F ¼ ðj11;j10;j01;j00Þjdata 	 Dirichletð20:5; 72:5; 17:5; 231:5Þ.

from which we derive the marginal posteriors. Figure 5 shows the decreasing
distribution function of the posterior of Zv1+w1 and its associated 90% credible
interval.

Table 4

Mortality data for 340 high-risk patients who received no medical treatment

Decease

Yes No

Myocardial infarction Yes 20 72 92 [20/92 ¼ 0.22]

No 17 231 248 [17/248 ¼ 0.07]

37 303 340
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From the two credible intervals,

� ‘‘Infarction + Decease’’: Pr(+0.06oZv1+w1 o+0.19) ¼ 0.90
� ‘‘Decease + Infarction’’: Pr(+0.20oZw1+v1o+0.54) ¼ 0.90.

we can assert an implication of limited importance. In fact, it appears that decease
is a better prognostic factor for infarction than the reverse.

4.7.2. Treated patients

Other data reported in Table 5 were obtained for 357 high-risk patients who
received a preventive treatment.

Here, it is, of course, expected that the treatment would reduce the number of
deceases after infarction. Ideally, if there was no cardiac decease among the
treated patients after infarction (cell [yes,yes] empty), there would be an absolute
implication ‘‘Infarction )No decease.’’ We get the following results for this
implication:

‘‘Infarction + No decease’’ : Hv1+w0 ¼ þ0:68 and Prð�0:10oZv1+w0oþ 0:94Þ ¼ 0:90:

Here, in spite of a distinctly higher observed value, it cannot be concluded to the
existence of an implication. The width of the credible interval shows a poor
precision. This is a consequence of the very small observed proportions of de-
cease. Of course, it cannot be concluded that there is no implication or that the
implication is small. This illustrate the abuse of interpreting the non-significant
result of usual ‘‘tests of independence’’ (chi-square for instance) in favor of the
null hypothesis.

Fig. 5. Implication ‘‘Infarction + Decease’’ (non-treated patients). Decreasing distribution function

for Zv1+w1 [Pr(Zv1+w1ox)] associated with the prior Dirichlet(1/2, 1/2, 1/2, 1/2).

Table 5

Mortality data for 357 high-risk patients who received a preventive treatment

Decease

Yes No

Myocardial infarction Yes 1 78 79 [1/79 ¼ 0.01]

No 13 265 278 [13/278 ¼ 0.05]

14 343 357
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4.8. Non-informative priors and interpretation of the observed level of Fisher’s

permutation tests

The Bayesian interpretation of the permutation test (conditional to margins)
generalizes the interpretation of the Binomial test. For the usual one-sided test
(including solution), the null hypothesis H0: Zv1+w0 ¼ 0 is not rejected
(pinc ¼ 0.145). It is well known that this test is conservative, but if we consider
the excluding solution, we get a definitely smaller p-value pexc ¼ 0.028. This
results from the poor experimental accuracy. As in the case of a single proportion,
there exist two extreme non-informative priors, Dirichlet(1, 0, 0, 1) and Dirich-
let(0, 1, 1, 0) that constitute the ignorance zone. They give an enlightening in-
terpretation of these two p-values, together with an objective Bayesian analysis.

(1) Pr(Zv1+w0o0) ¼ 0.145 ¼ pinc
for the prior Dirichlet(1, 0, 0, 1) (the most favorable to H0)
hence the posterior Dirichlet(2, 78, 13, 266)

(2) Pr(Zv1+w0o0) ¼ 0.028 ¼ pexc
for the prior Dirichlet(0, 1, 1, 0) (the most unfavorable to H0)
hence the posterior Dirichlet(1, 79, 14, 265)

(3)Pr(Zv1+w0o0) ¼ 0.072E(pinc+pexc)/2 ¼ 0.086
for the prior Dirichlet(1/2, 1/2, 1/2, 1/2)
hence the posterior Dirichlet(1.5, 78.5, 13.5, 265.5)

4.8.1. The choice of a non-informative prior

As for a single proportion, the choice of a non-informative prior is no more
arbitrary or subjective than the conventions of frequentist procedures. Moreover,
simulation studies of frequentist coverage probabilities favorably compare Bay-
esian credible intervals with conditional confidence intervals (Lecoutre and Char-
ron, 2000). For each lower and upper limits of the 1�a credible interval, the
frequentist error rates associated with the two extreme priors always include a/2.
Moreover, if a single limit is wanted for summarizing and reporting results,
the symmetrical intermediate prior Dirichlet(1/2, 1/2, 1/2, 1/2) has fairly good
coverage properties, including the cases of moderate sample sizes and small
parameter values. Of course the differences between the different priors in the
ignorance zone is less for small or medium values of Zv1+w1 and vanishes as the
sample size increases.

4.9. Further analyses

There is no difficulty in extending the Bayesian procedures to any situation
involving the multinomial sampling model, for instance, the comparison of two
proportions based on paired data. Here, in particular, the distribution of the min-
imum of the two indexes for asserting equivalence is easily obtained by simulation.
Moreover, the procedures can be extended to compare the indexes associated with
two independent groups (for instance, here treated and non-treated patients).
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Of course, in all these situations, informative priors and predictive probabil-
ities can be used in the same way as for a single proportion.

Note again that binary and polychotomous response data can also be analyzed
by Bayesian regression methods. Relevant references are Albert and Chib (1993)
and Congdon (2005).

5. Concluding remarks and some further topics

Time’s up to come to a positive agreement for procedures of experimental data
analysis that bypass the common misuses of NHST. This agreement should fills
up its role of ‘‘an aid to judgment,’’ which ‘‘should not be confused with
automatic acceptance tests, or ‘decision functions’’’ (Fisher, 1990/1925, p. 128).
Undoubtedly, there is an increasing acceptance that Bayesian inference can be
ideally suited for this purpose. It fulfills the requirements of scientists: objective
procedures (including traditional p-values), procedures about effect sizes (beyond
p-values) and procedures for designing and monitoring experiments. Then, why
scientists, and in particular experimental investigators, really appear to want a
different kind of inference but seem reluctant to use Bayesian inferential proce-
dures in practice? In a very lucid paper, Winkler (1974, p. 129) answered that
‘‘this state of affairs appears to be due to a combination of factors including
philosophical conviction, tradition, statistical training, lack of ‘availability’, com-
putational difficulties, reporting difficulties, and perceived resistance by journal
editors.’’ He concluded that if we leave to one side the choice of philosophical
approach, none of the mentioned arguments are entirely convincing. Although
Winkler’s paper was written more than 30 years ago, it appears as if it had been
written today.

We [statisticians] will all be Bayesians in 2020, and then we can be a united

profession. (Lindley, in Smith, 1995, p. 317)

In fact the times we are living in at the moment appear to be crucial. On the one
hand, an important practical obstacle is that the standard statistical packages that
are nowadays extensively used do not include Bayesian methods. On the other
hand, one of the decisive factors could be the recent ‘‘draft guidance document’’
of the US Food and Drug Administration (FDA, 2006). This document reviews
‘‘the least burdensome way of addressing the relevant issues related to the use of
Bayesian statistics in medical device clinical trials.’’ It opens the possibility for
experimental investigators to really be Bayesian in practice.

5.1. Some advantages of Bayesian inference

5.1.1. A better understanding of frequentist procedures

Students [exposed to a Bayesian approach] come to understand the frequentist

concepts of confidence intervals and P values better than do students exposed

only to a frequentist approach. (Berry, 1997)
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To take another illustration, let us consider the basic situation of the inference
about the difference d between two normal means. It is especially illustrative
of how the Bayesian procedures combine descriptive statistics and significance
tests.

Let us denote by d (assuming d 6¼ 0) the observed difference and by t the value
of the Student’s test statistic. Assuming the usual non-informative prior, the
posterior for d is a generalized (or scaled) t distribution (with the same degrees of
freedom as the t-test), centered on d and with scale factor the ratio e ¼ d/t (see,
e.g., Lecoutre, 2006a).

From this technical link with the t statistic, it results conceptual links. The one-
sided p-value of the t-test is exactly the posterior Bayesian probability that the
difference d has the opposite sign of the observed difference. Given the data, if for
instance d40, there is a p posterior probability of a negative difference and a 1�p

complementary probability of a positive difference. In the Bayesian framework
these statements are statistically correct. Another important feature is the inter-
pretation of the usual confidence interval in natural terms. It becomes correct to
say that ‘‘there is a 95% [for instance] probability of d being included between the
fixed bounds of the interval’’ (conditionally on the data).

In this way, Bayesian methods allow users to overcome usual difficulties
encountered with the frequentist approach. In particular, using the Bayesian in-
terpretations of significance tests and confidence intervals in the language of
probabilities about unknown parameters is quite natural for the users. In return,
the common misuses and abuses of NHST are more clearly understood. In par-
ticular, users of Bayesian methods become quickly alerted that non-significant
results cannot be interpreted as ‘‘proof of no effect.’’

5.1.2. Combining information from several sources

An analysis of experimental data should always include an objective Bayesian
analysis in order to express what the data have to say independently of any outside
information. However, informative Bayesian priors also have an important
role to play in experimental investigations. They may help refining inference and
investigating the sensitivity of conclusions to the choice of the prior. With regard
to scientists’ need for objectivity, it could be argued with Dickey (1986, p. 135)
that

an objective scientific report is a report of the whole prior-to-posterior mapping

of a relevant range of prior probability distributions, keyed to meaningful

uncertainty interpretations.

Informative Bayesian techniques are ideally suited for combining information

from the data in hand and from other studies, and therefore planning a series of
experiments. More or less realistic and convincing uses have been proposed (for a
discussion of how to introduce these techniques in medical trials, see, e.g., Irony
and Pennello, 2001). Ideally, when ‘‘good prior information is available,’’ it could
(should) be used to reach the same conclusion that an ‘‘objective Bayesian anal-
ysis,’’ but with a smaller sample size. Of course, they should integrate a real
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knowledge based on data rather than expert opinions, which are generally
controversial. However, in my opinion, the use of these techniques must be more
extensively explored before appreciating their precise contribution to experimen-
tal data analysis.

5.1.3. The predictive probabilities: a very appealing tool

An essential aspect of the process of evaluating design strategies is the ability to

calculate predictive probabilities of potential results. (Berry, 1991, p. 81)

A major strength of the Bayesian paradigm is the ease with which one can make
predictions about future observations. The predictive idea is central in experi-
mental investigations, as ‘‘the essence of science is replication: a scientist should
always be concerned about what would happen if he or another scientist were to
repeat his experiment’’ (Guttman, 1983). Bayesian predictive procedures give us-
ers a very appealing method to answer essential questions such as: ‘‘how big
should be the experiment to have a reasonable chance of demonstrating a given
conclusion?’’ ‘‘given the current data, what is the chance that the final result will
be in some sense conclusive, or on the contrary inconclusive?’’ These questions
are unconditional in that they require consideration of all possible values of
parameters. Whereas traditional frequentist practice does not address these ques-
tions, predictive probabilities give them direct and natural answer.

In particular, from a pilot study, the predictive probabilities on credible limits
give a useful summary to help in the choice of the sample size of an experiment
(for parallels between Bayesian and frequentist methods, see Inoue et al., 2005).

The predictive approach is a very appealing method (Baum et al., 1989) to aid
the decision to stop an experiment at an interim stage. On the one hand, if the
predictive probability that it will be successful appears poor, it can be used as a
rule to abandon the experiment for futility. On the other hand, if the predictive
probability is sufficiently high, this suggests to early stop the experiment and
conclude success.

Predictive probabilities are also a valuable tool for missing data imputation.
Note that interim analyses are a kind of such imputation. The case of censored
survival data is particularly illustrative. At the time of interim analysis, available
data are divided into three categories: (1) included patients for whom the event of
interest has been observed, (2) included patients definitely censored and (3) in-
cluded patients under current observation for whom the maximum observation
period has not ended. Consequently, the missing data to be predicted are re-
spectively related to these last patients for which we have partial information and
to the new patients planned to be included for which we have no direct infor-
mation. The Bayesian approach gives us straightforward and effective ways to
deal with this situation (Lecoutre et al., 2002).

It can again be outlined that the predictive distributions are also a useful tool
for constructing a subjective prior, as it is often easier to express an opinion
relative to expected data.
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5.2. Bayesian computations and statistical packages

There is currently increasingly widespread application of Bayesian inference for
experimental data analysis. However, an obstacle to the routine use of objective
Bayesian methods is the lack of user-friendly general purpose software that would
be a counterpart to the standard frequentist software. This obstacle may be ex-
pected to be removed in the future. Some packages have been designed to learn
elementary Bayesian inference: see, for example, First Bayes (O’Hagan, 1996) and
a package of Minitab macros (Albert, 1996). With a more ambitious perspective,
we have developed a statistical software for Bayesian analysis of variance
(Lecoutre and Poitevineau, 1992; Lecoutre, 1996). It incorporates both traditional
frequentist practices (significance tests, confidence intervals) and routine Bayesian
procedures (non-informative and conjugate priors). These procedures are appli-
cable to general experimental designs (in particular, repeated measures designs),
balanced or not balanced, with univariate or multivariate data, and covariables.
This software also includes the basic Bayesian procedures for inference about
proportions presented in this chapter.

At a more advanced level, the privileged tool for the Bayesian analysis of
complex models is a method called Markov Chain Monte Carlo (MCMC). The
principle of MCMC techniques (Gilks et al., 1996; Gamerman, 1997) is to sim-
ulate, and consequently approximate, the posterior and predictive distributions
(when they cannot be determined analytically). This can be done for virtually any
Bayesian analysis. WinBUGS (a part of the BUGS project) is an any general
purpose flexible and efficient Bayesian software. It ‘‘aims to make practical
MCMC methods available to applied statisticians’’ and largely contributes to the
increasing use of Bayesian methods. It can be freely downloaded from the web
site: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. However, it can hardly
be recommended to beginners unless they are highly motivated.

Very recently, Bayesian analysis has been added in some procedures of the
SAS/STAT software. In addition to the full functionality of the original ones, the
new procedures produce Bayesian modeling and inference capability in general-
ized linear models, accelerated life failure models, Cox regression models, and
piecewise constant baseline hazard models (SAS Institute Inc., 2006).

5.3. Some further topics

I do not intend to give here an exhaustive selection of topics, but rather to simply
outline some areas of research that seems to me particularly important for the
methodological development of objective Bayesian analysis for experimental
data.

5.3.1. The interplay of frequentist and Bayesian inference

Bayarri and Berger (2004) gave an interesting view of the interplay of frequentist
and Bayesian inference. They argued that the traditional frequentist argument,
involving ‘‘repetitions of the same problem with different data’’ is not what is
done in practice. Consequently, it is ‘‘a joint frequentist–Bayesian principle’’ that
is practically relevant: a given procedure (for instance, a 95% confidence interval
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for a normal mean) is in practice used ‘‘on a series of different problems involving
a series of different normal means with a corresponding series of data’’ (p. 60).
More generally, they reviewed current issues in the Bayesian–frequentist synthesis
from a methodological perspective. It seems a reasonable conclusion to hope a
methodological unification, but not a philosophical unification.

Philosophical unification of the Bayesian and frequentist positions is not likely,

nor desirable, since each illuminates a different aspect of statistical inference.

We can hope, however, that we will eventually have a general methodological

unification, with both Bayesians and frequentists agreeing on a body of stand-

ard statistical procedures for general use. (Bayarri and Berger, 2004, p. 78)

In this perspective, an active area of research aims at finding ‘‘probability
matching priors’’ for which the posterior probabilities of certain specified sets are
equal (at least approximately) to their coverage probabilities: see Fraser et al.
(2003) and Sweeting (2005).

5.3.2. Exchangeability and hierarchical models

Roughly speaking, random events are exchangeable ‘‘if we attribute the same
probability to an assertion about any given number of them’’ (de Finetti, 1972,
p. 213). This is a key notion in statistical inference. For instance, future patients
must be assumed to be exchangeable with the patients who have already been
observed in order to make predictive probabilities reasonable. In the same way,
similar experiments must be assumed to be exchangeable for a coherent integra-
tion of the information.

The notion of exchangeability is very important and useful in the Bayesian
framework. Using multilevel prior specifications, it allows a flexible modeling of
related experimental devices by means of hierarchical models (Bernardo, 1996).

If a sequence of observations is judged to be exchangeable, then any subset of

them must be regarded as a random sample from some model, and there exist a

prior distribution on the parameter of such model, hence requiring a Bayesian

approach. (Bernardo, 1996, p. 5)

Hierarchical models are important to make full use of the data from a mul-
ticenter experiment. They are also particularly suitable for meta-analysis in which
we have data from a number of relevant studies that may be exchangeable on
some levels but not on others (Dumouchel, 1990). In all cases, the problem can be
decomposed into a series of simpler conditional models, using the hierarchical
Bayesian methodology (Good, 1980).

5.3.3. The stopping rule principle: a need to rethink

Experimental designs often involve interim looks at the data for the purpose of
possibly stopping the experiment before its planned termination. Most experi-
mental investigators feel that the possibility of early stopping cannot be ignored,
since it may induce a bias on the inference that must be explicitly corrected.
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Consequently, they regret the fact that the Bayesian methods, unlike the fre-
quentist practice, generally ignore this specificity of the design. Bayarri and
Berger (2004) considered this desideratum as an area of current disagreement
between the frequentist and Bayesian approaches. This is due to the compliance
of most Bayesians with the likelihood principle (a consequence of Bayes’ theorem),
which implies the stopping rule principle in interim analysis:

Once the data have been obtained, the reasons for stopping experimentation

should have no bearing on the evidence reported about unknown model pa-

rameters. (Bayarri and Berger, 2004, p. 81)

Would the fact that ‘‘people resist an idea so patently right’’ (Savage, 1954) be
fatal to the claim that ‘‘they are Bayesian without knowing it?’’ This is not so
sure, experimental investigators could well be right! They feel that the experi-
mental design (incorporating the stopping rule) is prior to the sampling
information and that the information on the design is one part of the evidence.
It is precisely the point of view developed by de Cristofaro (1996, 2004, 2006),
who persuasively argued that the correct version of Bayes’ formula must inte-
grate the parameter y, the design d, the initial evidence (prior to designing) e0, and
the statistical information i. Consequently, it must be written in the following
form:

pðyji; e0; dÞ / ðyje0; dÞpðijy; e0; dÞ.

It becomes evident that the prior depends on d. With this formulation, both the
likelihood principle and the stopping rule principle are no longer automatic con-
sequences. It is not true that, under the same likelihood, the inference about y is
the same, irrespective of d. Note that the role of the sampling model in the
derivation of the Jeffreys prior in Bernoulli sampling for the Binomial and the
Pascal models was previously discussed by Box and Tiao (1973, pp. 45–46), who
stated that the Jeffreys priors are different as the two sampling models are
also different. In both cases, the resulting posterior distribution have remarkable
frequentist properties (i.e., coverage probabilities of credible intervals).

This result can be extended to general stopping rules (Bunouf, 2006). The basic
principle is that the design information, which is ignored in the likelihood func-
tion, can be recovered in the Fisher’s information. Within this framework, we can
get a coherent and fully justified Bayesian answer to the issue of sequential
analysis, which furthermore satisfy the experimental investigators desideratum
(Bunouf and Lecoutre, 2006).

References

Agresti, A., Min, Y. (2005). Frequentist performance of Bayesian confidence intervals for comparing

proportions in 2� 2 contingency tables. Biometrics 61, 515–523.

Albert, J. (1996). Bayesian Computation Using Minitab. Wadsworth Publishing Company, Belmont.

B. Lecoutre808



Albert, J., Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of

the American Statistical Association 88, 669–679.

Battan, L.J., Neyman, J., Scott, E.L., Smith, J.A. (1969). Whitetop experiment. Science 165, 618.

Baum, M., Houghton, J., Abrams, K.R. (1989). Early stopping rules: clinical perspectives and ethical

considerations. Statistics in Medicine 13, 1459–1469.

Bayarri, M.J., Berger, J.O. (2004). The interplay of Bayesian and frequentist analysis. Statistical

Science 19, 58–80.

Berger, J. (2004). The case for objective Bayesian analysis. Bayesian Analysis 1, 1–17.

Berger, J.O., Bernardo, J.M. (1992). On the development of reference priors (with discussion).

In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics 4.

Proceedings of the Fourth Valencia International Meeting. Oxford University Press, Oxford,

pp. 35–60.

Bernard, J.-M. (1996). Bayesian interpretation of frequentist procedures for a Bernoulli process.

The American Statistician 50, 7–13.

Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference (with discussion).

Journal of the Royal Statistical Society, Series B, Methodological 41, 113–147.

Bernardo, J.M. (1996). The concept of exchangeability and its applications. Far East Journal of

Mathematical Sciences 4, 111–121.

Bernardo, J., Smith, A.F.M. (1994). Bayesian Theory. Wiley, New York.

Bernoulli, J. (1713). Ars Conjectandi (English translation by Bing Sung as Technical report

No. 2 of the Department of Statistics of Harvard University, February 12, 1966), Basel,

Switzerland.

Berry, D.A. (1991). Experimental design for drug development: a Bayesian approach. Journal of

Biopharmaceutical Statistics 1, 81–101.

Berry, D.A. (1997). Teaching elementary Bayesian statistics with real applications in science. The

American Statistician 51, 241–246.

Box, G.E.P., Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. Addison Wesley, Reading,

MA.

Brown, L.D., Cai, T., DasGupta, A. (2001). Interval estimation for a binomial proportion (with

discussion). Statistical Science 16, 101–133.

Bunouf, P. (2006). Lois Bayesiennes a priori dans un Plan Binomial Sequentiel. Unpublished Doctoral

Thesis in Mathematics, Université de Rouen, France.
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8. Rank Statistics and Limit Theorems by M. Ghosh
9. Asymptotic Comparison of Tests – A Review by K. Singh

10. Nonparametric Methods in Two-Way Layouts by D. Quade
11. Rank Tests in Linear Models by J.N. Adichie

Contents of Previous Volumes826



12. On the Use of Rank Tests and Estimates in the Linear Model by J.C. Au-
buchon and T.P. Hettmansperger

13. Nonparametric Preliminary Test Inference by A.K.Md.E. Saleh and
P.K. Sen

14. Paired Comparisons: Some Basic Procedures and Examples by R.A. Bradley
15. Restricted Alternatives by S.K. Chatterjee
16. Adaptive Methods by M. Hušková
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35. Categorical Data Problems Using Information Theoretic Approach by S.

Kullback and J.C. Keegel
36. Tables for Order Statistics by P.R. Krishnaiah and P.K. Sen
37. Selected Tables for Nonparametric Statistics by P.K. Sen and P.R.

Krishnaiah

Volume 5. Time Series in the Time Domain

Edited by E.J. Hannan, P.R. Krishnaiah and M.M. Rao

1985 xiv+490 pp.

1. Nonstationary Autoregressive Time Series by W.A. Fuller
2. Non-Linear Time Series Models and Dynamical Systems by T. Ozaki
3. Autoregressive Moving Average Models, Intervention Problems and Outlier

Detection in Time Series by G.C. Tiao
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4. Robustness in Time Series and Estimating ARMA Models by R.D. Martin
and V.J. Yohai

5. Time Series Analysis with Unequally Spaced Data by R.H. Jones
6. Various Model Selection Techniques in Time Series Analysis by R. Shibata
7. Estimation of Parameters in Dynamical Systems by L. Ljung
8. Recursive Identification, Estimation and Control by P. Young
9. General Structure and Parametrization of ARMA and State-Space Systems

and its Relation to Statistical Problems by M. Deistler
10. Harmonizable, Cramér, and Karhunen Classes of Processes by M.M. Rao
11. On Non-Stationary Time Series by C.S.K. Bhagavan
12. Harmonizable Filtering and Sampling of Time Series by D.K. Chang
13. Sampling Designs for Time Series by S. Cambanis
14. Measuring Attenuation by M.A. Cameron and P.J. Thomson
15. Speech Recognition Using LPC Distance Measures by P.J. Thomson and

P. de Souza
16. Varying Coefficient Regression by D.F. Nicholls and A.R. Pagan
17. Small Samples and Large Equations Systems by H. Theil and D.G. Fiebig

Volume 6. Sampling

Edited by P.R. Krishnaiah and C.R. Rao

1988 xvi+594 pp.

1. A Brief History of Random Sampling Methods by D.R. Bellhouse
2. First Course in Survey Sampling by T. Dalenius
3. Optimality of Sampling Strategies by A. Chaudhuri
4. Simple Random Sampling by P.K. Pathak
5. On Single Stage Unequal Probability Sampling by V.P. Godambe and M.E.

Thompson
6. Systematic Sampling by D.R. Bellhouse
7. Systematic Sampling with Illustrative Examples by M.N. Murthy and T.J.

Rao
8. Sampling in Time by D.A. Binder and M.A. Hidiroglou
9. Bayesian Inference in Finite Populations by W.A. Ericson

10. Inference Based on Data from Complex Sample Designs by G. Nathan
11. Inference for Finite Population Quantiles by J. Sedransk and P.J. Smith
12. Asymptotics in Finite Population Sampling by P.K. Sen
13. The Technique of Replicated or Interpenetrating Samples by J.C. Koop
14. On the Use of Models in Sampling from Finite Populations by I. Thomsen

and D. Tesfu
15. The Prediction Approach to Sampling Theory by R.M. Royall
16. Sample Survey Analysis: Analysis of Variance and Contingency Tables by

D.H.Freeman Jr
17. Variance Estimation in Sample Surveys by J.N.K. Rao
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18. Ratio and Regression Estimators by P.S.R.S. Rao
19. Role and Use of Composite Sampling and Capture-Recapture Sampling in

Ecological Studies by M.T. Boswell, K.P. Burnham and G.P. Patil
20. Data-based Sampling and Model-based Estimation for Environmental

Resources by G.P. Patil, G.J. Babu, R.C. Hennemuth, W.L. Meyers, M.B.
Rajarshi and C. Taillie

21. On Transect Sampling to Assess Wildlife Populations and Marine Resources
by F.L. Ramsey, C.E. Gates, G.P. Patil and C. Taillie

22. A Review of Current Survey Sampling Methods in Marketing Research
(Telephone, Mall Intercept and Panel Surveys) by R. Velu and G.M. Naidu

23. Observational Errors in Behavioural Traits of Man and their Implications for
Genetics by P.V. Sukhatme

24. Designs in Survey Sampling Avoiding Contiguous Units by A.S. Hedayat,
C.R. Rao and J. Stufken

Volume 7. Quality Control and Reliability

Edited by P.R. Krishnaiah and C.R. Rao

1988 xiv+503 pp.

1. Transformation of Western Style of Management by W. Edwards Deming
2. Software Reliability by F.B. Bastani and C.V. Ramamoorthy
3. Stress–Strength Models for Reliability by R.A. Johnson
4. Approximate Computation of Power Generating System Reliability Indexes

by M. Mazumdar
5. Software Reliability Models by T.A. Mazzuchi and N.D. Singpurwalla
6. Dependence Notions in Reliability Theory by N.R. Chaganty and K. Joagdev
7. Application of Goodness-of-Fit Tests in Reliability by B.W. Woodruff and

A.H. Moore
8. Multivariate Nonparametric Classes in Reliability by H.W. Block and T.H.

Savits
9. Selection and Ranking Procedures in Reliability Models by S.S. Gupta and S.

Panchapakesan
10. The Impact of Reliability Theory on Some Branches of Mathematics and

Statistics by P.J. Boland and F. Proschan
11. Reliability Ideas and Applications in Economics and Social Sciences by M.C.

Bhattacharjee
12. Mean Residual Life: Theory and Applications by F. Guess and F. Proschan
13. Life Distribution Models and Incomplete Data by R.E. Barlow and F. Pros-

chan
14. Piecewise Geometric Estimation of a Survival Function by G.M. Mimmack

and F. Proschan
15. Applications of Pattern Recognition in Failure Diagnosis and Quality Con-

trol by L.F. Pau
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16. Nonparametric Estimation of Density and Hazard Rate Functions when
Samples are Censored by W.J. Padgett

17. Multivariate Process Control by F.B. Alt and N.D. Smith
18. QMP/USP – A Modern Approach to Statistical Quality Auditing by B.

Hoadley
19. Review About Estimation of Change Points by P.R. Krishnaiah and B.Q.

Miao
20. Nonparametric Methods for Changepoint Problems by M. Csörgo+ and L.

Horváth
21. Optimal Allocation of Multistate Components by E. El-Neweihi, F. Proschan

and J. Sethuraman
22. Weibull, Log-Weibull and Gamma Order Statistics by H.L. Herter
23. Multivariate Exponential Distributions and their Applications in Reliability

by A.P. Basu
24. Recent Developments in the Inverse Gaussian Distribution by S. Iyengar and

G. Patwardhan

Volume 8. Statistical Methods in Biological and Medical Sciences

Edited by C.R. Rao and R. Chakraborty

1991 xvi+554 pp.

1. Methods for the Inheritance of Qualitative Traits by J. Rice, R. Neuman and
S.O. Moldin

2. Ascertainment Biases and their Resolution in Biological Surveys by W.J.
Ewens

3. Statistical Considerations in Applications of Path Analytical in Genetic
Epidemiology by D.C. Rao

4. Statistical Methods for Linkage Analysis by G.M. Lathrop and J.M. Lalouel
5. Statistical Design and Analysis of Epidemiologic Studies: Some Directions of

Current Research by N. Breslow
6. Robust Classification Procedures and their Applications to Anthropometry

by N. Balakrishnan and R.S. Ambagaspitiya
7. Analysis of Population Structure: A Comparative Analysis of Different Es-

timators of Wright’s Fixation Indices by R. Chakraborty and H. Danker-
Hopfe

8. Estimation of Relationships from Genetic Data by E.A. Thompson
9. Measurement of Genetic Variation for Evolutionary Studies by R. Chakr-

aborty and C.R. Rao
10. Statistical Methods for Phylogenetic Tree Reconstruction by N. Saitou
11. Statistical Models for Sex-Ratio Evolution by S. Lessard
12. Stochastic Models of Carcinogenesis by S.H. Moolgavkar
13. An Application of Score Methodology: Confidence Intervals and Tests of Fit

for One-Hit-Curves by J.J. Gart
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14. Kidney-Survival Analysis of IgA Nephropathy Patients: A Case Study by
O.J.W.F.Kardaun

15. Confidence Bands and the Relation with Decision Analysis: Theory by
O.J.W.F.Kardaun

16. Sample Size Determination in Clinical Research by J. Bock and H.
Toutenburg

Volume 9. Computational Statistics

Edited by C.R. Rao

1993 xix+1045 pp.

1. Algorithms by B. Kalyanasundaram
2. Steady State Analysis of Stochastic Systems by K. Kant
3. Parallel Computer Architectures by R. Krishnamurti and B. Narahari
4. Database Systems by S. Lanka and S. Pal
5. Programming Languages and Systems by S. Purushothaman and J. Seaman
6. Algorithms and Complexity for Markov Processes by R. Varadarajan
7. Mathematical Programming: A Computational Perspective by W.W. Hager,

R. Horst and P.M. Pardalos
8. Integer Programming by P.M. Pardalos and Y. Li
9. Numerical Aspects of Solving Linear Least Squares Problems by J.L.

Barlow
10. The Total Least Squares Problem by S. van Huffel and H. Zha
11. Construction of Reliable Maximum-Likelihood-Algorithms with Applica-

tions to Logistic and Cox Regression by D. Böhning
12. Nonparametric Function Estimation by T. Gasser, J. Engel and B. Seifert
13. Computation Using the OR Decomposition by C.R. Goodall
14. The EM Algorithm by N. Laird
15. Analysis of Ordered Categorial Data through Appropriate Scaling by C.R.

Rao and P.M. Caligiuri
16. Statistical Applications of Artificial Intelligence by W.A. Gale, D.J. Hand

and A.E. Kelly
17. Some Aspects of Natural Language Processes by A.K. Joshi
18. Gibbs Sampling by S.F. Arnold
19. Bootstrap Methodology by G.J. Babu and C.R. Rao
20. The Art of Computer Generation of Random Variables by M.T. Boswell,

S.D. Gore, G.P. Patil and C. Taillie
21. Jackknife Variance Estimation and Bias Reduction by S. Das Peddada
22. Designing Effective Statistical Graphs by D.A. Burn
23. Graphical Methods for Linear Models by A.S. Hadi
24. Graphics for Time Series Analysis by H.J. Newton
25. Graphics as Visual Language by T. Selkar and A. Appel
26. Statistical Graphics and Visualization by E.J. Wegman and D.B. Carr
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27. Multivariate Statistical Visualization by F.W. Young, R.A. Faldowski and
M.M. McFarlane

28. Graphical Methods for Process Control by T.L. Ziemer

Volume 10. Signal Processing and its Applications

Edited by N.K. Bose and C.R. Rao

1993 xvii+992 pp.

1. Signal Processing for Linear Instrumental Systems with Noise: A General
Theory with Illustrations from Optical Imaging and Light Scattering Problems
by M. Bertero and E.R. Pike

2. Boundary Implication Results in Parameter Space by N.K. Bose
3. Sampling of Bandlimited Signals: Fundamental Results and Some Extensions

by J.L. Brown Jr
4. Localization of Sources in a Sector: Algorithms and Statistical Analysis by K.

Buckley and X.-L. Xu
5. The Signal Subspace Direction-of-Arrival Algorithm by J.A. Cadzow
6. Digital Differentiators by S.C. Dutta Roy and B. Kumar
7. Orthogonal Decompositions of 2D Random Fields and their Applications for

2D Spectral Estimation by J.M. Francos
8. VLSI in Signal Processing by A. Ghouse
9. Constrained Beamforming and Adaptive Algorithms by L.C. Godara
10. Bispectral Speckle Interferometry to Reconstruct Extended Objects from Tur-

bulence-Degraded Telescope Images by D.M. Goodman, T.W. Lawrence,
E.M. Johansson and J.P. Fitch

11. Multi-Dimensional Signal Processing by K. Hirano and T. Nomura
12. On the Assessment of Visual Communication by F.O. Huck, C.L. Fales, R.

Alter-Gartenberg and Z. Rahman
13. VLSI Implementations of Number Theoretic Concepts with Applications in

Signal Processing by G.A. Jullien, N.M. Wigley and J. Reilly
14. Decision-level Neural Net Sensor Fusion by R.Y. Levine and T.S. Khuon
15. Statistical Algorithms for Noncausal Gauss Markov Fields by J.M.F. Moura

and N. Balram
16. Subspace Methods for Directions-of-Arrival Estimation by A. Paulraj, B.

Ottersten, R. Roy, A. Swindlehurst, G. Xu and T. Kailath
17. Closed Form Solution to the Estimates of Directions of Arrival Using Data

from an Array of Sensors by C.R. Rao and B. Zhou
18. High-Resolution Direction Finding by S.V. Schell and W.A. Gardner
19. Multiscale Signal Processing Techniques: A Review by A.H. Tewfik, M. Kim

and M. Deriche
20. Sampling Theorems and Wavelets by G.G. Walter
21. Image and Video Coding Research by J.W. Woods
22. Fast Algorithms for Structured Matrices in Signal Processing by A.E. Yagle
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Volume 11. Econometrics

Edited by G.S. Maddala, C.R. Rao and H.D. Vinod

1993 xx+783 pp.

1. Estimation from Endogenously Stratified Samples by S.R. Cosslett
2. Semiparametric and Nonparametric Estimation of Quantal Response Models

by J.L. Horowitz
3. The Selection Problem in Econometrics and Statistics by C.F. Manski
4. General Nonparametric Regression Estimation and Testing in Econometrics

by A. Ullah and H.D. Vinod
5. Simultaneous Microeconometric Models with Censored or Qualitative De-

pendent Variables by R. Blundell and R.J. Smith
6. Multivariate Tobit Models in Econometrics by L.-F. Lee
7. Estimation of Limited Dependent Variable Models under Rational Expec-

tations by G.S. Maddala
8. Nonlinear Time Series and Macroeconometrics by W.A. Brock and S.M. Potter
9. Estimation, Inference and Forecasting of Time Series Subject to Changes in

Time by J.D. Hamilton
10. Structural Time Series Models by A.C. Harvey and N. Shephard
11. Bayesian Testing and Testing Bayesians by J.-P. Florens and M. Mouchart
12. Pseudo-Likelihood Methods by C. Gourieroux and A. Monfort
13. Rao’s Score Test: Recent Asymptotic Results by R. Mukerjee
14. On the Strong Consistency of M-Estimates in Linear Models under a General

Discrepancy Function by Z.D. Bai, Z.J. Liu and C.R. Rao
15. Some Aspects of Generalized Method of Moments Estimation by A. Hall
16. Efficient Estimation of Models with Conditional Moment Restrictions by

W.K. Newey
17. Generalized Method of Moments: Econometric Applications by M. Ogaki
18. Testing for Heteroscedasticity by A.R. Pagan and Y. Pak
19. Simulation Estimation Methods for Limited Dependent Variable Models by

V.A.Hajivassiliou
20. Simulation Estimation for Panel Data Models with Limited Dependent Var-

iable by M.P. Keane
21. A Perspective Application of Bootstrap Methods in Econometrics by J. Jeong

and G.S.Maddala
22. Stochastic Simulations for Inference in Nonlinear Errors-in-Variables Models

by R.S. Mariano and B.W. Brown
23. Bootstrap Methods: Applications in Econometrics by H.D. Vinod
24. Identifying Outliers and Influential Observations in Econometric Models by

S.G. Donald and G.S. Maddala
25. Statistical Aspects of Calibration in Macroeconomics by A.W. Gregory and

G.W. Smith
26. Panel Data Models with Rational Expectations by K. Lahiri
27. Continuous Time Financial Models: Statistical Applications of Stochastic

Processes by K.R. Sawyer
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Volume 12. Environmental Statistics

Edited by G.P. Patil and C.R. Rao

1994 xix+927 pp.

1. Environmetrics: An Emerging Science by J.S. Hunter
2. A National Center for Statistical Ecology and Environmental Statistics: A

Center Without Walls by G.P. Patil
3. Replicate Measurements for Data Quality and Environmental Modeling by

W. Liggett
4. Design and Analysis of Composite Sampling Procedures: A Review by G.

Lovison, S.D. Gore and G.P. Patil
5. Ranked Set Sampling by G.P. Patil, A.K. Sinha and C. Taillie
6. Environmental Adaptive Sampling by G.A.F. Seber and S.K. Thompson
7. Statistical Analysis of Censored Environmental Data by M. Akritas, T.

Ruscitti and G.P. Patil
8. Biological Monitoring: Statistical Issues and Models by E.P. Smith
9. Environmental Sampling and Monitoring by S.V. Stehman and W. Scott

Overton
10. Ecological Statistics by B.F.J. Manly
11. Forest Biometrics by H.E. Burkhart and T.G. Gregoire
12. Ecological Diversity and Forest Management by J.H. Gove, G.P. Patil, B.F.

Swindel and C. Taillie
13. Ornithological Statistics by P.M. North
14. Statistical Methods in Developmental Toxicology by P.J. Catalano and L.M.

Ryan
15. Environmental Biometry: Assessing Impacts of Environmental Stimuli Via

Animal and Microbial Laboratory Studies by W.W. Piegorsch
16. Stochasticity in Deterministic Models by J.J.M. Bedaux and S.A.L.M. Ko-

oijman
17. Compartmental Models of Ecological and Environmental Systems by J.H.

Matis and T.E. Wehrly
18. Environmental Remote Sensing and Geographic Information Systems-Based

Modeling by W.L. Myers
19. Regression Analysis of Spatially Correlated Data: The Kanawha County

Health Study by C.A. Donnelly, J.H. Ware and N.M. Laird
20. Methods for Estimating Heterogeneous Spatial Covariance Functions with

Environmental Applications by P. Guttorp and P.D. Sampson
21. Meta-analysis in Environmental Statistics by V. Hasselblad
22. Statistical Methods in Atmospheric Science by A.R. Solow
23. Statistics with Agricultural Pests and Environmental Impacts by L.J. Young

and J.H. Young
24. A Crystal Cube for Coastal and Estuarine Degradation: Selection of End-

points and Development of Indices for Use in Decision Making by M.T.
Boswell, J.S.O’Connor and G.P. Patil
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25. How Does Scientific Information in General and Statistical Information in
Particular Input to the Environmental Regulatory Process? by C.R. Cothern

26. Environmental Regulatory Statistics by C.B. Davis
27. An Overview of Statistical Issues Related to Environmental Cleanup by R.

Gilbert
28. Environmental Risk Estimation and Policy Decisions by H. Lacayo Jr

Volume 13. Design and Analysis of Experiments

Edited by S. Ghosh and C.R. Rao

1996 xviii+1230 pp.

1. The Design and Analysis of Clinical Trials by P. Armitage
2. Clinical Trials in Drug Development: Some Statistical Issues by H.I. Patel
3. Optimal Crossover Designs by J. Stufken
4. Design and Analysis of Experiments: Nonparametric Methods with Appli-

cations to Clinical Trials by P.K. Sen
5. Adaptive Designs for Parametric Models by S. Zacks
6. Observational Studies and Nonrandomized Experiments by P.R. Rosenbaum
7. Robust Design: Experiments for Improving Quality by D.M. Steinberg
8. Analysis of Location and Dispersion Effects from Factorial Experiments with

a Circular Response by C.M. Anderson
9. Computer Experiments by J.R. Koehler and A.B. Owen

10. A Critique of Some Aspects of Experimental Design by J.N. Srivastava
11. Response Surface Designs by N.R. Draper and D.K.J. Lin
12. Multiresponse Surface Methodology by A.I. Khuri
13. Sequential Assembly of Fractions in Factorial Experiments by S. Ghosh
14. Designs for Nonlinear and Generalized Linear Models by A.C. Atkinson and

L.M. Haines
15. Spatial Experimental Design by R.J. Martin
16. Design of Spatial Experiments: Model Fitting and Prediction by V.V. Fed-

orov
17. Design of Experiments with Selection and Ranking Goals by S.S. Gupta and

S. Panchapakesan
18. Multiple Comparisons by A.C. Tamhane
19. Nonparametric Methods in Design and Analysis of Experiments by E. Brun-

ner and M.L. Puri
20. Nonparametric Analysis of Experiments by A.M. Dean and D.A. Wolfe
21. Block and Other Designs in Agriculture by D.J. Street
22. Block Designs: Their Combinatorial and Statistical Properties by T. Calinski

and S. Kageyama
23. Developments in Incomplete Block Designs for Parallel Line Bioassays by

S. Gupta and R. Mukerjee
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24. Row-Column Designs by K.R. Shah and B.K. Sinha
25. Nested Designs by J.P. Morgan
26. Optimal Design: Exact Theory by C.S. Cheng
27. Optimal and Efficient Treatment – Control Designs by D. Majumdar
28. Model Robust Designs by Y.-J. Chang and W.I. Notz
29. Review of Optimal Bayes Designs by A. DasGupta
30. Approximate Designs for Polynomial Regression: Invariance, Admissibility,

and Optimality by N. Gaffke and B. Heiligers

Volume 14. Statistical Methods in Finance

Edited by G.S. Maddala and C.R. Rao

1996 xvi+733 pp.

1. Econometric Evaluation of Asset Pricing Models by W.E. Person and R.
Jegannathan

2 Instrumental Variables Estimation of Conditional Beta Pricing Models by
C.R. Harvey and C.M. Kirby

3. Semiparametric Methods for Asset Pricing Models by B.N. Lehmann
4. Modeling the Term Structure by A.R. Pagan, A.D. Hall and V. Martin
5. Stochastic Volatility by E. Ghysels, A.C. Harvey and E. Renault
6. Stock Price Volatility by S.F. LeRoy
7. GARCH Models of Volatility by F.C. Palm
8. Forecast Evaluation and Combination by F.X. Diebold and J.A. Lopez
9. Predictable Components in Stock Returns by G. Kaul

10. Interset Rate Spreads as Predictors of Business Cycles by K. Lahiri and J.G.
Wang

11. Nonlinear Time Series, Complexity Theory, and Finance by W.A. Brock and
P.J.F. deLima

12. Count Data Models for Financial Data by A.C. Cameron and P.K. Trivedi
13. Financial Applications of Stable Distributions by J.H. McCulloch
14. Probability Distributions for Financial Models by J.B. McDonald
15. Bootstrap Based Tests in Financial Models by G.S. Maddala and H. Li
16. Principal Component and Factor Analyses by C.R. Rao
17. Errors in Variables Problems in Finance by G.S. Maddala and M. Nima-

lendran
18. Financial Applications of Artificial Neural Networks by M. Qi
19. Applications of Limited Dependent Variable Models in Finance by G.S.

Maddala
20. Testing Option Pricing Models by D.S. Bates
21. Peso Problems: Their Theoretical and Empirical Implications by M.D.D.

Evans
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22. Modeling Market Microstructure Time Series by J. Hasbrouck
23. Statistical Methods in Tests of Portfolio Efficiency: A Synthesis by J.

Shanken

Volume 15. Robust Inference

Edited by G.S. Maddala and C.R. Rao

1997 xviii+698 pp.

1. Robust Inference in Multivariate Linear Regression Using Difference of Two
Convex Functions as the Discrepancy Measure by Z.D. Bai, C.R. Rao and
Y.H. Wu

2. Minimum Distance Estimation: The Approach Using Density-Based Dis-
tances by A. Basu, I.R. Harris and S. Basu

3. Robust Inference: The Approach Based on Influence Functions by M. Mark-
atou and E. Ronchetti

4. Practical Applications of Bounded-Influence Tests by S. Heritier and M.-P.
Victoria-Feser

5. Introduction to Positive-Breakdown Methods by P.J. Rousseeuw
6. Outlier Identification and Robust Methods by U. Gather and C. Becker
7. Rank-Based Analysis of Linear Models by T.P. Hettmansperger, J.W.

McKean and S.J. Sheather
8. Rank Tests for Linear Models by R. Koenker
9. Some Extensions in the Robust Estimation of Parameters of Exponential and

Double Exponential Distributions in the Presence of Multiple Outliers by A.
Childs and N. Balakrishnan

10. Outliers, Unit Roots and Robust Estimation of Nonstationary Time Series by
G.S. Maddala and Y. Yin

11. Autocorrelation-Robust Inference by P.M. Robinson and C. Velasco
12. A Practitioner’s Guide to Robust Covariance Matrix Estimation by W.J. den

Haan and A. Levin
13. Approaches to the Robust Estimation of Mixed Models by A.H. Welsh and

A.M. Richardson
14. Nonparametric Maximum Likelihood Methods by S.R. Cosslett
15. A Guide to Censored Quantile Regressions by B. Fitzenberger
16. What Can Be Learned About Population Parameters When the Data Are

Contaminated by J.L. Horowitz and C.F. Manski
17. Asymptotic Representations and Interrelations of Robust Estimators and

Their Applications by J. Jurecková and P.K. Sen
18. Small Sample Asymptotics: Applications in Robustness by C.A. Field and

M.A. Tingley
19. On the Fundamentals of Data Robustness by G. Maguluri and K. Singh
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20. Statistical Analysis With Incomplete Data: A Selective Review by M.G.
Akritas and M.P. La Valley

21. On Contamination Level and Sensitivity of Robust Tests by J.Á. Visšek
22. Finite Sample Robustness of Tests: An Overview by T. Kariya and P. Kim
23. Future Directions by G.S. Maddala and C.R. Rao

Volume 16. Order Statistics – Theory and Methods

Edited by N. Balakrishnan and C.R. Rao

1997 xix+688 pp.

1. Order Statistics: An Introduction by N. Balakrishnan and C.R. Rao
2. Order Statistics: A Historical Perspective by H. Leon Harter and N. Ba-

lakrishnan
3. Computer Simulation of Order Statistics by Pandu R. Tadikamalla and N.

Balakrishnan
4. Lorenz Ordering of Order Statistics and Record Values by Barry C. Arnold

and Jose A. Villasenor
5. Stochastic Ordering of Order Statistics by Philip J. Boland, Moshe Shaked

and J. George Shanthikumar
6. Bounds for Expectations of L-Estimates by T. Rychlik
7. Recurrence Relations and Identities for Moments of Order Statistics by N.

Balakrishnan and K.S. Sultan
8. Recent Approaches to Characterizations Based on Order Statistics and

Record Values by C.R. Rao and D.N. Shanbhag
9. Characterizations of Distributions via Identically Distributed Functions of

Order Statistics by Ursula Gather, Udo Kamps and Nicole Schweitzer
10. Characterizations of Distributions by Recurrence Relations and Identities for

Moments of Order Statistics by Udo Kamps
11. Univariate Extreme Value Theory and Applications by Janos Galambos
12. Order Statistics: Asymptotics in Applications by Pranab Kumar Sen
13. Zero-One Laws for Large Order Statistics by R.J. Tomkins and Hong Wang
14. Some Exact Properties of Cook’s D1 by D.R. Jensen and D.E. Ramirez
15. Generalized Recurrence Relations for Moments of Order Statistics from

Non-Identical Pareto and Truncated Pareto Random Variables with Appli-
cations to Robustness by Aaron Childs and N. Balakrishnan

16. A Semiparametric Bootstrap for Simulating Extreme Order Statistics by
Robert L.Strawderman and Daniel Zelterman

17. Approximations to Distributions of Sample Quantiles by Chunsheng Ma and
John Robinson

18. Concomitants of Order Statistics by H.A. David and H.N. Nagaraja
19. A Record of Records by Valery B. Nevzorov and N. Balakrishnan
20. Weighted Sequential Empirical Type Processes with Applications to Change-

Point Problems by Barbara Szyszkowicz
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21. Sequential Quantile and Bahadur–Kiefer Processes by Miklós Csörgo+ and
Barbara Szyszkowicz

Volume 17. Order Statistics: Applications

Edited by N. Balakrishnan and C.R. Rao

1998 xviii+712 pp.

1. Order Statistics in Exponential Distribution by Asit P. Basu and Bahadur
Singh

2. Higher Order Moments of Order Statistics from Exponential and Right-
truncated Exponential Distributions and Applications to Life-testing Prob-
lems by N. Balakrishnan and Shanti S. Gupta

3. Log-gamma Order Statistics and Linear Estimation of Parameters by N.
Balakrishnan and P.S. Chan

4. Recurrence Relations for Single and Product Moments of Order Statistics
from a Generalized Logistic Distribution with Applications to Inference and
Generalizations to Double Truncation by N. Balakrishnan and Rita
Aggarwala
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25. Itô’s Stochastic Calculus and Its Applications by S. Watanabe

Contents of Previous Volumes842



Volume 20. Advances in Reliability

Edited by N. Balakrishnan and C.R. Rao

2001 xxii+860 pp.

1. Basic Probabilistic Models in Reliability by N. Balakrishnan, N. Limnios and
C. Papadopoulos

2. The Weibull Nonhomogeneous Poisson Process by A.P Basu and S.E. Rigdon
3. Bathtub-Shaped Failure Rate Life Distributions by C.D. Lai, M. Xie and

D.N.P. Murthy
4. Equilibrium Distribution – its Role in Reliability Theory by A. Chatterjee

and S.P. Mukherjee
5. Reliability and Hazard Based on Finite Mixture Models by E.K. Al-Hussaini

and K.S. Sultan
6. Mixtures and Monotonicity of Failure Rate Functions by M. Shaked and F.

Spizzichino
7. Hazard Measure and Mean Residual Life Orderings: A Unified Approach by

M. Asadi and D.N. Shanbhag
8. Some Comparison Results of the Reliability Functions of Some Coherent

Systems by J. Mi
9. On the Reliability of Hierarchical Structures by L.B. Klebanov and G.J.

Szekely
10. Consecutive k-out-of-n Systems by N.A. Mokhlis
11. Exact Reliability and Lifetime of Consecutive Systems by S. Aki
12. Sequential k-out-of-n Systems by E. Cramer and U. Kamps
13. Progressive Censoring: A Review by R. Aggarwala
14. Point and Interval Estimation for Parameters of the Logistic Distribution

Based on Progressively Type-II Censored Samples by N. Balakrishnan and N.
Kannan

15. Progressively Censored Variables-Sampling Plans for Life Testing by U. Ba-
lasooriya

16. Graphical Techniques for Analysis of Data From Repairable Systems by P.A.
Akersten, B. Klefsjö and B. Bergman

17. A Bayes Approach to the Problem of Making Repairs by G.C. McDonald
18. Statistical Analysis for Masked Data by B.J. Flehingery, B. Reiser and E.

Yashchin
19. Analysis of Masked Failure Data under Competing Risks by A. Sen, S. Basu

and M. Banerjee
20. Warranty and Reliability by D.N.P. Murthy and W.R. Blischke
21. Statistical Analysis of Reliability Warranty Data by K. Suzuki, Md. Rezaul

Karim and L. Wang
22. Prediction of Field Reliability of Units, Each under Differing Dynamic

Stresses, from Accelerated Test Data by W. Nelson
23. Step-Stress Accelerated Life Test by E. Gouno and N. Balakrishnan

Contents of Previous Volumes 843



24. Estimation of Correlation under Destructive Testing by R. Johnson and W.
Lu

25. System-Based Component Test Plans for Reliability Demonstration: A Re-
view and Survey of the State-of-the-Art by J. Rajgopal and M. Mazumdar

26. Life-Test Planning for Preliminary Screening of Materials: A Case Study by J.
Stein and N. Doganaksoy

27. Analysis of Reliability Data from In-House Audit Laboratory Testing by R.
Agrawal and N. Doganaksoy

28. Software Reliability Modeling, Estimation and Analysis by M. Xie and G.Y.
Hong

29. Bayesian Analysis for Software Reliability Data by J.A. Achcar
30. Direct Graphical Estimation for the Parameters in a Three-Parameter Wei-

bull Distribution by P.R. Nelson and K.B. Kulasekera
31. Bayesian and Frequentist Methods in Change-Point Problems by N. Ebra-

himi and S.K. Ghosh
32. The Operating Characteristics of Sequential Procedures in Reliability by S.

Zacks
33. Simultaneous Selection of Extreme Populations from a Set of Two-Parameter

Exponential Populations by K. Hussein and S. Panchapakesan

Volume 21. Stochastic Processes: Modelling and Simulation

Edited by D.N. Shanbhag and C.R. Rao

2003 xxviii+1002 pp.

1. Modelling and Numerical Methods in Manufacturing System Using Control
Theory by E.K. Boukas and Z.K. Liu

2. Models of Random Graphs and their Applications by C. Cannings and D.B.
Penman

3. Locally Self-Similar Processes and their Wavelet Analysis by J.E. Cavanaugh,
Y. Wang and J.W. Davis

4. Stochastic Models for DNA Replication by R. Cowan
5. An Empirical Process with Applications to Testing the Exponential and

Geometric Models by J.A. Ferreira
6. Patterns in Sequences of Random Events by J. Gani
7. Stochastic Models in Telecommunications for Optimal Design, Control and

Performance Evaluation by N. Gautam
8. Stochastic Processes in Epidemic Modelling and Simulation by D. Greenhalgh
9. Empirical Estimators Based on MCMC Data by P.E. Greenwood and

W. Wefelmeyer
10. Fractals and the Modelling of Self-Similarity by B.M. Hambly
11. Numerical Methods in Queueing Theory by D. Heyman
12. Applications of Markov Chains to the Distribution Theory of Runs and

Patterns by M.V. Koutras

Contents of Previous Volumes844



13. Modelling Image Analysis Problems Using Markov Random Fields by S.Z. Li
14. An Introduction to Semi-Markov Processes with Application to Reliability

by N. Limnios and G. Opris-an
15. Departures and Related Characteristics in Queueing Models by M. Man-

oharan, M.H. Alamatsaz and D.N. Shanbhag
16. Discrete Variate Time Series by E. McKenzie
17. Extreme Value Theory, Models and Simulation by S. Nadarajah
18. Biological Applications of Branching Processes by A.G. Pakes
19. Markov Chain Approaches to Damage Models by C.R. Rao, M. Albassam,

M.B. Rao and D.N. Shanbhag
20. Point Processes in Astronomy: Exciting Events in the Universe by J.D.

Scargle and G.J. Babu
21. On the Theory of Discrete and Continuous Bilinear Time Series Models by T.

Subba Rao and Gy. Terdik
22. Nonlinear and Non-Gaussian State-Space Modeling with Monte Carlo Tech-

niques: A Survey and Comparative Study by H. Tanizaki
23. Markov Modelling of Burst Behaviour in Ion Channels by G.F. Yeo, R.K.

Milne, B.W. Madsen, Y. Li and R.O. Edeson

Volume 22. Statistics in Industry

Edited by R. Khattree and C.R. Rao

2003 xxi+1150 pp.

1. Guidelines for Selecting Factors and Factor Levels for an Industrial Designed
Experiment by V. Czitrom

2. Industrial Experimentation for Screening by D.K.J. Lin
3. The Planning and Analysis of Industrial Selection and Screening Experiments

by G. Pan, T.J. Santner and D.M. Goldsman
4. Uniform Experimental Designs and their Applications in Industry by K.-T.

Fang and D.K.J. Lin
5. Mixed Models and Repeated Measures: Some Illustrative Industrial Exam-

ples by G.A. Milliken
6. Current Modeling and Design Issues in Response Surface Methodology:

GLMs and Models with Block Effects by A.I. Khuri
7. A Review of Design and Modeling in Computer Experiments by V.C.P.

Chen, K.-L. Tsui, R.R. Barton and J.K. Allen
8. Quality Improvement and Robustness via Design of Experiments by B.E.

Ankenman and A.M. Dean
9. Software to Support Manufacturing Experiments by J.E. Reece

10. Statistics in the Semiconductor Industry by V. Czitrom
11. PREDICT: A New Approach to Product Development and Lifetime Assess-

ment Using Information Integration Technology by J.M. Booker, T.R. Bem-
ent, M.A. Meyerand W.J. Kerscher III

Contents of Previous Volumes 845



12. The Promise and Challenge of Mining Web Transaction Data by S.R. Dalal,
D. Egan, Y. Ho and M. Rosenstein

13. Control Chart Schemes for Monitoring the Mean and Variance of Processes
Subject to Sustained Shifts and Drifts by Z.G. Stoumbos, M.R. Reynolds Jr
and W.H.Woodall

14. Multivariate Control Charts: Hotelling T2, Data Depth and Beyond by R.Y.
Liu

15. Effective Sample Sizes for T2 Control Charts by R.L. Mason, Y.-M. Chou
and J.C.Young

16. Multidimensional Scaling in Process Control by T.F. Cox
17. Quantifying the Capability of Industrial Processes by A.M. Polansky and

S.N.U.A. Kirmani
18. Taguchi’s Approach to On-line Control Procedure by M.S. Srivastava and

Y. Wu
19. Dead-Band Adjustment Schemes for On-line Feedback Quality Control by A.

Luceño
20. Statistical Calibration and Measurements by H. Iyer
21. Subsampling Designs in Industry: Statistical Inference for Variance Compo-

nents by R. Khattree
22. Repeatability, Reproducibility and Interlaboratory Studies by R. Khattree
23. Tolerancing – Approaches and Related Issues in Industry by T.S. Arthanari
24. Goodness-of-fit Tests for Univariate and Multivariate Normal Models by

D.K. Srivastava and G.S. Mudholkar
25. Normal Theory Methods and their Simple Robust Analogs for Univariate

and Multivariate Linear Models by D.K. Srivastava and G.S. Mudholkar
26. Diagnostic Methods for Univariate and Multivariate Normal Data by D.N.

Naik
27. Dimension Reduction Methods Used in Industry by G. Merola and B.

Abraham
28. Growth and Wear Curves by A.M. Kshirsagar
29. Time Series in Industry and Business by B. Abraham and N. Balakrishna
30. Stochastic Process Models for Reliability in Dynamic Environments by N.D.

Singpurwalla, T.A. Mazzuchi, S. Özekici and R. Soyer
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